Skip to main content
Erschienen in: Pediatric Nephrology 9/2022

30.11.2021 | Educational Review

Acute kidney injury in pediatrics: an overview focusing on pathophysiology

verfasst von: Ana Flávia Lima Ruas, Gabriel Malheiros Lébeis, Nicholas Bianco de Castro, Vitória Andrade Palmeira, Larissa Braga Costa, Katharina Lanza, Ana Cristina Simões e Silva

Erschienen in: Pediatric Nephrology | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

Acute kidney injury (AKI) is defined as an abrupt decline in glomerular filtration rate, with increased serum creatinine and nitrogenous waste products due to several possible etiologies. Incidence in the pediatric population is estimated to be 3.9 per 1,000 hospitalizations, and prevalence among children admitted to intensive care units is 26.9%. Despite being a condition with important incidence and morbimortality, further evidence on pathophysiology and management among the pediatric population is still lacking. This narrative review aimed to summarize and discuss current data on AKI pathophysiology in the pediatric population, considering all the physiological particularities of this age range and common etiologies. Additionally, we reported current diagnostic tools, novel biomarkers, and newly proposed medications that have been studied with the aim of early diagnosis and appropriate treatment of AKI in the future.
Literatur
2.
Zurück zum Zitat Basile DP, Sreedharan R, Van Why SK (2016) Pathogenesis of acute kidney injury. In: Avner ED, Harmon WE, Niaudet P et al (eds) Pediatric nephrology. Springer, Berlin, Heidelberg, pp 2101–2138 Basile DP, Sreedharan R, Van Why SK (2016) Pathogenesis of acute kidney injury. In: Avner ED, Harmon WE, Niaudet P et al (eds) Pediatric nephrology. Springer, Berlin, Heidelberg, pp 2101–2138
4.
Zurück zum Zitat Waikar SS, Betensky RA, Bonventre JV (2009) Creatinine as the gold standard for kidney injury biomarker studies? Nephrol Dial Transplant 24:3263–3265PubMedCrossRef Waikar SS, Betensky RA, Bonventre JV (2009) Creatinine as the gold standard for kidney injury biomarker studies? Nephrol Dial Transplant 24:3263–3265PubMedCrossRef
5.
Zurück zum Zitat Selewski DT, Charlton JR, Jetton JG et al (2015) Neonatal acute kidney injury. Pediatrics 136:e463–e473PubMedCrossRef Selewski DT, Charlton JR, Jetton JG et al (2015) Neonatal acute kidney injury. Pediatrics 136:e463–e473PubMedCrossRef
6.
Zurück zum Zitat Slater MB, Anand V, Uleryk EM, Parshuram CS (2012) A systematic review of RIFLE criteria in children, and its application and association with measures of mortality and morbidity. Kidney Int 81:791–798PubMedCrossRef Slater MB, Anand V, Uleryk EM, Parshuram CS (2012) A systematic review of RIFLE criteria in children, and its application and association with measures of mortality and morbidity. Kidney Int 81:791–798PubMedCrossRef
7.
Zurück zum Zitat Kaddourah A, Basu RK, Bagshaw SM, Golstein SL et al (2017) epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20PubMedCrossRef Kaddourah A, Basu RK, Bagshaw SM, Golstein SL et al (2017) epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20PubMedCrossRef
8.
Zurück zum Zitat Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerdá J, Chawla LS (2018) Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 14:607–625PubMedCrossRef Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerdá J, Chawla LS (2018) Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 14:607–625PubMedCrossRef
10.
Zurück zum Zitat Sutherland SM, Ji J, Sheikhi FH, Widen E, Tian L, Alexander SR, Ling XB (2013) AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol 8:1661–1669PubMedPubMedCentralCrossRef Sutherland SM, Ji J, Sheikhi FH, Widen E, Tian L, Alexander SR, Ling XB (2013) AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol 8:1661–1669PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Goldstein SL, Kirkendall E, Nguyen H et al (2013) Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 132:e756–e767PubMedCrossRef Goldstein SL, Kirkendall E, Nguyen H et al (2013) Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 132:e756–e767PubMedCrossRef
12.
Zurück zum Zitat Bresolin N, Bianchini AP, Haas CA (2013) Pediatric acute kidney injury assessed by pRIFLE as a prognostic factor in the intensive care unit. Pediatr Nephrol 28:485–492PubMedCrossRef Bresolin N, Bianchini AP, Haas CA (2013) Pediatric acute kidney injury assessed by pRIFLE as a prognostic factor in the intensive care unit. Pediatr Nephrol 28:485–492PubMedCrossRef
13.
14.
Zurück zum Zitat Sutherland SM, Kwiatkowski DM (2017) Acute kidney injury in children. Adv Chronic Kidney Dis 24:380–387PubMedCrossRef Sutherland SM, Kwiatkowski DM (2017) Acute kidney injury in children. Adv Chronic Kidney Dis 24:380–387PubMedCrossRef
15.
Zurück zum Zitat Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59:523–530PubMedCrossRef Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59:523–530PubMedCrossRef
16.
