Skip to main content
Erschienen in: Current Diabetes Reports 5/2012

01.10.2012 | Treatment of Type 1 Diabetes (D Dabelea, Section Editor)

Adipose Tissue, Hormones, and Treatment of Type 1 Diabetes

verfasst von: Subhadra C. Gunawardana

Erschienen in: Current Diabetes Reports | Ausgabe 5/2012

Einloggen, um Zugang zu erhalten

Abstract

Type 1 diabetes (T1D) is a serious disease with increasing incidence worldwide, with fatal consequences if untreated. Traditional therapies require direct or indirect insulin replacement, which involves numerous limitations and complications. While insulin is the major regulator of blood glucose, recent reports demonstrate the ability of several extra-pancreatic hormones to decrease blood glucose and improve metabolic homeostasis. Such hormones mainly include adipokines originating from adipose tissue (AT), while specific factors from the gut and liver also contribute to glucose homeostasis. Correction of T1D with adipokines is progressively becoming a realistic option, with the potential to overcome many problems associated with insulin replacement. Several recent studies demonstrate insulin-independent reversal or amelioration of T1D through administration of specific adipokines. Our recent work demonstrates the ability of healthy AT to compensate for the function of endocrine pancreas in long-term correction of T1D. This review discusses the potential of AT-related therapies for T1D as viable alternatives to insulin replacement.
Literatur
1.
Zurück zum Zitat Harwood Jr HJ. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. 2011. Neuropharmacology. 2012;63(1):57–75.PubMedCrossRef Harwood Jr HJ. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. 2011. Neuropharmacology. 2012;63(1):57–75.PubMedCrossRef
2.
Zurück zum Zitat Falcão-Pires I, Castro-Chaves P, Miranda-Silva D, Lourenco AP, Leite-Moreira AF. Physiological, pathological and potential therapeutic roles of adipokines. Drug Discov Today. 2012. doi:10.1016/j.drudis.2012.04.007. Falcão-Pires I, Castro-Chaves P, Miranda-Silva D, Lourenco AP, Leite-Moreira AF. Physiological, pathological and potential therapeutic roles of adipokines. Drug Discov Today. 2012. doi:10.​1016/​j.​drudis.​2012.​04.​007.
3.
Zurück zum Zitat Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.PubMedCrossRef Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85–97.PubMedCrossRef
4.
Zurück zum Zitat Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci. 2009;54(9):1847–56.PubMedCrossRef Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci. 2009;54(9):1847–56.PubMedCrossRef
5.
Zurück zum Zitat Bjorndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011. doi:10.1155/2011/490650.PubMed Bjorndal B, Burri L, Staalesen V, Skorve J, Berge RK. Different adipose depots: their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J Obes. 2011. doi:10.​1155/​2011/​490650.PubMed
6.
Zurück zum Zitat Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf). 2012;205(2):194–208.CrossRef Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf). 2012;205(2):194–208.CrossRef
7.
Zurück zum Zitat Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.PubMedCrossRef Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.PubMedCrossRef
8.
Zurück zum Zitat • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17. Demonstrates the presence of BAT in adult humans.PubMedCrossRef • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17. Demonstrates the presence of BAT in adult humans.PubMedCrossRef
9.
Zurück zum Zitat • Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31. Demonstrates the presence of BAT in adult humans.PubMedCrossRef • Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58:1526–31. Demonstrates the presence of BAT in adult humans.PubMedCrossRef
10.
Zurück zum Zitat Ramachandran R, Gravenstein KS, Jeffrey Metter E, Egan JM, Ferrucci L, Chia CW. Selective contribution of regional adiposity, skeletal muscle, and adipokines to glucose Disposal in older adults. J Am Geriatr Soc. 2012;60(4):707–12.PubMedCrossRef Ramachandran R, Gravenstein KS, Jeffrey Metter E, Egan JM, Ferrucci L, Chia CW. Selective contribution of regional adiposity, skeletal muscle, and adipokines to glucose Disposal in older adults. J Am Geriatr Soc. 2012;60(4):707–12.PubMedCrossRef
11.
Zurück zum Zitat • Gauthier MS, Ruderman NB. Adipose tissue inflammation and insulin resistance: all obese humans are not created equal. Biochem J. 2010;430(2):e1–4. Demonstrates that inflammation of AT contributes more to insulin resistance than the quantity of AT.PubMedCrossRef • Gauthier MS, Ruderman NB. Adipose tissue inflammation and insulin resistance: all obese humans are not created equal. Biochem J. 2010;430(2):e1–4. Demonstrates that inflammation of AT contributes more to insulin resistance than the quantity of AT.PubMedCrossRef
12.
Zurück zum Zitat Vardanyan M, Parkin E, Gruessner C, Rodriguez Rilo HL. Pancreas vs. islet transplantation: a call on the future. Curr Opin Organ Transplant. 2010;15(1):124–30.PubMedCrossRef Vardanyan M, Parkin E, Gruessner C, Rodriguez Rilo HL. Pancreas vs. islet transplantation: a call on the future. Curr Opin Organ Transplant. 2010;15(1):124–30.PubMedCrossRef
13.
Zurück zum Zitat Maffi P, Scavini M, Socci C, Piemonti L, Caldara R, Gremizzi C, et al. Risks and benefits of transplantation in the cure of type 1 diabetes: whole pancreas versus islet transplantation. A single center study. Rev Diabet Stud. 2011;8(1):44–50.PubMedCrossRef Maffi P, Scavini M, Socci C, Piemonti L, Caldara R, Gremizzi C, et al. Risks and benefits of transplantation in the cure of type 1 diabetes: whole pancreas versus islet transplantation. A single center study. Rev Diabet Stud. 2011;8(1):44–50.PubMedCrossRef
14.
Zurück zum Zitat Gruessner AC, Sutherland DE, Gruessner RW. Pancreas transplantation in the United States: a review. Curr Opin Organ Transplant. 2010;15(1):93–101.PubMedCrossRef Gruessner AC, Sutherland DE, Gruessner RW. Pancreas transplantation in the United States: a review. Curr Opin Organ Transplant. 2010;15(1):93–101.PubMedCrossRef
15.
Zurück zum Zitat Burke 3rd GW, Vendrame F, Pileggi A, Ciancio G, Reijonen H, Pugliese A. Recurrence of autoimmunity following pancreas transplantation. Curr Diabetes Rep. 2011;11(5):413–9.CrossRef Burke 3rd GW, Vendrame F, Pileggi A, Ciancio G, Reijonen H, Pugliese A. Recurrence of autoimmunity following pancreas transplantation. Curr Diabetes Rep. 2011;11(5):413–9.CrossRef
16.
Zurück zum Zitat Deters NA, Stokes RA, Gunton JE. Islet transplantation: factors in short-term islet survival. Arch Immunol Ther Exp (Warsz). 2011;59(6):421–9.CrossRef Deters NA, Stokes RA, Gunton JE. Islet transplantation: factors in short-term islet survival. Arch Immunol Ther Exp (Warsz). 2011;59(6):421–9.CrossRef
17.
Zurück zum Zitat Plesner A, Verchere CB. Advances and challenges in islet transplantation: islet procurement rates and lessons learned from suboptimal islet transplantation. J Transplant. 2011:979527. Plesner A, Verchere CB. Advances and challenges in islet transplantation: islet procurement rates and lessons learned from suboptimal islet transplantation. J Transplant. 2011:979527.
19.
Zurück zum Zitat Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, et al. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med. 2012;10:3.PubMedCrossRef Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Yin Z, et al. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med. 2012;10:3.PubMedCrossRef
20.
Zurück zum Zitat Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512.PubMedCrossRef Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512.PubMedCrossRef
22.
Zurück zum Zitat Wolfson N, Gavish D, Matas Z, Boaz M, Shargorodsky M. Relation of adiponectin to glucose tolerance status, adiposity, and cardiovascular risk factor load. Exp Diabetes Res. 2012;2012:250621.PubMedCrossRef Wolfson N, Gavish D, Matas Z, Boaz M, Shargorodsky M. Relation of adiponectin to glucose tolerance status, adiposity, and cardiovascular risk factor load. Exp Diabetes Res. 2012;2012:250621.PubMedCrossRef
23.
Zurück zum Zitat Pereira RI, Snell-Bergeon JK, Erickson C, Schauer IE, Bergman BC, Rewers M, Maahs DM. Adiponectin dysregulation and insulin resistance in type 1 diabetes. J Clin Endocrinol Metab. 1997;82(4):1181–7.CrossRef Pereira RI, Snell-Bergeon JK, Erickson C, Schauer IE, Bergman BC, Rewers M, Maahs DM. Adiponectin dysregulation and insulin resistance in type 1 diabetes. J Clin Endocrinol Metab. 1997;82(4):1181–7.CrossRef
24.
