Skip to main content
Erschienen in: Journal of Cardiothoracic Surgery 1/2020

Open Access 01.12.2020 | Case report

A rare case report: tricuspid valve prolapse due to spontaneous chordae rupture in a congenitally corrected transposition of the great arteries patient

verfasst von: Wan Yu Hu, Bo Wen Zhao, Shi Yan Li, Bei Wang

Erschienen in: Journal of Cardiothoracic Surgery | Ausgabe 1/2020

Abstract

Background

Congenitally corrected transposition of great arteries (CCTGA) is caused by atrioventricular and ventriculoarterial discordance. Cases of CCTGA with spontaneous chordae rupture of tricuspid valve have not been reported before.

Case presentation

Here we diagnosed a 38-year-old man, who was found CCTGA 14 years ago, as spontaneous chordae rupture by real-time three dimentional transesophageal echocardiography (RT-3D-TEE). The present case is the first report to describe a CCTGA patient combine with spontaneous chordae rupture in tricuspid valve. After tricuspid valve replacement, the patient was uneventful after 6 years’ follow-up.

Conclusion

We reported a rare case with spontaneous chordae rupture of tricuspid valve in a CCTGA patient and explored its etiology here. RT-3D-TEE is an important supplement to 2-dimentional transthoracic echocardiography and can provide more accurate detections in tricuspid valve diseases in CCTGA.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CCTGA
Congenitally corrected transposition of great arteries
TV
Tricuspid valve
EF
Ejection fraction
NYHA
New York heart association
2D-TTE
Two dimentional transthoracic echocardiography
RT-3D-TEE
Real-time three dimentional transesophageal echocardiography

Introduction

Congenitally corrected transposition of the great arteries (CCTGA) only occurs in 0.5% of patients exhibiting congenital heart defects. It is a slight male predominance. The right sided morphologic left ventricle functions as the pulmonary ventricle, whereas the left sided morphologic right ventricle functions as the systemic ventricle. The systemic atrioventricular valve is morphologically tricuspid valve (TV) [1]. To the best of our knowledge, no case of spontaneous chordae rupture of TV in CCTGA patient was reported before.

Case presentation

A 38-year-old male was referred to our hospital because of progressive exertional dyspnea and fatigue of 1 week. He was diagnosed as CCTGA in a physical examination without any symptoms 14 years ago. The heart ultrasound examination revealed CCTGA without any other anomalies, such as ventricular septal defect, pulmonary stenosis, atrial septal defect, etc. TV regurgitation was mild and ejection fraction (EF) of systemic ventricle was 67% at that time. He denied prior history of hypertension, coronary heart disease and diabetes. The initial vital signs were normal (heart rate was 93 beats/min, blood pressure was 110/70 mmHg, breath rate was 16/min with an oxygen saturation 99%, and temperature was 36.8 °C). Physical examination revealed a grade 4/6 holosystolic murmur at the left sternal border, accompanied by a thrill. Mild lower extremity edema was present. Heart function in New York Heart Association (NYHA) was Class III.
Laboratory evaluation was normal. White blood cell count 4700/mL (normal 4000–10,000/mL), C-reactive protein level was 0.09 mg/dL (0.0–0.5 mg/dL), and erythrocyte sedimentation rate was 5 mm/h (normal 0–15 mm/h). Electrocardiogram indicated sinus rhythm. A 2-dimentional transthoracic echocardiography (2D-TTE) examination was performed on IE33 machine (Philips Healthcare, Amsterdam, NL). The S5–1 sector array probe was used and its frequency range was 1–5 MHz. TTE revealed liver lay in the right side, spleen and stomach lay in the left side. A series of images were obtained from different windows including parasternal long-axis view (Fig. 1), parasternal short-axis view and apical view (Fig. 2). Atrioventricular and ventricular arterial were discordant. The morphological right ventricle, connecting to the left atrium and aorta, was placed leftward and functioned as systemic ventricle. Similarly, the morphological left ventricle, connecting to the right atrium and pulmonary artery, was placed rightward and functioned as a pulmonary ventricle. The anterior leaflet of TV was prolapsed and could not be aligned with the posterior valve, leaving a large gap (Fig. 2). Color Doppler showed severe TV regurgitation flowed into the dilated left atrium (Fig. 3). System ventricle was enlarged and its end-diastolic diameter was 58 mm, EF of systemic ventricle was 50%.
However, with 2D-TTE, the reason of TV prolapse was unclear and the image was poor due to the shadow of ribs. Real-time three-dimentional transesophageal echocardiography (RT-3D-TEE) was performed to further define the anatomy of the TV. The probe used was X7-2t sector array probe and its frequency range was 2–7 MHz. We Obtained images of TV from either the 0° to 30° mid-esophageal view, four chamber view tilting to place the valve in the center or the 40° trans-gastric view with ante-flexion. 3D images of TV were acquired by using a narrow-angle, single-beat mode. After cropped 3D volume, we obtained real-time 3D imaging of TV. A short rod-like structure was seen on the left atrial side of TV. It swung back and forth with the flow of blood, causing a wide gap in the three valves of TV in systolic period (Fig. 4. The crime culprit of anterior leaflet prolapse was detected by RT-3D-TEE. It was rupture of one main chordae.
The patient was diagnosed as CCTGA, chordae rupture of TV and severe TV regurgitation. Operation needed to be performed because of progressive exertional dyspnea and fatigue. Because TV repair was difficult in TV prolapse with chordae rupture and late results of valvuloplasty were poor in CCTGA, [2] we thought TV replacement was more suitable for this patient and then performed TV replacement surgery. Considering the patient’s young age and the size of heart, we chose a 27 mm Carbomedics bileaflet mechanical prosthesis. The surgery confirmed 3D TEE findings. Intra-operation showed the TV was intact, no perforation or tear was found, a rupture of chordae was observed in the anterior valve, the broken end was attached to the tip of the anterior valve, and no papillary muscle injury was observed in the three muscles. Visual inspection and histologic examination was normal and denied infective endocarditis (Fig. 5). Spontaneous chordae rupture was deemed to the etiology of TV prolapse after excluded other reasons.
The signs and symptoms of dyspnea were abated 3 months after surgery. Electrocardiogram revealed sinus rhythm. No regurgitation of the mechanical prosthesis was found by 2D-TTE. System ventricle end-diastolic diameter was 53 mm, the EF was 60% and inflow of TV was normal. Heart function was NYHA Class I. At 6 years’ follow up, the patient was uneventful without any complications. TTE revealed no TV regurgitation at last follow up (1 month ago). EF of systemic ventricle was 57%. System ventricle end-diastolic diameter was 51 mm. Inflow of TV was normal. Maximal velocity was 1.4 m/s, peak pressure gradient was 8 mmHg, mean pressure gradient was 3 mmHg, velocity time integral was 44.6 cm, pressure half time was 113 ms. Sinus rhythm was reported by electrocardiogram.

