Skip to main content
main-content

05.02.2018 | Ausgabe 8/2018

Surgical Endoscopy 8/2018

A model for predicting the GEARS score from virtual reality surgical simulator metrics

Zeitschrift:
Surgical Endoscopy > Ausgabe 8/2018
Autoren:
Ariel Kate Dubin, Danielle Julian, Alyssa Tanaka, Patricia Mattingly, Roger Smith

Abstract

Background

Surgical education relies heavily upon simulation. Assessment tools include robotic simulator assessments and Global Evaluative Assessment of Robotic Skills (GEARS) metrics, which have been validated. Training programs use GEARS for proficiency testing; however, it requires a trained human evaluator. Due to limited time, learners are reliant on surgical simulator feedback to improve their skills. GEARS and simulator scores have been shown to be correlated but in what capacity is unknown. Our goal is to develop a model for predicting GEARS score using simulator metrics.

Methods

Linear and multivariate logistic regressions were used on previously reported data by this group. Subjects performed simple (Ring and Rail 1) and complex (Suture Sponge 1) tasks on simulators, the dV-Trainer (dVT) and the da Vinci Skills Simulator (dVSS). They were scored via simulator metrics and GEARS.

Results

A linear model for each simulator and exercise showed a positive linear correlation. Equations were developed for predicting GEARS Total Score from simulator Overall Score. Next, the effects of each individual simulator metric on the GEARS Total Score for each simulator and exercise were examined. On the dVSS, Excessive Instrument Force was significant for Ring and Rail 1 and Instrument Collision was significant for Suture Sponge 1. On the dVT, Time to Complete was significant for both exercises. Once the significant variables were identified, multivariate models were generated. Comparing the predicted GEARS Total Score from the linear model (using only simulator Overall Score) to that using the multivariate model (using the significant variables for each simulator and exercise), the results were similar.

Conclusions

Our results suggest that trainees can use simulator Overall Score to predict GEARS Total Score using our linear regression equations. This can improve the training process for those preparing for high-stakes assessments.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2018

Surgical Endoscopy 8/2018 Zur Ausgabe
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Chirurgie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Chirurgie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise