Skip to main content
Erschienen in: European Journal of Applied Physiology 6/2020

28.04.2020 | Original Article

Added lower limb mass does not affect biomechanical asymmetry but increases metabolic power in runners with a unilateral transtibial amputation

verfasst von: Ryan S. Alcantara, Owen N. Beck, Alena M. Grabowski

Erschienen in: European Journal of Applied Physiology | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

we determined the metabolic and biomechanical effects of adding mass to the running-specific prosthesis (RSP) and biological foot of individuals with a unilateral transtibial amputation (TTA) during running.

Methods

10 individuals (8 males, 2 females) with a TTA ran on a force-measuring treadmill at 2.5 m/s with 100 g and 300 g added to their RSP alone or to their RSP and biological foot while we measured their metabolic rates and calculated peak vertical ground reaction force (vGRF), stance-average vGRF, and step time symmetry indices.

Results

for every 100 g added to the RSP alone, metabolic power increased by 0.86% (p = 0.007) and for every 100 g added to the RSP and biological foot, metabolic power increased by 1.74% (\(p<\) 0.001) during running. Adding mass had no effect on peak vGRF (p = 0.102), stance-average vGRF (p = 0.675), or step time (p = 0.413) symmetry indices. We also found that the swing time of the affected leg was shorter than the unaffected leg across conditions (\(p<\) 0.007).