Zurück zum Zitat Miller RA, Chu Q, Le Lay J, Scherer PE, Ahima RS, Kaestner KH, et al. Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1- AMPK signaling. J Clin Invest. 2011;121(6):2518–28.PubMedCrossRef Miller RA, Chu Q, Le Lay J, Scherer PE, Ahima RS, Kaestner KH, et al. Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1- AMPK signaling. J Clin Invest. 2011;121(6):2518–28.PubMedCrossRef
25.
Zurück zum Zitat Dridi S, Taouis M. Adiponectin and energy homeostasis: consensus and controversy. J Nutr Biochem. 2009;20(11):831–9.PubMedCrossRef Dridi S, Taouis M. Adiponectin and energy homeostasis: consensus and controversy. J Nutr Biochem. 2009;20(11):831–9.PubMedCrossRef
26.
Zurück zum Zitat Gardener H, Sjoberg C, Crisby M, Goldberg R, Mendez A, Wright CB, et al. Adiponectin and carotid intima-media thickness in the northern Manhattan study. Stroke. 2012;43(4):1123–5.PubMedCrossRef Gardener H, Sjoberg C, Crisby M, Goldberg R, Mendez A, Wright CB, et al. Adiponectin and carotid intima-media thickness in the northern Manhattan study. Stroke. 2012;43(4):1123–5.PubMedCrossRef
27.
Zurück zum Zitat Tian L, Luo N, Zhu X, Chung BH, Garvey WT, Fu Y. Adiponectin-AdipoR1/2-APPL1 signaling axis suppresses human foam cell formation: differential ability of AdipoR1 and AdipoR2 to regulate inflammatory cytokine responses. Atherosclerosis. 2012;221(1):66–75.PubMedCrossRef Tian L, Luo N, Zhu X, Chung BH, Garvey WT, Fu Y. Adiponectin-AdipoR1/2-APPL1 signaling axis suppresses human foam cell formation: differential ability of AdipoR1 and AdipoR2 to regulate inflammatory cytokine responses. Atherosclerosis. 2012;221(1):66–75.PubMedCrossRef
29.
Zurück zum Zitat Barnes KM, Miner JL. Role of resistin in insulin sensitivity in rodents and humans. Curr Protein Pept Sci. 2009;10(1):96–107.PubMedCrossRef Barnes KM, Miner JL. Role of resistin in insulin sensitivity in rodents and humans. Curr Protein Pept Sci. 2009;10(1):96–107.PubMedCrossRef
30.
Zurück zum Zitat Nogueiras R, Novelle MG, Vazquez MJ, Lopez M, Dieguez C. Resistin: regulation of food intake, glucose homeostasis and lipid metabolism. Endocr Dev. 2010;17:175–84.PubMedCrossRef Nogueiras R, Novelle MG, Vazquez MJ, Lopez M, Dieguez C. Resistin: regulation of food intake, glucose homeostasis and lipid metabolism. Endocr Dev. 2010;17:175–84.PubMedCrossRef
31.
Zurück zum Zitat Qatanani M, Szwergold NR, Greaves DR, Ahima RS, Lazar MA. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J Clin Invest. 2009;119(3):531–9.PubMedCrossRef Qatanani M, Szwergold NR, Greaves DR, Ahima RS, Lazar MA. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J Clin Invest. 2009;119(3):531–9.PubMedCrossRef
32.
Zurück zum Zitat Kraft R, Herndon DN, Kulp GA, Mecott GA, Trentzsch H, Jeschke MG. Retinol binding protein: marker for insulin resistance and inflammation postburn? JPEN J Parenter Enter Nutr. 2011;35(6):695–703.CrossRef Kraft R, Herndon DN, Kulp GA, Mecott GA, Trentzsch H, Jeschke MG. Retinol binding protein: marker for insulin resistance and inflammation postburn? JPEN J Parenter Enter Nutr. 2011;35(6):695–703.CrossRef
33.
Zurück zum Zitat Norseen J, Hosooka T, Hammarstedt A, Yore MM, Kant S, Aryal P, et al. Retinol-Binding Protein 4 Inhibits Insulin Signaling in Adipocytes by Inducing Proinflammatory Cytokines in Macrophages through a c-Jun N-Terminal Kinase- and Toll-Like Receptor 4-Dependent and Retinol-Independent Mechanism. Mol Cell Biol. 2012;32(10):2010–9.PubMedCrossRef Norseen J, Hosooka T, Hammarstedt A, Yore MM, Kant S, Aryal P, et al. Retinol-Binding Protein 4 Inhibits Insulin Signaling in Adipocytes by Inducing Proinflammatory Cytokines in Macrophages through a c-Jun N-Terminal Kinase- and Toll-Like Receptor 4-Dependent and Retinol-Independent Mechanism. Mol Cell Biol. 2012;32(10):2010–9.PubMedCrossRef
34.