Zurück zum Zitat Hoseini R, Otukesh H, Rahimzadeh N, Hoseini S (2012) Glomerular function in neonates. Iran J Kidney Dis 6:166–172PubMed Hoseini R, Otukesh H, Rahimzadeh N, Hoseini S (2012) Glomerular function in neonates. Iran J Kidney Dis 6:166–172PubMed
17.
Zurück zum Zitat Kastl JT (2017) Renal function in the fetus and neonate–the creatinine enigma. Semin Fetal Neonatal Med 22:83–89PubMedCrossRef Kastl JT (2017) Renal function in the fetus and neonate–the creatinine enigma. Semin Fetal Neonatal Med 22:83–89PubMedCrossRef
18.
Zurück zum Zitat Gubhaju L, Sutherland MR, Horne RSC, Medhurst A, Kent AL, Ramsden A, Moorre L, Singh G, Hoy WE, Black J (2014) Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol 307:F149–F158PubMedCrossRef Gubhaju L, Sutherland MR, Horne RSC, Medhurst A, Kent AL, Ramsden A, Moorre L, Singh G, Hoy WE, Black J (2014) Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol 307:F149–F158PubMedCrossRef
19.
Zurück zum Zitat Filler G, Guerrero-Kanan R, Alvarez-Elías AC (2016) Assessment of glomerular filtration rate in the neonate: is creatinine the best tool? Curr Opin Pediatr 28:173–179PubMedCrossRef Filler G, Guerrero-Kanan R, Alvarez-Elías AC (2016) Assessment of glomerular filtration rate in the neonate: is creatinine the best tool? Curr Opin Pediatr 28:173–179PubMedCrossRef
20.
Zurück zum Zitat Garp P, Hidalgo G (2017) Glomerular filtration rate estimation by serum creatinine or serum cystatin C in preterm (< 31 weeks) neonates. Indian Pediatr 54:508–509 Garp P, Hidalgo G (2017) Glomerular filtration rate estimation by serum creatinine or serum cystatin C in preterm (< 31 weeks) neonates. Indian Pediatr 54:508–509
21.
Zurück zum Zitat Abitbol CL, DeFreitas MJ, Strauss J (2016) Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol 31:2213–2222PubMedCrossRef Abitbol CL, DeFreitas MJ, Strauss J (2016) Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol 31:2213–2222PubMedCrossRef
22.
Zurück zum Zitat Zilleruelo G, Sultan S, Bancalari E, Steele B, Strauss J (1986) Renal bicarbonate handling in low birth weight infants during metabolic acidosis. Biol Neonate 49:132–139PubMedCrossRef Zilleruelo G, Sultan S, Bancalari E, Steele B, Strauss J (1986) Renal bicarbonate handling in low birth weight infants during metabolic acidosis. Biol Neonate 49:132–139PubMedCrossRef
23.
Zurück zum Zitat Fusch C, Jochum F (2014) Water, sodium, potassium and chloride. World Rev Nutr Diet 110:99–120PubMedCrossRef Fusch C, Jochum F (2014) Water, sodium, potassium and chloride. World Rev Nutr Diet 110:99–120PubMedCrossRef
24.
Zurück zum Zitat Joppich R, Scherer B, Weber PC (1979) Renal prostaglandins: relationship to the development of blood pressure and concentrating capacity in pre-term and full term healthy infants. Eur J Pediatr 132:253–259PubMedCrossRef Joppich R, Scherer B, Weber PC (1979) Renal prostaglandins: relationship to the development of blood pressure and concentrating capacity in pre-term and full term healthy infants. Eur J Pediatr 132:253–259PubMedCrossRef
25.
Zurück zum Zitat Fisher DA (1963) Control of water balance in the newborn. Arch Pediatr Adolesc Med 106:137CrossRef Fisher DA (1963) Control of water balance in the newborn. Arch Pediatr Adolesc Med 106:137CrossRef
26.
Zurück zum Zitat (2012) Summary of recommendation statements. Kidney Int Suppl 2:8–12 (2012) Summary of recommendation statements. Kidney Int Suppl 2:8–12
27.
Zurück zum Zitat Desanti De Oliveira B, Xu K, Shen TH, Callahan M, Kiryluk K, D’Agati VD, Tatonetti NP, Barasch J, Devarajan P (2019) Molecular nephrology: types of acute tubular injury. Nat Rev Nephrol 15:599–612PubMedCrossRef Desanti De Oliveira B, Xu K, Shen TH, Callahan M, Kiryluk K, D’Agati VD, Tatonetti NP, Barasch J, Devarajan P (2019) Molecular nephrology: types of acute tubular injury. Nat Rev Nephrol 15:599–612PubMedCrossRef
29.
Zurück zum Zitat Kaballo MA, Elsayed ME, Stack AG (2017) Linking acute kidney injury to chronic kidney disease: the missing links. J Nephrol 30:461–475PubMedCrossRef Kaballo MA, Elsayed ME, Stack AG (2017) Linking acute kidney injury to chronic kidney disease: the missing links. J Nephrol 30:461–475PubMedCrossRef
30.
Zurück zum Zitat Sutton TA, Fisher CJ, Molitoris BA (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62:1539–1549PubMedCrossRef Sutton TA, Fisher CJ, Molitoris BA (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62:1539–1549PubMedCrossRef
31.