Conclusions

adding mass to the lower limbs of runners with a TTA increased metabolic power by more than what has been reported for those without an amputation. We found no effect of added mass on biomechanical asymmetry, but the affected leg had consistently shorter swing times than the unaffected leg. This suggests that individuals with a TTA maintain asymmetries despite changes in RSP mass and that lightweight prostheses could improve performance by minimizing metabolic power without affecting asymmetry.
Literatur
Zurück zum Zitat Alcantara R (2019) Dryft: a python and matlab package to correct drifting ground reaction force signals during treadmill running. J Open Source Softw 4(44):1910 Alcantara R (2019) Dryft: a python and matlab package to correct drifting ground reaction force signals during treadmill running. J Open Source Softw 4(44):1910
Zurück zum Zitat Arellano CJ, Kram R (2014) Partitioning the metabolic cost of human running: a task-by-task approach. Integrat Compar Biol 54(6):1084–1098 Arellano CJ, Kram R (2014) Partitioning the metabolic cost of human running: a task-by-task approach. Integrat Compar Biol 54(6):1084–1098
Zurück zum Zitat Arellano CJ, McDermott WJ, Kram R, Grabowski AM (2015) Effect of running speed and leg prostheses on mediolateral foot placement and its variability. PLoS One 10(1):e0115637PubMedPubMedCentral Arellano CJ, McDermott WJ, Kram R, Grabowski AM (2015) Effect of running speed and leg prostheses on mediolateral foot placement and its variability. PLoS One 10(1):e0115637PubMedPubMedCentral
Zurück zum Zitat Baum BS, Hobara H, Kim YH, Shim JK (2016) Amputee locomotion: ground reaction forces during submaximal running with running-specific prostheses. J Appl Biomech 32(3):287–294PubMed Baum BS, Hobara H, Kim YH, Shim JK (2016) Amputee locomotion: ground reaction forces during submaximal running with running-specific prostheses. J Appl Biomech 32(3):287–294PubMed
Zurück zum Zitat Beck ON, Grabowski AM (2017) The biomechanics of the fastest sprinter with a unilateral transtibial amputation. J Appl Physiol 124(3):641–645PubMed Beck ON, Grabowski AM (2017) The biomechanics of the fastest sprinter with a unilateral transtibial amputation. J Appl Physiol 124(3):641–645PubMed
Zurück zum Zitat Beck ON, Taboga P, Grabowski AM (2017) Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations. J Appl Physiol 123(1):38–48PubMed Beck ON, Taboga P, Grabowski AM (2017) Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations. J Appl Physiol 123(1):38–48PubMed
Zurück zum Zitat Brockway J (1987) Derivation of formulae used to calculate energy expenditure in man. Human Nutr Clin Nutr 41(6):463–471 Brockway J (1987) Derivation of formulae used to calculate energy expenditure in man. Human Nutr Clin Nutr 41(6):463–471
Zurück zum Zitat Brüggemann GP, Arampatzis A, Emrich F, Potthast W (2008) Biomechanics of double transtibial amputee sprinting using dedicated sprinting prostheses. Sports Technol 1(4–5):220–227 Brüggemann GP, Arampatzis A, Emrich F, Potthast W (2008) Biomechanics of double transtibial amputee sprinting using dedicated sprinting prostheses. Sports Technol 1(4–5):220–227
Zurück zum Zitat Claremont AD, Hall SJ (1988) Effects of extremity loading upon energy expenditure and running mechanics. Med Sci Sports Exerc 20(2):167–171PubMed Claremont AD, Hall SJ (1988) Effects of extremity loading upon energy expenditure and running mechanics. Med Sci Sports Exerc 20(2):167–171PubMed
Zurück zum Zitat Clark KP, Ryan LJ, Weyand PG (2017) A general relationship links gait mechanics and running ground reaction forces. J Exp Biol 220(2):247–258PubMed Clark KP, Ryan LJ, Weyand PG (2017) A general relationship links gait mechanics and running ground reaction forces. J Exp Biol 220(2):247–258PubMed
Zurück zum Zitat Daly C, McCarthy Persson U, Twycross-Lewis R, Woledge R, Morrissey D (2016) The biomechanics of running in athletes with previous hamstring injury: a case–control study. Scand J Med Sci Sports 26(4):413–420PubMed Daly C, McCarthy Persson U, Twycross-Lewis R, Woledge R, Morrissey D (2016) The biomechanics of running in athletes with previous hamstring injury: a case–control study. Scand J Med Sci Sports 26(4):413–420PubMed
Zurück zum Zitat De Leva P (1996) Adjustments to zatsiorsky-seluyanov’s segment inertia parameters. J Biomech 29(9):1223–1230PubMed De Leva P (1996) Adjustments to zatsiorsky-seluyanov’s segment inertia parameters. J Biomech 29(9):1223–1230PubMed
Zurück zum Zitat Divert C, Mornieux G, Freychat P, Baly L, Mayer F, Belli A (2008) Barefoot-shod running differences: shoe or mass effect? Int J Sports Med 29(06):512–518PubMed Divert C, Mornieux G, Freychat P, Baly L, Mayer F, Belli A (2008) Barefoot-shod running differences: shoe or mass effect? Int J Sports Med 29(06):512–518PubMed
Zurück zum Zitat Farley CT, McMahon TA (1992) Energetics of walking and running: insights from simulated reduced-gravity experiments. J Appl Physiol 73(6):2709–2712PubMed Farley CT, McMahon TA (1992) Energetics of walking and running: insights from simulated reduced-gravity experiments. J Appl Physiol 73(6):2709–2712PubMed
Zurück zum Zitat Faul F, Erdfelder E, Lang AG, Buchner A (2007) G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191PubMed Faul F, Erdfelder E, Lang AG, Buchner A (2007) G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191PubMed
Zurück zum Zitat Franz JR, Wierzbinski CM, Kram R (2012) Metabolic cost of running barefoot versus shod: is lighter better? Med Sci Sports Exerc 44(8):1519–1525PubMed Franz JR, Wierzbinski CM, Kram R (2012) Metabolic cost of running barefoot versus shod: is lighter better? Med Sci Sports Exerc 44(8):1519–1525PubMed
Zurück zum Zitat Frederick E, Daniels J, Hayes J (1984) The effect of shoe weight on the aerobic demands of running. Urban & Schwarzenberg, Vienna Frederick E, Daniels J, Hayes J (1984) The effect of shoe weight on the aerobic demands of running. Urban & Schwarzenberg, Vienna
Zurück zum Zitat Fuller JT, Bellenger CR, Thewlis D, Tsiros MD, Buckley JD (2015) The effect of footwear on running performance and running economy in distance runners. Sports Med 45(3):411–422PubMed Fuller JT, Bellenger CR, Thewlis D, Tsiros MD, Buckley JD (2015) The effect of footwear on running performance and running economy in distance runners. Sports Med 45(3):411–422PubMed