Discussion

CCTGA is a rare congenital disease with a prevalence of 0.03 per 1000 live births. Patients with CCTGA may coexisted other anomalies, such as pulmonic stenosis, ventricular septal defect, atrioventricular block, atrial septal defect and TV abnormalities. Its presentation and prognosis is highly variable depending on these coexisting anomalies [3]. In up to 70% of cases, the TV is abnormal and may be inferiorly displaced [4]. However, spontaneous ruptured chordae of TV in CCTGA patient was not reported before. The etiology of spontaneous chordae rupture of TV is not clear up to now.
To further define the reason of chordae rupture, we asked previous history and found a period of 6 month moderate TV regurgitation. Therefore, we considered several factors may contribute to it in this patient. Firstly, in CCTGA, the TV is located within the systemic ventricle, resulting in ability of TV insufficiency. Because TV is more susceptible to regulation caused by pressure/volume overload. TV insufficiency in turns imposes an additional volume pressure on the overloaded morphologically right ventricular [5].. A vicious cycle was participated in valvular and ventricular dysfunctions. Secondly, right ventricle was high-volume and low-pressure system in normal heart. But in CCTGA, TV supplies the systemic circulation, which is a high-pressure system, through the aorta. Long-standing progression of TV regurgitation and increased volume pressure would be the etiology of isolated spontaneous rupture of TV apparatus in some patients. Thirdly, moderate TV regulation would reduce the output of heart and increased myocardial oxygen consumption, causing ischemia of myocardium and valve devices. Additionally, TV acted as mitral valve in CCTGA patient was more susceptible prolapsed due to histologic difference. This case indicated CCTGA patient with normal chordae and valve could also occur spontaneous chordae rupture. Histologic difference and hemodynamics mainly contributed to it. It is a rarely case of TV prolapse due to this reason. Our patient was uneventful during 6 years’ follow-up, indicating valve replacement surgery was efficient in these patients.
In a literature review, only two cases with TV prolapse in CCTGA were reported before. One was [5] an adult CCTGA patient with TV prolapse. His TV was congenital dysplastic and oriented down toward the septum abnormally but not Ebstein’s anomaly. Another was [6] a female CCTGA patient with steno-insufficiency of TV and prolapse of both TV and mitral valve. To the best of our knowledge, we are the first to report isolate TV prolapse caused by spontaneous chordae rupture in CCTGA patient. Our patient found spontaneous chordae rupture within a short time without any precipitating factor. His TV was normal and there were no other associated cardiac abnormalities in his heart.
2D-TTE cannot achieved simultaneous of the TV leaflets due to its non-planar geometry and complex geometry of the right ventricle. This patient could not be observed TV clearly due to rib shadow. RT-3D-TEE could overcome the disturbance of ribs, sternum, lung tissue and was not affected by emphysema. Moreover, RT-3D-TEE could show three-dimensional morphology of TV and the structural of complex atrioventricular valve device in atrial or ventricular side. RT-3D-TEE help surgeons to see the complicated multiform morphology directly and evaluate dynamics of valve regurgitation [6, 7]. Through the “en face view”, an obviously broken chordae tendineae was detected in 3D imaging. Chordae rupture was diagnosed easily. RT-3D-TEE detected the cause of TV prolapse, which was rupture of one main chordae. But 2D-TEE did not found it. Therefore, we speculated that RT-3D-TEE would be a crucial examination in diagnosing TV diseases and can provide more accurate and additional diagnoses for CCTGA patients than TTE.