Zurück zum Zitat Tan Y, Sun LQ, Kamal MA, Wang X, Seale JP, Qu X. Suppression of retinol-binding protein 4 with RNA oligonucleotide prevents high-fat diet-induced metabolic syndrome and nonalcoholic fatty liver disease in mice. Biochim Biophys Acta. 2011;1811(12):1045–53.PubMedCrossRef Tan Y, Sun LQ, Kamal MA, Wang X, Seale JP, Qu X. Suppression of retinol-binding protein 4 with RNA oligonucleotide prevents high-fat diet-induced metabolic syndrome and nonalcoholic fatty liver disease in mice. Biochim Biophys Acta. 2011;1811(12):1045–53.PubMedCrossRef
35.
Zurück zum Zitat Kitazawa M, Nagano M, Masumoto KH, Shigeyoshi Y, Natsume T, Hashimoto S. Angiopoietin-like 2, a circadian gene, improves type 2 diabetes through potentiation of insulin sensitivity in mice adipocytes. Endocrinology. 2011;152(7):2558–67.PubMedCrossRef Kitazawa M, Nagano M, Masumoto KH, Shigeyoshi Y, Natsume T, Hashimoto S. Angiopoietin-like 2, a circadian gene, improves type 2 diabetes through potentiation of insulin sensitivity in mice adipocytes. Endocrinology. 2011;152(7):2558–67.PubMedCrossRef
36.
Zurück zum Zitat Xu A, Lam MC, Chan KW, Wang Y, Zhang J, Hoo RL, et al. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A. 2005;102(17):6086–91.PubMedCrossRef Xu A, Lam MC, Chan KW, Wang Y, Zhang J, Hoo RL, et al. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A. 2005;102(17):6086–91.PubMedCrossRef
37.
Zurück zum Zitat Kim MK, Lee JH, Kim H, Park SJ, Kim SH, Kang GB, et al. Crystal structure of visfatin/pre-B cell colony-enhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti-cancer agent FK-866. J Mol Biol. 2006;362(1):66–77.PubMedCrossRef Kim MK, Lee JH, Kim H, Park SJ, Kim SH, Kang GB, et al. Crystal structure of visfatin/pre-B cell colony-enhancing factor 1/nicotinamide phosphoribosyltransferase, free and in complex with the anti-cancer agent FK-866. J Mol Biol. 2006;362(1):66–77.PubMedCrossRef
38.
Zurück zum Zitat Sun Q, Li L, Li R, Yang M, Liu H, Nowicki MJ, et al. Overexpression of visfatin/PBEF/Nampt alters whole-body insulin sensitivity and lipid profile in rats. Ann Med. 2009;41(4):311–20.PubMedCrossRef Sun Q, Li L, Li R, Yang M, Liu H, Nowicki MJ, et al. Overexpression of visfatin/PBEF/Nampt alters whole-body insulin sensitivity and lipid profile in rats. Ann Med. 2009;41(4):311–20.PubMedCrossRef
39.
Zurück zum Zitat LeRoith D, Yakar S. Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab. 2007;3(3):302–10.PubMedCrossRef LeRoith D, Yakar S. Mechanisms of disease: metabolic effects of growth hormone and insulin-like growth factor 1. Nat Clin Pract Endocrinol Metab. 2007;3(3):302–10.PubMedCrossRef
40.
Zurück zum Zitat Zenobi PD, Jaeggi-Groisman SE, Riesen WF, Roder ME, Froesch ER. Insulin-like growth factor-I improves glucose and lipid metabolism in type 2 diabetes mellitus. J Clin Invest. 1992;90(6):2234–41.PubMedCrossRef Zenobi PD, Jaeggi-Groisman SE, Riesen WF, Roder ME, Froesch ER. Insulin-like growth factor-I improves glucose and lipid metabolism in type 2 diabetes mellitus. J Clin Invest. 1992;90(6):2234–41.PubMedCrossRef
41.