Zurück zum Zitat Grabowski AM, McGowan CP, McDermott WJ, Beale MT, Kram R, Herr HM (2009) Running-specific prostheses limit ground-force during sprinting. Biol Lett 6(2):201–204PubMedPubMedCentral Grabowski AM, McGowan CP, McDermott WJ, Beale MT, Kram R, Herr HM (2009) Running-specific prostheses limit ground-force during sprinting. Biol Lett 6(2):201–204PubMedPubMedCentral
Zurück zum Zitat Herzog W, Nigg BM, Read LJ, Olsson E (1989) Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 21(1):110–114PubMed Herzog W, Nigg BM, Read LJ, Olsson E (1989) Asymmetries in ground reaction force patterns in normal human gait. Med Sci Sports Exerc 21(1):110–114PubMed
Zurück zum Zitat Hoogkamer W, Kipp S, Spiering BA, Kram R (2016) Altered running economy directly translates to altered distance-running performance. Med Sci Sports Exerc 48(11):2175–80PubMed Hoogkamer W, Kipp S, Spiering BA, Kram R (2016) Altered running economy directly translates to altered distance-running performance. Med Sci Sports Exerc 48(11):2175–80PubMed
Zurück zum Zitat Innovations F (2014) Catapult running foot instructions for use. Freedom Innovations, Irvine Innovations F (2014) Catapult running foot instructions for use. Freedom Innovations, Irvine
Zurück zum Zitat Jones BH, Toner MM, Daniels WL, Knapik JJ (1984) The energy cost and heart-rate response of trained and untrained subjects walking and running in shoes and boots. Ergonomics 27(8):895–902PubMed Jones BH, Toner MM, Daniels WL, Knapik JJ (1984) The energy cost and heart-rate response of trained and untrained subjects walking and running in shoes and boots. Ergonomics 27(8):895–902PubMed
Zurück zum Zitat Lloyd CH, Stanhope SJ, Davis IS, Royer TD (2010) Strength asymmetry and osteoarthritis risk factors in unilateral trans-tibial, amputee gait. Gait Posture 32(3):296–300PubMed Lloyd CH, Stanhope SJ, Davis IS, Royer TD (2010) Strength asymmetry and osteoarthritis risk factors in unilateral trans-tibial, amputee gait. Gait Posture 32(3):296–300PubMed
Zurück zum Zitat Martin PE (1985) Mechanical and physiological responses to lower extremity loading during running. Med Sci Sports Exerc 17(4):427–433PubMed Martin PE (1985) Mechanical and physiological responses to lower extremity loading during running. Med Sci Sports Exerc 17(4):427–433PubMed
Zurück zum Zitat McGowan CP, Grabowski AM, McDermott WJ, Herr HM, Kram R (2012) Leg stiffness of sprinters using running-specific prostheses. J R Soc Interface 9(73):1975–1982PubMedPubMedCentral McGowan CP, Grabowski AM, McDermott WJ, Herr HM, Kram R (2012) Leg stiffness of sprinters using running-specific prostheses. J R Soc Interface 9(73):1975–1982PubMedPubMedCentral
Zurück zum Zitat Modica JR, Kram R (2005) Metabolic energy and muscular activity required for leg swing in running. J Appl Physiol 98(6):2126–2131PubMed Modica JR, Kram R (2005) Metabolic energy and muscular activity required for leg swing in running. J Appl Physiol 98(6):2126–2131PubMed
Zurück zum Zitat Moed B, Kram R (2005) Metabolic costs of forward propulsion and leg swing at different running speeds. In: ISB XXth congress-ASB 29th annual meeting, Cleveland, OH Moed B, Kram R (2005) Metabolic costs of forward propulsion and leg swing at different running speeds. In: ISB XXth congress-ASB 29th annual meeting, Cleveland, OH
Zurück zum Zitat Myers M, Steudel K (1985) Effect of limb mass and its distribution on the energetic cost of running. J Exp Biol 116(1):363–373PubMed Myers M, Steudel K (1985) Effect of limb mass and its distribution on the energetic cost of running. J Exp Biol 116(1):363–373PubMed
Zurück zum Zitat Pinheiro J, Bates D, DebRoy S, Sarkar D (2018) R core team (2018). nlme: linear and nonlinear mixed effects models. r package version 3.1-137 Pinheiro J, Bates D, DebRoy S, Sarkar D (2018) R core team (2018). nlme: linear and nonlinear mixed effects models. r package version 3.1-137
Zurück zum Zitat Royer TD, Martin PE (2005) Manipulations of leg mass and moment of inertia: effects on energy cost of walking. Med Sci Sports Exerc 37(4):649–656PubMed Royer TD, Martin PE (2005) Manipulations of leg mass and moment of inertia: effects on energy cost of walking. Med Sci Sports Exerc 37(4):649–656PubMed
Zurück zum Zitat Selles RW, Bussmann JB, Van Soest AK, Stam HJ (2004) The effect of prosthetic mass properties on the gait of transtibial amputees–a mathematical model. Disabil Rehabil 26(12):694–704PubMed Selles RW, Bussmann JB, Van Soest AK, Stam HJ (2004) The effect of prosthetic mass properties on the gait of transtibial amputees–a mathematical model. Disabil Rehabil 26(12):694–704PubMed
Zurück zum Zitat Smith JD, Martin PE (2013) Effects of prosthetic mass distribution on metabolic costs and walking symmetry. J Appl Biomech 29(3):317–328PubMed Smith JD, Martin PE (2013) Effects of prosthetic mass distribution on metabolic costs and walking symmetry. J Appl Biomech 29(3):317–328PubMed
Zurück zum Zitat Taylor CR, Heglund NC, McMAHON TA, Looney TR (1980) Energetic cost of generating muscular force during running: a comparison of large and small animals. J Exp Biol 86(1):9–18 Taylor CR, Heglund NC, McMAHON TA, Looney TR (1980) Energetic cost of generating muscular force during running: a comparison of large and small animals. J Exp Biol 86(1):9–18
Zurück zum Zitat Teunissen LP, Grabowski A, Kram R (2007) Effects of independently altering body weight and body mass on the metabolic cost of running. J Exp Biol 210(24):4418–4427PubMed Teunissen LP, Grabowski A, Kram R (2007) Effects of independently altering body weight and body mass on the metabolic cost of running. J Exp Biol 210(24):4418–4427PubMed
Metadaten
Titel
Added lower limb mass does not affect biomechanical asymmetry but increases metabolic power in runners with a unilateral transtibial amputation
verfasst von
Ryan S. Alcantara
Owen N. Beck
Alena M. Grabowski
Publikationsdatum
28.04.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Applied Physiology / Ausgabe 6/2020
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-020-04367-9

Weitere Artikel der Ausgabe 6/2020

European Journal of Applied Physiology 6/2020 Zur Ausgabe