Zurück zum Zitat Bonventre JV (2010) Pathophysiology of AKI: injury and normal and abnormal repair. Contrib Nephrol 165:9–17PubMedCrossRef Bonventre JV (2010) Pathophysiology of AKI: injury and normal and abnormal repair. Contrib Nephrol 165:9–17PubMedCrossRef
32.
Zurück zum Zitat Kwon O, Hong S-M, Ramesh G (2009) Diminished NO generation by injured endothelium and loss of macula densa nNOS may contribute to sustained acute kidney injury after ischemia-reperfusion. Am J Physiol Renal Physiol 296:F25–F33PubMedCrossRef Kwon O, Hong S-M, Ramesh G (2009) Diminished NO generation by injured endothelium and loss of macula densa nNOS may contribute to sustained acute kidney injury after ischemia-reperfusion. Am J Physiol Renal Physiol 296:F25–F33PubMedCrossRef
33.
Zurück zum Zitat Linas S, Whittenburg D, Repine JE (1997) Nitric oxide prevents neutrophil-mediated acute renal failure. Am J Physiol 272:F48–F54PubMed Linas S, Whittenburg D, Repine JE (1997) Nitric oxide prevents neutrophil-mediated acute renal failure. Am J Physiol 272:F48–F54PubMed
34.
Zurück zum Zitat Conger J (1997) Hemodynamic factors in acute renal failure. Adv Ren Replace Ther 4:25–37PubMed Conger J (1997) Hemodynamic factors in acute renal failure. Adv Ren Replace Ther 4:25–37PubMed
35.
Zurück zum Zitat Matthys E, Patton MK, Osgood RW et al (1983) Alterations in vascular function and morphology in acute ischemic renal failure. Kidney Int 23:717–724PubMedCrossRef Matthys E, Patton MK, Osgood RW et al (1983) Alterations in vascular function and morphology in acute ischemic renal failure. Kidney Int 23:717–724PubMedCrossRef
36.
Zurück zum Zitat Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15:1562–1574PubMedCrossRef Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15:1562–1574PubMedCrossRef
37.
Zurück zum Zitat Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV (1994) Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci U S A 91:812–816PubMedPubMedCentralCrossRef Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV (1994) Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci U S A 91:812–816PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA et al (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97:1056–1063PubMedPubMedCentralCrossRef Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA et al (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97:1056–1063PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Homeister JW, Lucchesi BR (1994) Complement activation and inhibition in myocardial ischemia and reperfusion injury. Annu Rev Pharmacol Toxicol 34:17–40PubMedCrossRef Homeister JW, Lucchesi BR (1994) Complement activation and inhibition in myocardial ischemia and reperfusion injury. Annu Rev Pharmacol Toxicol 34:17–40PubMedCrossRef
41.
Zurück zum Zitat Nony PA, Schnellmann RG (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 304:905–912PubMedCrossRef Nony PA, Schnellmann RG (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 304:905–912PubMedCrossRef
42.
Zurück zum Zitat Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR (2008) Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol 294:F928–F936PubMedCrossRef Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR (2008) Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol 294:F928–F936PubMedCrossRef
43.
Zurück zum Zitat Forbes JM, Hewitson TD, Becker GJ, Jones CL (2000) Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat. Kidney Int 57:2375–2385PubMedCrossRef Forbes JM, Hewitson TD, Becker GJ, Jones CL (2000) Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat. Kidney Int 57:2375–2385PubMedCrossRef
44.
Zurück zum Zitat Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK (2010) Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 298:F1078–F1094PubMedPubMedCentralCrossRef Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK (2010) Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 298:F1078–F1094PubMedPubMedCentralCrossRef
45.
46.
Zurück zum Zitat Endre ZH, Kellum JA, Di Somma S, Doi K, Goldestin ST, Koyner JL, Macedo E, Metha RL, Murray PT (2013) Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol 182:30–44PubMedCrossRef Endre ZH, Kellum JA, Di Somma S, Doi K, Goldestin ST, Koyner JL, Macedo E, Metha RL, Murray PT (2013) Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol 182:30–44PubMedCrossRef
47.
Zurück zum Zitat Badr KF, Ichikawa I (1988) Prerenal failure: a deleterious shift from renal compensation to decompensation. N Engl J Med 319:623–629PubMedCrossRef Badr KF, Ichikawa I (1988) Prerenal failure: a deleterious shift from renal compensation to decompensation. N Engl J Med 319:623–629PubMedCrossRef
48.
Zurück zum Zitat Miller TR, Anderson RJ, Linas SL, Henrich WL, Berns A, Gabon PA, Schrier RW (1978) Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med 89:47–50PubMedCrossRef Miller TR, Anderson RJ, Linas SL, Henrich WL, Berns A, Gabon PA, Schrier RW (1978) Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med 89:47–50PubMedCrossRef
50.