Zurück zum Zitat Acerini CL, Patton CM, Savage MO, Kernell A, Westphal O, Dunger DB. Randomised placebocontrolled trial of human recombinant insulin-like growth factor I plus intensive insulin therapy in adolescents with insulin-dependent diabetes mellitus. Lancet. 1997;350(9086):1199–204.PubMedCrossRef Acerini CL, Patton CM, Savage MO, Kernell A, Westphal O, Dunger DB. Randomised placebocontrolled trial of human recombinant insulin-like growth factor I plus intensive insulin therapy in adolescents with insulin-dependent diabetes mellitus. Lancet. 1997;350(9086):1199–204.PubMedCrossRef
42.
Zurück zum Zitat Zenobi PD, Glatz Y, Keller A, Graf S, Jaeggi-Groisman SE, Riesen WF, Schoenle EJ, Froesch ER. Beneficial metabolic effects of insulin-like growth factor I in patients with severe insulin-resistant diabetes type A. Eur J Endocrinol. 1994;131(3):251–7.PubMedCrossRef Zenobi PD, Glatz Y, Keller A, Graf S, Jaeggi-Groisman SE, Riesen WF, Schoenle EJ, Froesch ER. Beneficial metabolic effects of insulin-like growth factor I in patients with severe insulin-resistant diabetes type A. Eur J Endocrinol. 1994;131(3):251–7.PubMedCrossRef
43.
Zurück zum Zitat Dunger D, Yuen K, Ong K. Insulin-like growth factor I and impaired glucose tolerance. Horm Res. 2004;62 Suppl 1:101–7.PubMedCrossRef Dunger D, Yuen K, Ong K. Insulin-like growth factor I and impaired glucose tolerance. Horm Res. 2004;62 Suppl 1:101–7.PubMedCrossRef
44.
Zurück zum Zitat Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, et al. Acute glucose-lowering and insulin sensitizing action of FGF21 in insulin-resistant mouse models–association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab. 2009;297(5):E1105–14.PubMedCrossRef Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, et al. Acute glucose-lowering and insulin sensitizing action of FGF21 in insulin-resistant mouse models–association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab. 2009;297(5):E1105–14.PubMedCrossRef
45.
Zurück zum Zitat Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem. 2011;286(40):34533–41.PubMedCrossRef Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem. 2011;286(40):34533–41.PubMedCrossRef
46.
Zurück zum Zitat Domouzoglou EM, Maratos-Flier E. Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am J Clin Nutr. 2011;93(4):901S–5.PubMedCrossRef Domouzoglou EM, Maratos-Flier E. Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am J Clin Nutr. 2011;93(4):901S–5.PubMedCrossRef
47.
Zurück zum Zitat Zhao Y, Dunbar JD, Kharitonenkov A. FGF21 as a therapeutic reagent. Adv Exp Med Biol. 2012;728:214–28.PubMedCrossRef Zhao Y, Dunbar JD, Kharitonenkov A. FGF21 as a therapeutic reagent. Adv Exp Med Biol. 2012;728:214–28.PubMedCrossRef
48.
50.
Zurück zum Zitat De Marinis YZ, Salehi A, Ward CE, Zhang Q, Abdulkader F, Bengtsson M, et al. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and Ltype Ca2+ channel-dependent exocytosis. Cell Metab. 2010;11(6):543–53.PubMedCrossRef De Marinis YZ, Salehi A, Ward CE, Zhang Q, Abdulkader F, Bengtsson M, et al. GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and Ltype Ca2+ channel-dependent exocytosis. Cell Metab. 2010;11(6):543–53.PubMedCrossRef
51.
Zurück zum Zitat Dardevet D, Moore MC, Neal D, DiCostanzo CA, Snead W, Cherrington AD. Insulin independent effects of GLP-1 on canine liver glucose metabolism: duration of infusion and involvement of hepatoportal region. Am J Physiol Endocrinol Metab. 2004;287(1):E75–81.PubMedCrossRef Dardevet D, Moore MC, Neal D, DiCostanzo CA, Snead W, Cherrington AD. Insulin independent effects of GLP-1 on canine liver glucose metabolism: duration of infusion and involvement of hepatoportal region. Am J Physiol Endocrinol Metab. 2004;287(1):E75–81.PubMedCrossRef
52.
Zurück zum Zitat Anagnostis P, Athyros VG, Adamidou F, Panagiotou A, Kita M, Karagiannis A, Mikhailidis DP. Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabetes Obes Metab. 2011;13(4):302–12.PubMedCrossRef Anagnostis P, Athyros VG, Adamidou F, Panagiotou A, Kita M, Karagiannis A, Mikhailidis DP. Glucagon-like peptide-1-based therapies and cardiovascular disease: looking beyond glycaemic control. Diabetes Obes Metab. 2011;13(4):302–12.PubMedCrossRef
53.
