Skip to main content
Erschienen in: BMC Cancer 1/2021

Open Access 01.12.2021 | Research article

A prognosis-related molecular subtype for early-stage non-small lung cell carcinoma by multi-omics integration analysis

verfasst von: Kai Yang, Ying Wu

Erschienen in: BMC Cancer | Ausgabe 1/2021

Abstract

Background

Early-stage non-small cell lung carcinoma (NSCLC) accounts for more than 80% of lung cancer, which is a kind of cancer with high heterogeneity, so the genetic heterogeneity and molecular subtype should be explored.

Methods

Partitioning Around Medoid algorithm was used to acquire the molecular subtype for early-stage NSCLC based on prognosis-related mRNAs and methylation sites. Random forest (RF) and support vector machine (SVM) were used to build prediction models for subtypes.

Results

Six prognosis-related subtypes for early-stage NSCLC, including 4 subtypes for lung squamous cell carcinoma (LUSC) and 2 subtypes for lung adenocarcinoma (LUAD), were identified. There were highly expressed and hypermethylated gene regions for LUSC-C1 and LUAD-C2, highly expressed region for LUAD-C1, and hypermethylated regions for LUSC-C3 and LUSC-C4. Molecular subtypes for LUSC were mainly determined by DNA methylation (14 mRNAs and 362 methylation sites). Molecular subtypes for LUAD were determined by both mRNA and DNA methylation information (143 mRNAs and 458 methylation sites). Ten methylation sites were selected as biomarkers for prediction of LUSC-C1 and LUSC-C3, respectively. Nine genes and 1 methylation site were selected as biomarkers for LUAD subtype prediction. These subtypes can be predicted by the selected biomarkers with RF and SVM models.

Conclusions

In conclusion, we proposed a prognosis-related molecular subtype for early-stage NSCLC, which can provide important information for personalized therapy of patients.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12885-021-07846-0.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AUC
Area under the ROC curve
DAVID
The Database for Annotation, Visualization and Integrated Discovery
FN
False negative
FP
False positive
GO
Gene Ontology
KEGG
Kyoto Encyclopedia of Genes and Genomes
LUAD
Lung adenocarcinoma
LUSC
Lung squamous cell carcinoma
NSCLC
Non-small cell lung carcinoma
PLS
Partial least square
RF
Random forest
SE
Sensitivity
SP
Specificity
SVM
Support vector machine
TCGA
The Cancer Genome Atlas
TN
True negative
TP
True positive
VIP
Variable important projection

Background

Non-small cell lung carcinoma (NSCLC) accounts for more than 80% of lung cancer, which is the second most common cancer and the most common cause of cancer-associated deaths worldwide [1, 2]. With the development of diagnostic techniques, more NSCLC patients will be diagnosed at earlier stage [3, 4]. These patients can achieve a relatively superior prognosis, but some patients still develop recurrent cancer and about 40% of them will die of cancer within 5 years [5, 6]. NSCLC is also a kind of cancer with high heterogeneity, of which 45% were lung squamous cell carcinoma (LUSC) and 30% were lung adenocarcinoma (LUAD) [7]. Histological and genetic diversity can account for some of the individual variation in NSCLC survival. Therefore, identification of molecular subtype for early-stage NSCLC patients associated with survival will benefit early treatment and patient prognosis.
Molecular subtype has been used in the exploration of NSCLC heterogeneity. Gene expression subtypes of LUSC and LUAD have been proposed by The Cancer Genome Atlas (TCGA) research network, respectively [8, 9]. A multiplatform-based NSCLC molecular subtype including 9 subtypes for 1023 NSCLC patients has also been identified in a recent study [10]. There are some other kinds of lung cancer molecular subtypes according to different gene sets [11, 12]. However, there were some special molecular characteristics for early-stage NSCLC. Patient prognostic information has also not well utilized in these subtypes and gene sets, leading to weak predictive ability for patient prognosis.
In this study, we analyzed gene expression and DNA methylation data for early-stage NSCLC, and proposed a prognosis-related molecular subtypes for LUSC and LUAD. Then, we explored the function of differentially expressed genes and differentially methylated genes. We also selected biomarkers and built prediction model for each subtype in training dataset, and validated the models in test dataset. The prediction model was evaluated by sensitivity (SE), specificity (SP) and area under the ROC curve (AUC). Furthermore, we analyzed the molecular functions of these biomarkers in cancer development.