Zurück zum Zitat Araujo CAA, Araujo NAA, Daher EF, Oliveira JDB et al (2013) Resolution of hypercalcemia and acute kidney injury after treatment for pulmonary tuberculosis without the use of corticosteroids. Am J Trop Med Hyg 88:592–595PubMedPubMedCentralCrossRef Araujo CAA, Araujo NAA, Daher EF, Oliveira JDB et al (2013) Resolution of hypercalcemia and acute kidney injury after treatment for pulmonary tuberculosis without the use of corticosteroids. Am J Trop Med Hyg 88:592–595PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Silva ACSE, Lanza K, Palmeira VA, Costa LB, Flynn JT (2021) 2020 update on the renin–angiotensin–aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol 36:1407–1426PubMedCrossRef Silva ACSE, Lanza K, Palmeira VA, Costa LB, Flynn JT (2021) 2020 update on the renin–angiotensin–aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol 36:1407–1426PubMedCrossRef
52.
Zurück zum Zitat Prowle J, Bagshaw SM, Bellomo R (2012) Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm? Curr Opin Crit Care 18:585–592PubMedCrossRef Prowle J, Bagshaw SM, Bellomo R (2012) Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm? Curr Opin Crit Care 18:585–592PubMedCrossRef
53.
Zurück zum Zitat Epstein FH, Agmon Y, Brezis M (2008) Physiology of renal hypoxia. Ann N Y Acad Sci 718:72–82CrossRef Epstein FH, Agmon Y, Brezis M (2008) Physiology of renal hypoxia. Ann N Y Acad Sci 718:72–82CrossRef
54.
Zurück zum Zitat Dyson A, Bezemer R, Legrand M, Balestra G, Singer M, Ince C (2011) Microvascular and interstitial oxygen tension in the renal cortex and medulla studied in a 4-h rat model of LPS-induced endotoxemia. Shock 36:83–89PubMedCrossRef Dyson A, Bezemer R, Legrand M, Balestra G, Singer M, Ince C (2011) Microvascular and interstitial oxygen tension in the renal cortex and medulla studied in a 4-h rat model of LPS-induced endotoxemia. Shock 36:83–89PubMedCrossRef
55.
Zurück zum Zitat Nourbakhsh N, Singh P (2014) Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury. Nephron Clin Pract 127:149–152PubMedCrossRef Nourbakhsh N, Singh P (2014) Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury. Nephron Clin Pract 127:149–152PubMedCrossRef
56.
Zurück zum Zitat Wang Z, Holthoff JH, Seely KA, Pathak E, Spencer HJ 3rd, Gokden N, Mayeux PR (2012) Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol 180:505–516PubMedPubMedCentralCrossRef Wang Z, Holthoff JH, Seely KA, Pathak E, Spencer HJ 3rd, Gokden N, Mayeux PR (2012) Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol 180:505–516PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Seely KA, Holthoff JH, Burns ST, Wang Z, Thakali KM, Gokden N, Rhee SW, Mayeux PR (2011) Hemodynamic changes in the kidney in a pediatric rat model of sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 301:F209–F217PubMedPubMedCentralCrossRef Seely KA, Holthoff JH, Burns ST, Wang Z, Thakali KM, Gokden N, Rhee SW, Mayeux PR (2011) Hemodynamic changes in the kidney in a pediatric rat model of sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 301:F209–F217PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Vandenberghe W, Gevaert S, Kellum JA, Bagshaw SM, Peperstraete H, Herck I, Decruyenaere J, Hoste EAJ (2016) Acute kidney injury in cardiorenal syndrome type 1 patients: a systematic review and meta-analysis. Cardiorenal Med 6:116–128PubMedCrossRef Vandenberghe W, Gevaert S, Kellum JA, Bagshaw SM, Peperstraete H, Herck I, Decruyenaere J, Hoste EAJ (2016) Acute kidney injury in cardiorenal syndrome type 1 patients: a systematic review and meta-analysis. Cardiorenal Med 6:116–128PubMedCrossRef
59.
Zurück zum Zitat Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539PubMedCrossRef Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539PubMedCrossRef
60.
Zurück zum Zitat Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Iorio BD, Cozzolino M, Ronco C (2017) Pathophysiology of the cardio-renal syndromes types 1–5: an uptodate. Indian Heart J 69:255–265PubMedPubMedCentralCrossRef Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Iorio BD, Cozzolino M, Ronco C (2017) Pathophysiology of the cardio-renal syndromes types 1–5: an uptodate. Indian Heart J 69:255–265PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Athwani V, Bhargava M, Chanchlani R, Mehta AJ (2017) Incidence and outcome of acute cardiorenal syndrome in hospitalized children. Indian J Pediatr 84:420–424PubMedCrossRef Athwani V, Bhargava M, Chanchlani R, Mehta AJ (2017) Incidence and outcome of acute cardiorenal syndrome in hospitalized children. Indian J Pediatr 84:420–424PubMedCrossRef
62.
Zurück zum Zitat Price JF, Goldstein SL (2009) Cardiorenal syndrome in children with heart failure. Curr Heart Fail Rep 6:191–198PubMedCrossRef Price JF, Goldstein SL (2009) Cardiorenal syndrome in children with heart failure. Curr Heart Fail Rep 6:191–198PubMedCrossRef
63.