Zurück zum Zitat Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33(2):187–215.PubMedCrossRef Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33(2):187–215.PubMedCrossRef
54.
Zurück zum Zitat Challa TD, Beaton N, Arnold M, Rudofsky G, Langhans W, Wolfrum C. Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J Biol Chem. 2012;287(9):6421–30.PubMedCrossRef Challa TD, Beaton N, Arnold M, Rudofsky G, Langhans W, Wolfrum C. Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J Biol Chem. 2012;287(9):6421–30.PubMedCrossRef
55.
Zurück zum Zitat Gu W, Lloyd DJ, Chinookswong N, Komorowski R, Sivits Jr G, Graham M, et al. Pharmacological targeting of glucagon and glucagon-like peptide 1 receptors has different effects on energy state and glucose homeostasis in diet induced obese mice. J Pharmacol Exp Ther. 2011;338(1):70–81.PubMedCrossRef Gu W, Lloyd DJ, Chinookswong N, Komorowski R, Sivits Jr G, Graham M, et al. Pharmacological targeting of glucagon and glucagon-like peptide 1 receptors has different effects on energy state and glucose homeostasis in diet induced obese mice. J Pharmacol Exp Ther. 2011;338(1):70–81.PubMedCrossRef
56.
Zurück zum Zitat Hu X, She M, Hou H, Li Q, Shen Q, Luo Y, Yin W. Adiponectin decreases plasma glucose and improves insulin sensitivity in diabetic Swine. Acta Biochim Biophys Sin (Shanghai). 2007;39(2):131–6.CrossRef Hu X, She M, Hou H, Li Q, Shen Q, Luo Y, Yin W. Adiponectin decreases plasma glucose and improves insulin sensitivity in diabetic Swine. Acta Biochim Biophys Sin (Shanghai). 2007;39(2):131–6.CrossRef
57.
Zurück zum Zitat Fukushima M, Hattori Y, Tsukada H, Koga K, Kajiwara E, Kawano K, et al. Adiponectin gene therapy of streptozotocin-induced diabetic mice using hydrodynamic injection. J Gene Med. 2007;9(11):976–85.PubMedCrossRef Fukushima M, Hattori Y, Tsukada H, Koga K, Kajiwara E, Kawano K, et al. Adiponectin gene therapy of streptozotocin-induced diabetic mice using hydrodynamic injection. J Gene Med. 2007;9(11):976–85.PubMedCrossRef
58.
Zurück zum Zitat Ohashi K, Kihara S, Ouchi N, Kumada M, Fujita K, Hiuge A, et al. Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension. 2006;47(6):1108–16.PubMedCrossRef Ohashi K, Kihara S, Ouchi N, Kumada M, Fujita K, Hiuge A, et al. Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension. 2006;47(6):1108–16.PubMedCrossRef
59.
Zurück zum Zitat Park S, Kim DS, Kwon DY, Yang HJ. Long-term central infusion of adiponectin improves energy and glucose homeostasis by decreasing fat storage and suppressing hepatic gluconeogenesis without changing food intake. J Neuroendocrinol. 2011;23(8):687–98.PubMedCrossRef Park S, Kim DS, Kwon DY, Yang HJ. Long-term central infusion of adiponectin improves energy and glucose homeostasis by decreasing fat storage and suppressing hepatic gluconeogenesis without changing food intake. J Neuroendocrinol. 2011;23(8):687–98.PubMedCrossRef
60.
Zurück zum Zitat •• Yu X, Park BH, Wang MY, Wang ZV, Unger RH. Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc Natl Acad Sci U S A. 2008;105(37):14070–5. First adipokine therapy demonstrating long-term correction of T1D without insulin.PubMedCrossRef •• Yu X, Park BH, Wang MY, Wang ZV, Unger RH. Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc Natl Acad Sci U S A. 2008;105(37):14070–5. First adipokine therapy demonstrating long-term correction of T1D without insulin.PubMedCrossRef
61.
Zurück zum Zitat Wang MY, Chen L, Clark GO, Lee Y, Stevens RD, Ilkayeva OR, et al. Leptin therapy in insulindeficient type I diabetes. Proc Natl Acad Sci U S A. 2010;107(11):4813–9.PubMedCrossRef Wang MY, Chen L, Clark GO, Lee Y, Stevens RD, Ilkayeva OR, et al. Leptin therapy in insulindeficient type I diabetes. Proc Natl Acad Sci U S A. 2010;107(11):4813–9.PubMedCrossRef
62.