Methods

Datasets and preprocessing

RNA-Seq data, DNA methylation data and clinical information of NSCLC patients were downloaded from the UCSC Xena website (http://​xena.​ucsc.​edu/​). The RNA-seq data were log2 transformed RSEM normalized counts and mapped to HUGO gene symbols. The DNA methylation levels were represented by β-values (from 0 to 1). Methylation sites were filtered by the following criteria: 1) probes located in the X or Y chromosome; 2) SNP present within the assay of probe; 3) probes did not annotate with any reference genes; 4) probes located in the shelves and oversea regions of CpG island. Genes and methylation sites with missing value in more than 20% of patients were excluded, and patients without mRNA data or methylation data were also removed from further analysis. Data were centralized and standardized before analysis.
For each gene and methylation site in the entire data set, we built a univariate Cox proportional hazard (Cox-PH) model and selected variables with P values less than 0.001. We than used these genes and methylation sites to cluster the patients using Partitioning Around Medoid (PAM) clustering algorithm. The cluster number K of PAM clustering algorithm was set to 2–5. The optimal number of NSCLC clusters was determined by maximizing the difference of overall survival among different subtypes. The Database for Annotation, Visualization and Integrated Discovery (version 6.8, DAVID) tool was used for the functional annotation for Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

Prediction model for molecular subtypes

We randomly divided the data set into training set and test set, in which training set contained 60% patients (Table 1). We selected biomarkers and built prediction models for molecular subtypes in training set, and validated the models in test set. In the biomarker selection phase, univariate Wilcoxon test was firstly used to selected differentially expressed genes and methylated sites (P < 0.001) compared with other subtypes in the training dataset. Then, a multivariate partial least square (PLS) model was established, and 10 variables with largest variable important projection (VIP) values were selected as biomarkers for each subtype. Random forest (RF) and support vector machine (SVM) models were constructed with 10 selected biomarkers in training dataset. The model prediction ability was evaluated in training and test datasets, respectively.
Table 1
Clinical characteristics of early-stage NSCLC patients in training and test sets
  
LUSC
LUAD
Training set
Test set
Training set
Test set
N
 
181
122
210
141
Age
 
68.41 ± 8.41
66.93 ± 9.48
65.43 ± 9.66
65.46 ± 9.98
Sex
Female
48 (26.52)
32 (26.23)
117 (55.71)
73 (51.77)
Male
133 (73.48)
90 (73.77)
93 (44.29)
68 (48.23)
Pathologic stage
I
101 (55.80)
69 (56.56)
140 (66.67)
99 (70.21)
II
80 (44.20)
53 (43.44)
70 (33.33)
42 (29.79)
Therapy outcomea
CR
128 (88.28)
89 (85.58)
138 (77.97)
99 (81.15)
PR
1 (0.69)
3 (2.88)
1 (0.56)
2 (1.64)
SD
5 (3.45)
7 (6.73)
17 (9.60)
4 (3.28)
PD
11 (7.59)
5 (4.81)
21 (11.86)
17 (13.93)
Smoking statusb
1
5 (2.84)
5 (4.20)
33 (16.26)
17 (12.32)
2
62 (35.23)
35 (29.41)
48 (23.65)
37 (26.81)
3
30 (17.05)
18 (15.13)
54 (26.60)
37 (26.81)
4
77 (43.75)
60 (50.42)
66 (32.51)
45 (32.61)
5
2 (1.14)
1 (0.84)
2 (0.99)
2 (1.45)
Pack year
 
52.20 ± 27.93
52.65 ± 28.92
39.18 ± 24.70
43.81 ± 28.38
The clinical characteristics were not statistically significant between training and test sets (P > 0.05). a CR complete response, PR partial response, SD stable disease, PD progressive disease. b 1: Lifelong non-smoker; 2: Current smoker; 3: Current reformed smoker for > 15 years; 4: Current reformed smoker for ≤15 years; 5: Current reformed smoker, duration not specified

Evaluation criteria

The prediction model performance was evaluated by sensitivity (SE), specificity (SP) and area under the ROC curve (AUC). SE and SP were defined by:
$$ SE=\frac{TP}{TP+ FN} $$
$$ SP=\frac{TN}{TN+ FP} $$
where.
True Positive (TP): the patient belongs to a subtype, and the prediction model predicts the patient as this subtype;
False Positive (FP): the patient does not belong to a subtype, but the prediction model predicts the patient as this subtype;
True Negative (TN): the patient does not belong to a subtype, and the prediction model does not predict the patient as this subtype;
False Negative (FN): the patient belongs to a subtype, but the prediction model does not predict the patient as this subtype.
AUC were defined by:
$$ AUC=\frac{\sum {r}_i-{n}_0\left({n}_0+1\right)/2}{n_0{n}_1} $$
where n0 and n1 are the number of patients who belong to and not belong to a subtype respectively, and ri is the rank of ith patient of a subtype in the ranked list.