Zurück zum Zitat Ortega-Loubon C, Fernández-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E (2016) Cardiac surgery-associated acute kidney injury. Ann Card Anaesth 19:687–698PubMedPubMedCentralCrossRef Ortega-Loubon C, Fernández-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E (2016) Cardiac surgery-associated acute kidney injury. Ann Card Anaesth 19:687–698PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Romagnoli S, Ricci Z, Ronco C (2018) Perioperative acute kidney injury: prevention, early recognition, and supportive measures. Nephron 140:105–110PubMedCrossRef Romagnoli S, Ricci Z, Ronco C (2018) Perioperative acute kidney injury: prevention, early recognition, and supportive measures. Nephron 140:105–110PubMedCrossRef
65.
Zurück zum Zitat Lawal TA, Raji YR, Ajayi SO, Ademola AD et al (2019) Predictors and outcome of acute kidney injury after non-cardiac paediatric surgery. Ren Replace Ther 5:1–7CrossRef Lawal TA, Raji YR, Ajayi SO, Ademola AD et al (2019) Predictors and outcome of acute kidney injury after non-cardiac paediatric surgery. Ren Replace Ther 5:1–7CrossRef
67.
Zurück zum Zitat Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA (2019) Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 96:1083–1099PubMedPubMedCentralCrossRef Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA (2019) Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 96:1083–1099PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Ejaz AA, Johnson RJ, Shimada M, Mohandas R, Alquadan KF, Beaver TM, Lapsia V, Daas B (2019) The role of uric acid in acute kidney injury. Nephron 142:275–283PubMedCrossRef Ejaz AA, Johnson RJ, Shimada M, Mohandas R, Alquadan KF, Beaver TM, Lapsia V, Daas B (2019) The role of uric acid in acute kidney injury. Nephron 142:275–283PubMedCrossRef
71.
Zurück zum Zitat Fathallah-Shaykh SA, Cramer MT (2014) Uric acid and the kidney. Pediatr Nephrol 29:999–1008PubMedCrossRef Fathallah-Shaykh SA, Cramer MT (2014) Uric acid and the kidney. Pediatr Nephrol 29:999–1008PubMedCrossRef
72.
Zurück zum Zitat Abu-Alfa AK, Younes A (2010) Tumor lysis syndrome and acute kidney injury: evaluation, prevention, and management. Am J Kidney Dis 55:S1–S13; quiz S14–9 Abu-Alfa AK, Younes A (2010) Tumor lysis syndrome and acute kidney injury: evaluation, prevention, and management. Am J Kidney Dis 55:S1–S13; quiz S14–9
73.
74.
Zurück zum Zitat Arimura Y, Muso E, Fujimoto S, Hasegawa M et al (2016) Evidence-based clinical practice guidelines for rapidly progressive glomerulonephritis 2014. Clin Exp Nephrol 20:322–341PubMedPubMedCentralCrossRef Arimura Y, Muso E, Fujimoto S, Hasegawa M et al (2016) Evidence-based clinical practice guidelines for rapidly progressive glomerulonephritis 2014. Clin Exp Nephrol 20:322–341PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Piyaphanee N, Ananboontarick C, Supavekin S, Sumboonnanonda A (2017) Renal outcome and risk factors for end-stage renal disease in pediatric rapidly progressive glomerulonephritis. Pediatr Int 59:334–341PubMedCrossRef Piyaphanee N, Ananboontarick C, Supavekin S, Sumboonnanonda A (2017) Renal outcome and risk factors for end-stage renal disease in pediatric rapidly progressive glomerulonephritis. Pediatr Int 59:334–341PubMedCrossRef
76.
Zurück zum Zitat Jennette JC (2003) Rapidly progressive crescentic glomerulonephritis. Kidney Int 63:1164–1177PubMedCrossRef Jennette JC (2003) Rapidly progressive crescentic glomerulonephritis. Kidney Int 63:1164–1177PubMedCrossRef
77.
Zurück zum Zitat Eison TM, Ault BH, Jones DP, Chersney RW, Wyatt RJ (2011) Post-streptococcal acute glomerulonephritis in children: clinical features and pathogenesis. Pediatr Nephrol 26:165–180PubMedCrossRef Eison TM, Ault BH, Jones DP, Chersney RW, Wyatt RJ (2011) Post-streptococcal acute glomerulonephritis in children: clinical features and pathogenesis. Pediatr Nephrol 26:165–180PubMedCrossRef
78.
Zurück zum Zitat Couser WG (2016) Pathogenesis and treatment of glomerulonephritis-an update. J Bras Nefrol 38:107–122PubMedCrossRef Couser WG (2016) Pathogenesis and treatment of glomerulonephritis-an update. J Bras Nefrol 38:107–122PubMedCrossRef
79.
Zurück zum Zitat Couser WG, Johnson RJ (2014) The etiology of glomerulonephritis: roles of infection and autoimmunity. Kidney Int 86:905–914PubMedCrossRef Couser WG, Johnson RJ (2014) The etiology of glomerulonephritis: roles of infection and autoimmunity. Kidney Int 86:905–914PubMedCrossRef
80.
81.
Zurück zum Zitat Andrew M, Brooker LA (1996) Hemostatic complications in renal disorders of the young. Pediatr Nephrol 10:88–99PubMedCrossRef Andrew M, Brooker LA (1996) Hemostatic complications in renal disorders of the young. Pediatr Nephrol 10:88–99PubMedCrossRef
82.