Conclusion

In summary, we diagnosed a CCTGA patient with chordae rupture with RT-3D-TEE here and indicated CCTGA patient with normal chordae and valve can also occur spontaneous chordae rupture. Valve replacement surgery was useful in patient by a 6 years’ follow up. Furthermore, we demonstrated RT-3D-TEE played an important role in diagnosing TV diseases and could provide additional and more accurate information than TTE in CCTGA patients.

Acknowledgments

We thank the patient reported in this manuscript.
This study was conducted at Sir Run Run Shaw Hospital, with the approval from the institute’s ethics committee. The patient in this study signed an informed written consent form.
Not applicable.

Competing interests

All authors declare no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Beauchesne LM, Warnes CA, Connolly HM, Ammash NM, Tajik AJ, Danielson GK. Outcome of the unoperated adult who presents with congenitallycorrected transposition of the great arteries. J Am Coll Cardiol. 2002;40(2):285–90.CrossRef Beauchesne LM, Warnes CA, Connolly HM, Ammash NM, Tajik AJ, Danielson GK. Outcome of the unoperated adult who presents with congenitallycorrected transposition of the great arteries. J Am Coll Cardiol. 2002;40(2):285–90.CrossRef
2.
Zurück zum Zitat Mongeon FP, Connolly HM, Dearani JA, Li Z, Warnes CA. Congenitally corrected transposition of the great arteries ventricular function at the time of systemic atrioventricular valve replacement predicts long-term ventricular function. J Am Coll Cardiol. 2011;57(20):2008–17.CrossRef Mongeon FP, Connolly HM, Dearani JA, Li Z, Warnes CA. Congenitally corrected transposition of the great arteries ventricular function at the time of systemic atrioventricular valve replacement predicts long-term ventricular function. J Am Coll Cardiol. 2011;57(20):2008–17.CrossRef
3.
Zurück zum Zitat Cotts T, Malviya S, Goldberg C. Quality of life and perceived health status in adults with congenitally corrected transposition of the great arteries. J Thorac Cardiovasc Surg. 2012;143(4):885–90.CrossRef Cotts T, Malviya S, Goldberg C. Quality of life and perceived health status in adults with congenitally corrected transposition of the great arteries. J Thorac Cardiovasc Surg. 2012;143(4):885–90.CrossRef
4.
Zurück zum Zitat Prieto LR, Hordof AJ, Secic M, Rosenbaum MS, Gersony WM. Progressive tricuspid valve disease in patients with congenitally corrected transposition of the great arteries. Circulation. 1998;98(10):997–1005.CrossRef Prieto LR, Hordof AJ, Secic M, Rosenbaum MS, Gersony WM. Progressive tricuspid valve disease in patients with congenitally corrected transposition of the great arteries. Circulation. 1998;98(10):997–1005.CrossRef
5.
Zurück zum Zitat Koolbergen DR, Ahmed Y, Bouma BJ, Scherptong RW, Bruggemans EF, Vliegen HW, et al. Follow-up after tricuspid valve surgery in adult patients with systemic right ventricles. Eur J Cardiothorac Surg. 2016;50(3):456–63.CrossRef Koolbergen DR, Ahmed Y, Bouma BJ, Scherptong RW, Bruggemans EF, Vliegen HW, et al. Follow-up after tricuspid valve surgery in adult patients with systemic right ventricles. Eur J Cardiothorac Surg. 2016;50(3):456–63.CrossRef
6.
Zurück zum Zitat Hahn RT, Abraham T, Adams MS, Bruce CJ, Glas KE, Lang RM, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Anesth Analg. 2014;118(1):21–68.CrossRef Hahn RT, Abraham T, Adams MS, Bruce CJ, Glas KE, Lang RM, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Anesth Analg. 2014;118(1):21–68.CrossRef
7.
Zurück zum Zitat Jain S, Malouf JF. Incremental value of 3-D transesophageal echocardiographic imaging of the mitral valve. Curr Cardiol Rep. 2014;16(1):439.CrossRef Jain S, Malouf JF. Incremental value of 3-D transesophageal echocardiographic imaging of the mitral valve. Curr Cardiol Rep. 2014;16(1):439.CrossRef
Metadaten
Titel
A rare case report: tricuspid valve prolapse due to spontaneous chordae rupture in a congenitally corrected transposition of the great arteries patient
verfasst von
Wan Yu Hu
Bo Wen Zhao
Shi Yan Li
Bei Wang
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Cardiothoracic Surgery / Ausgabe 1/2020
Elektronische ISSN: 1749-8090
DOI
https://doi.org/10.1186/s13019-020-01193-0

Weitere Artikel der Ausgabe 1/2020

Journal of Cardiothoracic Surgery 1/2020 Zur Ausgabe

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.