Results

An overview workflow of this study was shown in Fig. 1. In total, 303 LUSC and 351 LUAD patients with coupled mRNA and methylation data were analyzed in this study. After screening according to the criteria in the “method” section, 16249 mRNAs and 162,926 methylation sites were included. In the univariate Cox regression analysis, 14 mRNAs and 362 methylation sites in LUSC, and 143 mRNAs and 458 methylation sites in LUAD were associated with overall survival at the 0.001 level.
In the identification of prognosis-related molecular subtypes, the genes and methylation sites related with overall survival were used in the PAM clustering analysis, with cluster number K ranging from 2 to 5 (Supplementary Fig. 1). In the Kaplan-Meier (K-M) survival curves of LUSC and LUAD patients for different cluster number K, optimum survival curves were identified by 4 clusters for LUSC and 2 clusters for LUAD, respectively (Fig. 2). These subtypes showed different gene expression and DNA methylation patterns (Fig. 3). There were highly expressed and hypermethylated gene regions for LUSC-C1 and LUAD-C2, highly expressed region for LUAD-C1, and hypermethylated regions for LUSC-C3 and LUSC-C4.

Functional annotation of differentially expressed genes and methylated genes related with overall survival

Functional enrichment was conducted for genes and methylated genes related with overall survival in LUSC and LUAD. Firstly, 362 and 458 methylation sites in LUSC and LUAD were located in 267 and 339 genes, respectively. The distribution of methylation sites was showed in Supplementary Fig. 2. The methylated genes in LUSC were significantly enriched in 8 GO biological process terms, 4 GO cellular component terms, and 7 GO molecular function terms (Supplementary Table 1). The 14 differentially expressed genes were also enriched in 3 GO cellular component terms at 0.2 level.
For LUAD patients, the methylated genes were significantly enriched in 11 biological process terms, 9 cellular component terms, 7 molecular function terms, and 2 KEGG pathways (Supplementary Table 2). The differentially expressed genes were significantly enriched in 21 biological process terms, 12 cellular component terms, 11 molecular function terms, and 7 KEGG pathways.

Biomarkers for the prediction of subtypes

We next sought to select specific biomarkers and build prediction models for molecular subtypes. There were only 4 patients and obvious hypermethylated region in LUSC-C4 subtype, so we selected biomarkers and built prediction model for LUSC-C1, LUSC-C3 and LUAD. In the training dataset which included 60% patients, univariate Wilcoxon test was firstly used, and 114, 182, 303 biomarkers with P < 0.001 were selected for LUSC-C1, LUSC-C3 and LUAD. Then, these biomarkers were further used to build a multivariate PLS model and 10 variables with VIP values were selected as biomarkers for each subtype, respectively (Table 2). Ten methylation sites were selected as biomarkers for prediction of LUSC-C1 and LUSC-C3, respectively. Seven biomarkers (cg00894870, cg03041700, cg04738309, cg08356572, cg09844983, cg11416447 and cg22627950) were down-regulated, and 3 biomarkers (cg15987088, cg22627950 and cg24599434) were up-regulated in LUSC-C1 (Supplementary Fig. 3). Two biomarkers (cg02074191 and cg12065562) were down-regulated, and 8 biomarkers (cg00431236, cg00894870, cg02590972, cg03041700, cg04417954, cg08356572, cg11416447 and cg22627950) were up-regulated in LUSC-C3 (Supplementary Fig. 4). Nine genes and 1 methylation site were selected as biomarkers for LUAD subtype prediction. These biomarkers were all down-regulated in LUAD-C1 (Supplementary Fig. 5).
Table 2
Biomarkers for prediction of LUAD and LUSC subtypes
 