Zurück zum Zitat Asghar M, Ahmed K, Shah SS, Siddique MK, Dasgupta P, Khan MS (2007) Renal vein thrombosis. Eur J Vasc Endovasc Surg 34:217–223PubMedCrossRef Asghar M, Ahmed K, Shah SS, Siddique MK, Dasgupta P, Khan MS (2007) Renal vein thrombosis. Eur J Vasc Endovasc Surg 34:217–223PubMedCrossRef
83.
Zurück zum Zitat Woolf AS (2006) Renal hypoplasia and dysplasia: starting to put the puzzle together. J Am Soc Nephrol 17:2647–2649PubMedCrossRef Woolf AS (2006) Renal hypoplasia and dysplasia: starting to put the puzzle together. J Am Soc Nephrol 17:2647–2649PubMedCrossRef
87.
Zurück zum Zitat Klahr S (1991) New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis 18:689–699PubMedCrossRef Klahr S (1991) New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis 18:689–699PubMedCrossRef
88.
Zurück zum Zitat Bilgutay AN, Roth DR, Gonzales ET Jr, Koh CJ et al (2016) Posterior urethral valves: risk factors for progression to renal failure. J Pediatr Urol 12:179.e1–e7CrossRef Bilgutay AN, Roth DR, Gonzales ET Jr, Koh CJ et al (2016) Posterior urethral valves: risk factors for progression to renal failure. J Pediatr Urol 12:179.e1–e7CrossRef
89.
Zurück zum Zitat Stoops C, Stone S, Evans E, Dill L, Henderson T, Griffin R, Goldstein SL, Coghill C, Askenazi DJ (2019) Baby NINJA (Nephrotoxic Injury Negated by Just-in-Time Action): reduction of nephrotoxic medication-associated acute kidney injury in the neonatal intensive care unit. J Pediatr 215:223-228.e6PubMedPubMedCentralCrossRef Stoops C, Stone S, Evans E, Dill L, Henderson T, Griffin R, Goldstein SL, Coghill C, Askenazi DJ (2019) Baby NINJA (Nephrotoxic Injury Negated by Just-in-Time Action): reduction of nephrotoxic medication-associated acute kidney injury in the neonatal intensive care unit. J Pediatr 215:223-228.e6PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Goldstein SL, Dahale D, Kirkendall ES et al (2020) A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int 97:580–588PubMedCrossRef Goldstein SL, Dahale D, Kirkendall ES et al (2020) A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int 97:580–588PubMedCrossRef
91.
Zurück zum Zitat Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, Kirkendall ES (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90:212–221PubMedCrossRef Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, Kirkendall ES (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90:212–221PubMedCrossRef
92.
Zurück zum Zitat Goldstein SL (2017) Nephrotoxicities. F1000Res 6:55 Goldstein SL (2017) Nephrotoxicities. F1000Res 6:55
93.
Zurück zum Zitat Goldstein SL, Dahale D, Kirkendall ES, Mottes T et al (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90:212–221PubMedCrossRef Goldstein SL, Dahale D, Kirkendall ES, Mottes T et al (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90:212–221PubMedCrossRef
94.
Zurück zum Zitat Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Gracia P, Golstein SL (2015) AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol 10:554–561PubMedPubMedCentralCrossRef Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Gracia P, Golstein SL (2015) AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol 10:554–561PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR et al (2014) Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int 85:659–667PubMedCrossRef Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR et al (2014) Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int 85:659–667PubMedCrossRef
96.
Zurück zum Zitat Basu RK, Kaddourah A, Goldstein SL; AWARE Study Investigators (2018) Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child Adolesc Health 2:112–120CrossRef Basu RK, Kaddourah A, Goldstein SL; AWARE Study Investigators (2018) Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child Adolesc Health 2:112–120CrossRef
97.
Zurück zum Zitat Rosa RM, Colucci JA, Yokota R et al (2016) Alternative pathways for angiotensin II production as an important determinant of kidney damage in endotoxemia. Am J Physiol Renal Physiol 311:F496–F504PubMedCrossRef Rosa RM, Colucci JA, Yokota R et al (2016) Alternative pathways for angiotensin II production as an important determinant of kidney damage in endotoxemia. Am J Physiol Renal Physiol 311:F496–F504PubMedCrossRef
98.
Zurück zum Zitat Chawla LS, Busse L, Brasha-Mitchell E, Davison D, Honiq J, Alotaibi Z, Seneff MG (2014) Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care 18:534PubMedPubMedCentralCrossRef Chawla LS, Busse L, Brasha-Mitchell E, Davison D, Honiq J, Alotaibi Z, Seneff MG (2014) Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care 18:534PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Asci H, Saygin M, Cankara FN, Bayram D, Yesilot S et al (2015) The impact of alpha-lipoic acid on amikacin-induced nephrotoxicity. Ren Fail 37:117–121PubMedCrossRef Asci H, Saygin M, Cankara FN, Bayram D, Yesilot S et al (2015) The impact of alpha-lipoic acid on amikacin-induced nephrotoxicity. Ren Fail 37:117–121PubMedCrossRef
100.