Zurück zum Zitat Naito M, Fujikura J, Ebihara K, Miyanaga F, Yokoi H, Kusakabe T, et al. Therapeutic impact of leptin on diabetes, diabetic complications, and longevity in insulin-deficient diabetic mice. Diabetes. 2011;60(9):2265–73.PubMedCrossRef Naito M, Fujikura J, Ebihara K, Miyanaga F, Yokoi H, Kusakabe T, et al. Therapeutic impact of leptin on diabetes, diabetic complications, and longevity in insulin-deficient diabetic mice. Diabetes. 2011;60(9):2265–73.PubMedCrossRef
63.
Zurück zum Zitat Kruger AJ, Yang C, Lipson KL, Pino SC, Leif JH, Hogan CM, et al. Leptin treatment confers clinical benefit at multiple stages of virally induced type 1 diabetes in BB rats. Autoimmunity. 2011;44(2):137–48.PubMedCrossRef Kruger AJ, Yang C, Lipson KL, Pino SC, Leif JH, Hogan CM, et al. Leptin treatment confers clinical benefit at multiple stages of virally induced type 1 diabetes in BB rats. Autoimmunity. 2011;44(2):137–48.PubMedCrossRef
64.
Zurück zum Zitat Chen H, Zheng C, Zhang X, Li J, Li J, Zheng L, Huang K. Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides. 2011;32(8):1634–9.PubMedCrossRef Chen H, Zheng C, Zhang X, Li J, Li J, Zheng L, Huang K. Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides. 2011;32(8):1634–9.PubMedCrossRef
65.
Zurück zum Zitat Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buleon M, et al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab. 2008;8(5):437–45.PubMedCrossRef Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buleon M, et al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab. 2008;8(5):437–45.PubMedCrossRef
66.
Zurück zum Zitat Castan-Laurell I, Dray C, Knauf C, Kunduzova O, Valet P. Apelin, a promising target for type 2 diabetes treatment? Trends Endocrinol Metab. 2012;23(5):234–41.PubMedCrossRef Castan-Laurell I, Dray C, Knauf C, Kunduzova O, Valet P. Apelin, a promising target for type 2 diabetes treatment? Trends Endocrinol Metab. 2012;23(5):234–41.PubMedCrossRef
67.
68.
Zurück zum Zitat Cernea S. The role of incretin therapy at different stages of diabetes. Rev Diabet Stud. 2011;8(3):323–38.PubMedCrossRef Cernea S. The role of incretin therapy at different stages of diabetes. Rev Diabet Stud. 2011;8(3):323–38.PubMedCrossRef
69.
Zurück zum Zitat Spellman CW. Incorporating glucagon-like peptide-1 receptor agonists into clinical practice. J Am Osteopath Assoc. 2012;112(1 Suppl 1):S7–S15.PubMed Spellman CW. Incorporating glucagon-like peptide-1 receptor agonists into clinical practice. J Am Osteopath Assoc. 2012;112(1 Suppl 1):S7–S15.PubMed
70.
Zurück zum Zitat Dupre J. Glycaemic effects of incretins in Type 1 diabetes mellitus: a concise review, with emphasis on studies in humans. Regul Pept. 2005;128(2):149–57.PubMedCrossRef Dupre J. Glycaemic effects of incretins in Type 1 diabetes mellitus: a concise review, with emphasis on studies in humans. Regul Pept. 2005;128(2):149–57.PubMedCrossRef
71.
Zurück zum Zitat Suen CS, Burn P. The potential of incretin-based therapies in type 1 diabetes. Drug Discov Today. 2012;17(1–2):89–95.PubMedCrossRef Suen CS, Burn P. The potential of incretin-based therapies in type 1 diabetes. Drug Discov Today. 2012;17(1–2):89–95.PubMedCrossRef
72.
Zurück zum Zitat Hadjiyanni I, Baggio LL, Poussier P, Drucker DJ. Exendin-4 modulates diabetes onset in nonobese diabetic mice. Endocrinology. 2008;149(3):1338–49.PubMedCrossRef Hadjiyanni I, Baggio LL, Poussier P, Drucker DJ. Exendin-4 modulates diabetes onset in nonobese diabetic mice. Endocrinology. 2008;149(3):1338–49.PubMedCrossRef
73.