ID_REF
Chr.
Gene name
Genetic location
Epigenetic location
LUSC-C1
cg00894870
1
MRTO4; KIAA0090
Body; TSS1500
Island
cg03041700
1
ATAD3B
Body
Island
cg04738309
5
C5orf13
Body
Island
cg08356572
6
TRIM27
1stExon
Island
cg09844983
1
RPA2
Body
Island
cg11416447
7
DMTF1
TSS200
N_Shore
cg15987088
3
GHSR
TSS200
Island
cg17152757
3
GHSR
TSS200
Island
cg22627950
7
TMED4
TSS1500
Island
cg24599434
3
GHSR
TSS200
Island
LUSC-C3
cg00431236
2
ACP1; SH3YL1
1stExon; TSS1500
Island
cg00894870
1
MRTO4; KIAA0090
Body; TSS1500
Island
cg02074191
5
PCDHGA1; PCDHGA2; PCDHGA3; PCDHGA4; PCDHGA5; PCDHGA6; PCDHGA7; PCDHGA8; PCDHGB1; PCDHGB2; PCDHGB3; PCDHGB4; PCDHGB5
Body; Body; Body; Body; Body; Body; Body; Body; Body; Body; Body; Body; 1stExon
Island
cg02590972
2
RPL37A
TSS200
N_Shore
cg03041700
1
ATAD3B
Body
Island
cg04417954
15
CRTC3
Body
Island
cg08356572
6
TRIM27
1stExon
Island
cg11416447
7
DMTF1
TSS200
N_Shore
cg12065562
5
PCDHB18
Body
Island
cg22627950
7
TMED4
TSS1500
Island
LUAD
ANLN
7
   
CCNA2
4
   
CDCA5
11
   
CKAP2L
2
   
DLGAP5
14
   
KIF4A
X
   
KPNA2
17
   
SHCBP1
16
   
TPX2
20
   
cg20097219
17
TBC1D16
Body
S_Shore
To evaluate the predictive performance of biomarkers, RF and SVM models for subtype prediction were built, and SE, SP and AUC were calculated in training and test datasets (Table 3). As results, we got a good prediction performance in the both training and test datasets. AUCs for LUSC-C1, LUSC-C3 and LUAD in RF model were 0.84, 0.77 and 0.83, whereas 0.85, 0.85 and 0.83 in SVM model, respectively. The prediction model built by SVM model was superior to the one built by RF model. These subtypes were significantly associated with overall survival, except for LUAD subtypes in test set, which also tended to be significant (Supplementary Fig. 6).
Table 3
Diagnostic capacities of prediction model for molecular subtypes of LUSC and LUAD
 
Comparison group
Prediction model
Training dataset
Test dataset
SE
SP
AUC (95% CI)*
SE
SP
AUC (95% CI)*
LUSC
C1 vs C2 and C3
RF
1
1
1
0.72
0.96
0.84 (0.76–0.92)
  
SVM
0.93
0.90
0.93 (0.89–0.98)
0.75
0.96
0.85 (0.77–0.93)
 
C3 vs C1 and C2
RF
1
1
1
0.69
0.86
0.77 (0.68–0.86)
  
SVM
0.88
0.96
0.92 (0.87–0.97)
0.81
0.89
0.85 (0.78–0.93)
LUAD
C1 vs C2
RF
1
1
1
0.86
0.80
0.83 (0.76–0.89)
  
SVM
0.90
0.89
0.90 (0.85–0.94)
0.81
0.85
0.83 (0.77–0.89)
* P < 0.05. CI confidence interval, RF random forest, SVM support vector machine