Zurück zum Zitat Li G, Gao L, Jia J, Gong X, Zang B, Chen W (2014) α-Lipoic acid prolongs survival and attenuates acute kidney injury in a rat model of sepsis. Clin Exp Pharmacol Physiol 41:459–468PubMedCrossRef Li G, Gao L, Jia J, Gong X, Zang B, Chen W (2014) α-Lipoic acid prolongs survival and attenuates acute kidney injury in a rat model of sepsis. Clin Exp Pharmacol Physiol 41:459–468PubMedCrossRef
101.
Zurück zum Zitat Messaoudi I, El Heni J, Hammouda F, Said K, Kerkeni A (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161PubMedCrossRef Messaoudi I, El Heni J, Hammouda F, Said K, Kerkeni A (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161PubMedCrossRef
102.
Zurück zum Zitat El-Nahas AR, Elsaadany MM, Taha D-E, Elshal AM et al (2017) A randomised controlled trial evaluating renal protective effects of selenium with vitamins A, C, E, verapamil, and losartan against extracorporeal shockwave lithotripsy-induced renal injury. BJU Int 119:142–147PubMedCrossRef El-Nahas AR, Elsaadany MM, Taha D-E, Elshal AM et al (2017) A randomised controlled trial evaluating renal protective effects of selenium with vitamins A, C, E, verapamil, and losartan against extracorporeal shockwave lithotripsy-induced renal injury. BJU Int 119:142–147PubMedCrossRef
103.
Zurück zum Zitat Bang J-Y, Lee J, Oh J, Song JG, Hwang GS (2016) The influence of propofol and sevoflurane on acute kidney injury after colorectal surgery: a retrospective cohort study. Anesth Analg 123:363–370PubMedCrossRef Bang J-Y, Lee J, Oh J, Song JG, Hwang GS (2016) The influence of propofol and sevoflurane on acute kidney injury after colorectal surgery: a retrospective cohort study. Anesth Analg 123:363–370PubMedCrossRef
104.
Zurück zum Zitat Ammar AS, Mahmoud KM (2016) Comparative effect of propofol versus sevoflurane on renal ischemia/reperfusion injury after elective open abdominal aortic aneurysm repair. Saudi J Anaesth 10:301–307PubMedPubMedCentralCrossRef Ammar AS, Mahmoud KM (2016) Comparative effect of propofol versus sevoflurane on renal ischemia/reperfusion injury after elective open abdominal aortic aneurysm repair. Saudi J Anaesth 10:301–307PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Feng Y, Bai T, Ma H, Wang J-K (2015) Propofol attenuates human proximal renal tubular epithelial cell injury induced by anoxia-reoxygenation. Lab Med 39:356–360CrossRef Feng Y, Bai T, Ma H, Wang J-K (2015) Propofol attenuates human proximal renal tubular epithelial cell injury induced by anoxia-reoxygenation. Lab Med 39:356–360CrossRef
107.
Zurück zum Zitat Fujino T, Muhib S, Sato N, Hasebe N (2013) Silencing of p53 RNA through transarterial delivery ameliorates renal tubular injury and downregulates GSK-3β expression after ischemia-reperfusion injury. Am J Physiol Renal Physiol 305:F1617–F1627PubMedCrossRef Fujino T, Muhib S, Sato N, Hasebe N (2013) Silencing of p53 RNA through transarterial delivery ameliorates renal tubular injury and downregulates GSK-3β expression after ischemia-reperfusion injury. Am J Physiol Renal Physiol 305:F1617–F1627PubMedCrossRef
108.
Zurück zum Zitat Gist KM, Goldstein SL, Wrona J, Alten JA, Basu RK et al (2017) Kinetics of the cell cycle arrest biomarkers (TIMP-2*IGFBP-7) for prediction of acute kidney injury in infants after cardiac surgery. Pediatr Nephrol 32:1611–1619PubMedCrossRef Gist KM, Goldstein SL, Wrona J, Alten JA, Basu RK et al (2017) Kinetics of the cell cycle arrest biomarkers (TIMP-2*IGFBP-7) for prediction of acute kidney injury in infants after cardiac surgery. Pediatr Nephrol 32:1611–1619PubMedCrossRef
109.
Zurück zum Zitat Westhoff JH, Tönshoff B, Waldherr S, Poschl J et al (2015) Urinary tissue inhibitor of metalloproteinase-2 (TIMP-2) insulin-like growth factor-binding protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLoS One 10:e0143628PubMedPubMedCentralCrossRef Westhoff JH, Tönshoff B, Waldherr S, Poschl J et al (2015) Urinary tissue inhibitor of metalloproteinase-2 (TIMP-2) insulin-like growth factor-binding protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLoS One 10:e0143628PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Dong L, Ma Q, Bennett M, Devarajan P (2017) Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass. Pediatr Nephrol 32:2351–2360PubMedPubMedCentralCrossRef Dong L, Ma Q, Bennett M, Devarajan P (2017) Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass. Pediatr Nephrol 32:2351–2360PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Ivanišević I, Peco-Antić A, Vuličević I, Hercog D et al (2013) L-FABP can be an early marker of acute kidney injury in children. Pediatr Nephrol 28:963–969PubMedCrossRef Ivanišević I, Peco-Antić A, Vuličević I, Hercog D et al (2013) L-FABP can be an early marker of acute kidney injury in children. Pediatr Nephrol 28:963–969PubMedCrossRef
112.