Discussion

In this study, we proposed a prognosis-related molecular subtype for early-stage NSCLC, including 4 subtypes for LUSC and 2 subtypes for LUAD. These subtypes showed different trend in overall survival, gene expression pattern, and DNA methylation level. Most subtypes showed highly expressed and hypermethylated gene regions, which facilitated the biomarker selection for subtypes. We also selected biomarkers and built prediction models with good performance, which can help the grouping of new patients and therapy strategy selection.
LUSC patients were divided into 4 clusters by 14 mRNAs and 362 methylation sites related with overall survival. These subtypes were mainly determined by DNA methylation information, and all the selected biomarkers were also methylation sites. Five methylation sites (cg00894870, cg03041700, cg08356572, cg11416447 and cg22627950) were selected as biomarkers for both LUSC-C1 and LUSC-C3, in which the function of 4 methylated genes were associated with cancer [1318]. The function of 267 genes were mainly associated with regulation of cell cycle and gene transcription.
In LUSC-C1, 3 hyper-methylated sites were located in transcriptional start site (TSS) 200 regions of GHSR and weakly negatively related with GHSR (Supplementary Table 3), which can encode growth hormone secretagogue receptor (GHS-R) and related with energy metabolism. KIAA0090, ATAD3B, TRIM27 and DMTF1, regulated by hypo-methylated sites, were also associated with cancer. KIAA0090, which was positively related with hypo-methylated cg00894870, was associated with cancer metastasis and prognosis [16]. ATAD3B was expressed in cancer cell, and may related with tumorigenesis, proliferation and chemoresistance [14, 15]. TRIM27 was an oncogene [18] and DMTF1 can regulated ARF-p53 pathway [13, 17].
In LUSC-C3, 8 hyper-methylated sites were located in 10 genes. In addition to 4 same genes (KIAA0090, ATAD3B, TRIM27 and DMTF1) with LUSC-C1, ACP1 and SH3YL1 also played important roles in cancer. ACP1 can encode a tyrosine phosphatase, which was an anti-tumorigenic factor interacted with PDGF-R and FAK [19]. SH3YL1 can regulate migration of cancer cell [20]. Two hypo-methylated sites were located in gene body of PCDH gene family (PCDHA, PCDHB and PCDHG). The aberrant methylations of these genes were also found in breast cancer [21].
Unlike LUSC, LUAD patients were divided into 2 clusters by 143 mRNAs and 458 methylation sites, which indicated that these subtypes were determined by both mRNA and DNA methylation. These differentially expressed genes were mainly associated with cell cycle regulation. Whereas the differentially methylated genes were involved in a variety of GO terms and KEGG pathways, such as signal transduction, cell division and apoptosis.
In LUAD-C1, 10 selected biomarkers were all down-regulated in LUAD-C1. ANLN, CCNA2, CDCA5, DLGAP5, TPX2 and KIF4A were involved in the regulation of cell cycle (Supplementary Table 4). CKAP2L and SHCBP1 were associated with spindle formation, which was also involved in cell cycle. In previous study, over expression of 9 selected gene biomarkers (ANLN, CCNA2, CDCA5, CKAP2L, DLGAP5, KIF4A, KPNA2, SHCBP1 and TPX2) can indicate poor prognosis in different cancer types, including lung cancer, colon cancer, breast cancer and bladder cancer [2231].
We built 2 prediction models for subtype prediction based on RF and SVM algorithms. The SE, SP and AUC for subtype prediction in training dataset were 1 by RF model, larger than the values calculated by SVM model. However, these values were smaller than those calculated by SVM model in test dataset. This phenomenon indicated that the model built by RF was over-fitting, and the prediction ability was worse for new data than SVM model.

Conclusions

In conclusion, we identified 6 subtypes for early-stage NSCLC, including 4 subtypes for LUSC and 2 subtypes for LUAD, by gene expression and DNA methylation data integration analysis. Furthermore, we also selected biomarkers and built prediction model to distinguish these subtypes, and most of these biomarkers were involved in tumor related function.

Acknowledgements

Not applicable.
The data used in this study were all from the publicly accessible TCGA database. Ethics committee approval was not required.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.CrossRef
2.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRef
3.
Zurück zum Zitat Liang W, Zhao Y, Huang W, Gao Y, Xu W, Tao J, Yang M, Li L, Ping W, Shen H, et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics. 2019;9(7):2056–70.CrossRef Liang W, Zhao Y, Huang W, Gao Y, Xu W, Tao J, Yang M, Li L, Ping W, Shen H, et al. Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA). Theranostics. 2019;9(7):2056–70.CrossRef
4.
Zurück zum Zitat Yang W, Qian F, Teng J, Wang H, Manegold C, Pilz LR, Voigt W, Zhang Y, Ye J, Chen Q, et al. Community-based lung cancer screening with low-dose CT in China: results of the baseline screening. Lung Cancer. 2018;117:20–6.CrossRef Yang W, Qian F, Teng J, Wang H, Manegold C, Pilz LR, Voigt W, Zhang Y, Ye J, Chen Q, et al. Community-based lung cancer screening with low-dose CT in China: results of the baseline screening. Lung Cancer. 2018;117:20–6.CrossRef
5.
Zurück zum Zitat Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu YL, Paz-Ares L. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299–311.CrossRef Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu YL, Paz-Ares L. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299–311.CrossRef
6.
Zurück zum Zitat Detterbeck FC, Chansky K, Groome P, Bolejack V, Crowley J, Shemanski L, Kennedy C, Krasnik M, Peake M, Rami-Porta R. The IASLC lung Cancer staging project: methodology and validation used in the development of proposals for revision of the stage classification of NSCLC in the forthcoming (eighth) edition of the TNM classification of lung Cancer. J Thorac Oncol. 2016;11(9):1433–46.CrossRef Detterbeck FC, Chansky K, Groome P, Bolejack V, Crowley J, Shemanski L, Kennedy C, Krasnik M, Peake M, Rami-Porta R. The IASLC lung Cancer staging project: methodology and validation used in the development of proposals for revision of the stage classification of NSCLC in the forthcoming (eighth) edition of the TNM classification of lung Cancer. J Thorac Oncol. 2016;11(9):1433–46.CrossRef
7.
Zurück zum Zitat Duma N, Santana-Davila R, Molina JR. Non-small cell lung Cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 2019;94(8):1623–40.CrossRef Duma N, Santana-Davila R, Molina JR. Non-small cell lung Cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc. 2019;94(8):1623–40.CrossRef
8.
Zurück zum Zitat The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.CrossRef The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.CrossRef
9.
Zurück zum Zitat The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.CrossRef The Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.CrossRef
10.
Zurück zum Zitat Chen F, Zhang Y, Parra E, Rodriguez J, Behrens C, Akbani R, Lu Y, Kurie JM, Gibbons DL, Mills GB, et al. Multiplatform-based molecular subtypes of non-small-cell lung cancer. Oncogene. 2016;36(10):1384–93.CrossRef Chen F, Zhang Y, Parra E, Rodriguez J, Behrens C, Akbani R, Lu Y, Kurie JM, Gibbons DL, Mills GB, et al. Multiplatform-based molecular subtypes of non-small-cell lung cancer. Oncogene. 2016;36(10):1384–93.CrossRef
11.
Zurück zum Zitat Sherafatian M, Arjmand F. Decision tree-based classifiers for lung cancer diagnosis and subtyping using TCGA miRNA expression data. Oncol Lett. 2019;18(2):2125–31.PubMedPubMedCentral Sherafatian M, Arjmand F. Decision tree-based classifiers for lung cancer diagnosis and subtyping using TCGA miRNA expression data. Oncol Lett. 2019;18(2):2125–31.PubMedPubMedCentral
12.
Zurück zum Zitat Dama E, Melocchi V, Dezi F, Pirroni S, Carletti RM, Brambilla D, Bertalot G, Casiraghi M, Maisonneuve P, Barberis M, et al. An aggressive subtype of stage I lung adenocarcinoma with molecular and prognostic characteristics typical of advanced lung cancers. Clin Cancer Res. 2017;23(1):62–72.CrossRef Dama E, Melocchi V, Dezi F, Pirroni S, Carletti RM, Brambilla D, Bertalot G, Casiraghi M, Maisonneuve P, Barberis M, et al. An aggressive subtype of stage I lung adenocarcinoma with molecular and prognostic characteristics typical of advanced lung cancers. Clin Cancer Res. 2017;23(1):62–72.CrossRef