Zurück zum Zitat Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I et al (2008) Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 73:465–472PubMedCrossRef Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I et al (2008) Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 73:465–472PubMedCrossRef
113.
Zurück zum Zitat Genc G, Ozkaya O, Avci B, Aygun C, Kucukoduk S (2013) Kidney injury molecule-1 as a promising biomarker for acute kidney injury in premature babies. Am J Perinatol 30:245–252PubMed Genc G, Ozkaya O, Avci B, Aygun C, Kucukoduk S (2013) Kidney injury molecule-1 as a promising biomarker for acute kidney injury in premature babies. Am J Perinatol 30:245–252PubMed
114.
Zurück zum Zitat Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D et al (2013) Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol 8:1079–1088PubMedPubMedCentralCrossRef Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D et al (2013) Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol 8:1079–1088PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Kuribayashi R, Suzumura H, Sairenchi T, Watabe Y et al (2016) Urinary neutrophil gelatinase-associated lipocalin is an early predictor of acute kidney injury in premature infants. Exp Ther Med 12:3706–3710PubMedPubMedCentralCrossRef Kuribayashi R, Suzumura H, Sairenchi T, Watabe Y et al (2016) Urinary neutrophil gelatinase-associated lipocalin is an early predictor of acute kidney injury in premature infants. Exp Ther Med 12:3706–3710PubMedPubMedCentralCrossRef
116.
Zurück zum Zitat Reiter K, Balling G, Bonelli V, von Ohain JP, Braun SL et al (2018) Neutrophil gelatinase-associated lipocalin reflects inflammation and is not a reliable renal biomarker in neonates and infants after cardiopulmonary bypass: a prospective case-control study. Cardiol Young 28:243–251PubMedCrossRef Reiter K, Balling G, Bonelli V, von Ohain JP, Braun SL et al (2018) Neutrophil gelatinase-associated lipocalin reflects inflammation and is not a reliable renal biomarker in neonates and infants after cardiopulmonary bypass: a prospective case-control study. Cardiol Young 28:243–251PubMedCrossRef
117.
Zurück zum Zitat Bellos I, Fitrou G, Daskalakis G, Perrea DN et al (2018) Neutrophil gelatinase-associated lipocalin as predictor of acute kidney injury in neonates with perinatal asphyxia: a systematic review and meta-analysis. Eur J Pediatr 177:1425–1434PubMedCrossRef Bellos I, Fitrou G, Daskalakis G, Perrea DN et al (2018) Neutrophil gelatinase-associated lipocalin as predictor of acute kidney injury in neonates with perinatal asphyxia: a systematic review and meta-analysis. Eur J Pediatr 177:1425–1434PubMedCrossRef
118.
Zurück zum Zitat Washburn KK, Zappitelli M, Arikan AA, Loftis L et al (2008) Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 23:566–572PubMedCrossRef Washburn KK, Zappitelli M, Arikan AA, Loftis L et al (2008) Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 23:566–572PubMedCrossRef
119.
Zurück zum Zitat Li Y, Fu C, Zhou Xiao Z, Zhu X et al (2012) Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol 27:851–860PubMedPubMedCentralCrossRef Li Y, Fu C, Zhou Xiao Z, Zhu X et al (2012) Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol 27:851–860PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Mårtensson J, Bellomo R (2014) The rise and fall of NGAL in acute kidney injury. Blood Purif 37:304–310PubMedCrossRef Mårtensson J, Bellomo R (2014) The rise and fall of NGAL in acute kidney injury. Blood Purif 37:304–310PubMedCrossRef
Metadaten
Titel
Acute kidney injury in pediatrics: an overview focusing on pathophysiology
verfasst von
Ana Flávia Lima Ruas
Gabriel Malheiros Lébeis
Nicholas Bianco de Castro
Vitória Andrade Palmeira
Larissa Braga Costa
Katharina Lanza
Ana Cristina Simões e Silva
Publikationsdatum
30.11.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Nephrology / Ausgabe 9/2022
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-021-05346-8

Weitere Artikel der Ausgabe 9/2022

Pediatric Nephrology 9/2022 Zur Ausgabe

Klimaschutz beginnt bei der Wahl des Inhalators

14.05.2024 Klimawandel Podcast

Auch kleine Entscheidungen im Alltag einer Praxis können einen großen Beitrag zum Klimaschutz leisten. Die neue Leitlinie zur "klimabewussten Verordnung von Inhalativa" geht mit gutem Beispiel voran, denn der Wechsel vom klimaschädlichen Dosieraerosol zum Pulverinhalator spart viele Tonnen CO2. Leitlinienautor PD Dr. Guido Schmiemann erklärt, warum nicht nur die Umwelt, sondern auch Patientinnen und Patienten davon profitieren.

Zeitschrift für Allgemeinmedizin, DEGAM

Embryotransfer erhöht womöglich Leukämierisiko der Kinder

13.05.2024 Assistierte Reproduktion Nachrichten

Reproduktionsmedizinische Techniken haben theoretisch das Potenzial, den epigenetischen Code zu verändern und somit das Krebsrisiko der Kinder zu erhöhen. Zwischen Embryotransfer und Leukämie scheint sich ein solcher Zusammenhang bestätigt zu haben.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.