13.
Zurück zum Zitat Ali M, Takayuki S, Pankaj T, Matise LA, Frazier DP, Mayur C, Hawkins GA, D'Agostino RB, Willingham MC, Kazushi I. Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell. 2007;12(4):381–94.CrossRef Ali M, Takayuki S, Pankaj T, Matise LA, Frazier DP, Mayur C, Hawkins GA, D'Agostino RB, Willingham MC, Kazushi I. Mutually exclusive inactivation of DMP1 and ARF/p53 in lung cancer. Cancer Cell. 2007;12(4):381–94.CrossRef
14.
Zurück zum Zitat Li S, Rousseau D. ATAD3, a vital membrane bound mitochondrial ATPase involved in tumor progression. J Bioenerg Biomembr. 2012;44(1):189–97.CrossRef Li S, Rousseau D. ATAD3, a vital membrane bound mitochondrial ATPase involved in tumor progression. J Bioenerg Biomembr. 2012;44(1):189–97.CrossRef
15.
Zurück zum Zitat Merle N, Féraud O, Gilquin B, Hubstenberger A, Kieffer-Jacquinot S, Assard N, Bennaceur-Griscelli A, Honnorat J, Baudier J. ATAD3B is a human embryonic stem cell specific mitochondrial protein, re-expressed in cancer cells, that functions as dominant negative for the ubiquitous ATAD3A. Mitochondrion. 2012;12(4):441–8.CrossRef Merle N, Féraud O, Gilquin B, Hubstenberger A, Kieffer-Jacquinot S, Assard N, Bennaceur-Griscelli A, Honnorat J, Baudier J. ATAD3B is a human embryonic stem cell specific mitochondrial protein, re-expressed in cancer cells, that functions as dominant negative for the ubiquitous ATAD3A. Mitochondrion. 2012;12(4):441–8.CrossRef
16.
Zurück zum Zitat Molina RAS, Silva RR, Souza JF, Lopes MM, Tiezzi DG, Espreafico EM. Abstract C6: EMC1/KIAA0090 overexpression enhances proliferation and motility in breast cancer cells. Cancer Res. 2013;73(3 Supplement):C6. Molina RAS, Silva RR, Souza JF, Lopes MM, Tiezzi DG, Espreafico EM. Abstract C6: EMC1/KIAA0090 overexpression enhances proliferation and motility in breast cancer cells. Cancer Res. 2013;73(3 Supplement):C6.
17.
Zurück zum Zitat Inoue K, Fry EA. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer. Int J Cancer. 2016;139(1):33–41.CrossRef Inoue K, Fry EA. Aberrant splicing of the DMP1-ARF-MDM2-p53 pathway in cancer. Int J Cancer. 2016;139(1):33–41.CrossRef
18.
Zurück zum Zitat Zhang Y, Feng Y, Ji D, Wang Q, Fu Z. TRIM27 functions as an oncogene by activating epithelial-mesenchymal transition and p-AKT in colorectal cancer. Int J Oncol. 2018;53(2):620–32.PubMedPubMedCentral Zhang Y, Feng Y, Ji D, Wang Q, Fu Z. TRIM27 functions as an oncogene by activating epithelial-mesenchymal transition and p-AKT in colorectal cancer. Int J Oncol. 2018;53(2):620–32.PubMedPubMedCentral
19.
Zurück zum Zitat Qiu X, Hu B, Huang Y, Deng Y, Wang X, Zheng F. Hypermethylation of ACP1, BMP4, and TSPYL5 in hepatocellular carcinoma and their potential clinical significance. Dig Dis Sci. 2016;61(1):149–57.CrossRef Qiu X, Hu B, Huang Y, Deng Y, Wang X, Zheng F. Hypermethylation of ACP1, BMP4, and TSPYL5 in hepatocellular carcinoma and their potential clinical significance. Dig Dis Sci. 2016;61(1):149–57.CrossRef
20.
Zurück zum Zitat Kobayashi M, Harada K, Negishi M, Katoh H. Dock4 forms a complex with SH3YL1 and regulates cancer cell migration. Cell Signal. 2014;26(5):1082–8.CrossRef Kobayashi M, Harada K, Negishi M, Katoh H. Dock4 forms a complex with SH3YL1 and regulates cancer cell migration. Cell Signal. 2014;26(5):1082–8.CrossRef
21.
Zurück zum Zitat Petr N, Taylor J, Oshiro MM, Watts GS, Kim CJ, Futscher BW. Agglomerative epigenetic aberrations are a common event in human breast cancer. Cancer Res. 2008;68(20):8616.CrossRef Petr N, Taylor J, Oshiro MM, Watts GS, Kim CJ, Futscher BW. Agglomerative epigenetic aberrations are a common event in human breast cancer. Cancer Res. 2008;68(20):8616.CrossRef
22.
Zurück zum Zitat Chie S, Yataro D, Nobuhisa I, Tatsuya K, Satoshi H, Tomoo I, Eiju T, Yusuke N. ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res. 2005;65(24):11314.CrossRef Chie S, Yataro D, Nobuhisa I, Tatsuya K, Satoshi H, Tomoo I, Eiju T, Yusuke N. ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway. Cancer Res. 2005;65(24):11314.CrossRef
23.
Zurück zum Zitat Masaya T, Atsushi T, Nobuhisa I, Wataru Y, Kouki I, Hitoshi N, Eiju T, Nobuoki K, Yusuke N, Yataro D. Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res. 2007;13(22 Pt 1):6624. Masaya T, Atsushi T, Nobuhisa I, Wataru Y, Kouki I, Hitoshi N, Eiju T, Nobuoki K, Yusuke N, Yataro D. Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res. 2007;13(22 Pt 1):6624.
24.
Zurück zum Zitat Wei P, Zhang N, Xu Y, Li X, Shi D, Wang Y, Li D, Cai S. TPX2 is a novel prognostic marker for the growth and metastasis of colon cancer. J Transl Med. 2013;11(1):313.CrossRef Wei P, Zhang N, Xu Y, Li X, Shi D, Wang Y, Li D, Cai S. TPX2 is a novel prognostic marker for the growth and metastasis of colon cancer. J Transl Med. 2013;11(1):313.CrossRef
25.
Zurück zum Zitat Christiansen A, Dyrskjøt L. The functional role of the novel biomarker karyopherin α 2 (KPNA2) in cancer. Cancer Lett. 2013;331(1):18–23.CrossRef Christiansen A, Dyrskjøt L. The functional role of the novel biomarker karyopherin α 2 (KPNA2) in cancer. Cancer Lett. 2013;331(1):18–23.CrossRef
26.
Zurück zum Zitat Tian G, Yong H, Ling Y, Sheng A, Ziyu L, Jiafu J. CCNA2 is a prognostic biomarker for ER+ breast cancer and tamoxifen resistance. PLoS One. 2014;9(3):e91771.CrossRef Tian G, Yong H, Ling Y, Sheng A, Ziyu L, Jiafu J. CCNA2 is a prognostic biomarker for ER+ breast cancer and tamoxifen resistance. PLoS One. 2014;9(3):e91771.CrossRef
27.
Zurück zum Zitat Han-Seong K, Jae-Soo K, Yong-Bock C, Jungsil R, Hyun-Kyoung K, Mi-Kyung K, Byung-Ho N, Kyung-Tae K, Vishal C, Hye-Sil S. Chromatin CKAP2, a new proliferation marker, as independent prognostic indicator in breast cancer. PLoS One. 2014;9(6):e98160.CrossRef Han-Seong K, Jae-Soo K, Yong-Bock C, Jungsil R, Hyun-Kyoung K, Mi-Kyung K, Byung-Ho N, Kyung-Tae K, Vishal C, Hye-Sil S. Chromatin CKAP2, a new proliferation marker, as independent prognostic indicator in breast cancer. PLoS One. 2014;9(6):e98160.CrossRef
28.
Zurück zum Zitat Chang IW, Lin VC, He HL, Hsu CT, Li CC, Wu WJ, Huang CN, Wu TF, Li CF. CDCA5 overexpression is an indicator of poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder. Am J Transl Res. 2015;7(4):710–22.PubMedPubMedCentral Chang IW, Lin VC, He HL, Hsu CT, Li CC, Wu WJ, Huang CN, Wu TF, Li CF. CDCA5 overexpression is an indicator of poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder. Am J Transl Res. 2015;7(4):710–22.PubMedPubMedCentral
29.
Zurück zum Zitat Feng W, Li HC, Xu K, Chen YF, Pan LY, Mei Y, Cai H, Jiang YM, Chen T, Feng DX. SHCBP1 is over-expressed in breast cancer and is important in the proliferation and apoptosis of the human malignant breast cancer cell line. Gene. 2016;587(1):91–7.CrossRef Feng W, Li HC, Xu K, Chen YF, Pan LY, Mei Y, Cai H, Jiang YM, Chen T, Feng DX. SHCBP1 is over-expressed in breast cancer and is important in the proliferation and apoptosis of the human malignant breast cancer cell line. Gene. 2016;587(1):91–7.CrossRef
30.
Zurück zum Zitat Schneider MA, Christopoulos P, Muley T, Warth A, Klingmueller U, Thomas M, Herth FJF, Dienemann H, Mueller NS, Theis F. AURKA, DLGAP5, TPX2, KIF11 and CKAP5: five specific mitosis-associated genes correlate with poor prognosis for non-small cell lung cancer patients. Int J Oncol. 2017;50(2):365–72.CrossRef Schneider MA, Christopoulos P, Muley T, Warth A, Klingmueller U, Thomas M, Herth FJF, Dienemann H, Mueller NS, Theis F. AURKA, DLGAP5, TPX2, KIF11 and CKAP5: five specific mitosis-associated genes correlate with poor prognosis for non-small cell lung cancer patients. Int J Oncol. 2017;50(2):365–72.CrossRef
31.
Zurück zum Zitat Phan NN, Wang CY, Li KL, Chen CF, Chiao CC, Yu HG, Huang PL, Lin YC. Distinct expression of CDCA3, CDCA5, and CDCA8 leads to shorter relapse free survival in breast cancer patient. Oncotarget. 2018;9(6):6977–92.CrossRef Phan NN, Wang CY, Li KL, Chen CF, Chiao CC, Yu HG, Huang PL, Lin YC. Distinct expression of CDCA3, CDCA5, and CDCA8 leads to shorter relapse free survival in breast cancer patient. Oncotarget. 2018;9(6):6977–92.CrossRef
Metadaten
Titel
A prognosis-related molecular subtype for early-stage non-small lung cell carcinoma by multi-omics integration analysis
verfasst von
Kai Yang
Ying Wu
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2021
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-07846-0

Weitere Artikel der Ausgabe 1/2021

BMC Cancer 1/2021 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.