Zurück zum Zitat Pugazhenthi U, Velmurugan K, Tran A, Mahaffey G, Pugazhenthi S. Anti-inflammatory action of exendin-4 in human islets is enhanced by phosphodiesterase inhibitors: potential therapeutic benefits in diabetic patients. Diabetologia. 2010;53(11):2357–68.PubMedCrossRef Pugazhenthi U, Velmurugan K, Tran A, Mahaffey G, Pugazhenthi S. Anti-inflammatory action of exendin-4 in human islets is enhanced by phosphodiesterase inhibitors: potential therapeutic benefits in diabetic patients. Diabetologia. 2010;53(11):2357–68.PubMedCrossRef
74.
Zurück zum Zitat Perez-Arana G, Blandino-Rosano M, Prada-Oliveira A, Aguilar-Diosdado M, Segundo C. Decrease in {beta}-cell proliferation precedes apoptosis during diabetes development in bio-breeding/worcester rat: beneficial role of Exendin-4. Endocrinology. 2010;151(6):2538–46.PubMedCrossRef Perez-Arana G, Blandino-Rosano M, Prada-Oliveira A, Aguilar-Diosdado M, Segundo C. Decrease in {beta}-cell proliferation precedes apoptosis during diabetes development in bio-breeding/worcester rat: beneficial role of Exendin-4. Endocrinology. 2010;151(6):2538–46.PubMedCrossRef
75.
Zurück zum Zitat •• Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by Brown adipose tissue transplant. Diabetes. 2012;61(3):674–82. First demonstration of insulinindependent reversal of T1D using endogenously produced hormones.PubMedCrossRef •• Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by Brown adipose tissue transplant. Diabetes. 2012;61(3):674–82. First demonstration of insulinindependent reversal of T1D using endogenously produced hormones.PubMedCrossRef
76.
Zurück zum Zitat Gunawardana SC, Benninger RKP, Piston DW. Subcutaneous transplantation of embryonic pancreas for correction of type 1 diabetes. Am J Physiol. 2009;296:E323–32. Gunawardana SC, Benninger RKP, Piston DW. Subcutaneous transplantation of embryonic pancreas for correction of type 1 diabetes. Am J Physiol. 2009;296:E323–32.
77.
Zurück zum Zitat Gunawardana SC, Benninger RKP, Piston DW. Blood glucose regulation through adipose tissue hormones following subcutaneous transplantation of pancreas, vol. J4. Banff: Keystone Symposia; 2009. p. 191. Gunawardana SC, Benninger RKP, Piston DW. Blood glucose regulation through adipose tissue hormones following subcutaneous transplantation of pancreas, vol. J4. Banff: Keystone Symposia; 2009. p. 191.
78.
Zurück zum Zitat Snell-Bergeon JK, West NA, Mayer-Davis EJ, Liese AD, Marcovina SM, D'Agostino Jr RB, Hamman RF, Dabelea D. Inflammatory markers are increased in youth with type 1 diabetes: the SEARCH Case-Control study. J Clin Endocrinol Metab. 2010;95(6):2868–76.PubMedCrossRef Snell-Bergeon JK, West NA, Mayer-Davis EJ, Liese AD, Marcovina SM, D'Agostino Jr RB, Hamman RF, Dabelea D. Inflammatory markers are increased in youth with type 1 diabetes: the SEARCH Case-Control study. J Clin Endocrinol Metab. 2010;95(6):2868–76.PubMedCrossRef
79.
Zurück zum Zitat Verrijn Stuart AA, Schipper HS, Tasdelen I, Egan DA, Prakken BJ, Kalkhoven E, de Jager W. Altered plasma adipokine levels and in vitro adipocyte differentiation in pediatric type 1 diabetes. J Clin Endocrinol Metab. 2012;97(2):463–72.PubMedCrossRef Verrijn Stuart AA, Schipper HS, Tasdelen I, Egan DA, Prakken BJ, Kalkhoven E, de Jager W. Altered plasma adipokine levels and in vitro adipocyte differentiation in pediatric type 1 diabetes. J Clin Endocrinol Metab. 2012;97(2):463–72.PubMedCrossRef
80.
Zurück zum Zitat Lowell BB, Flier JS. Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu Rev Med. 1997;48:307–16.PubMedCrossRef Lowell BB, Flier JS. Brown adipose tissue, beta 3-adrenergic receptors, and obesity. Annu Rev Med. 1997;48:307–16.PubMedCrossRef
81.
Zurück zum Zitat Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol. 2011;301(4):H1425–37.PubMedCrossRef Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol. 2011;301(4):H1425–37.PubMedCrossRef
82.
Zurück zum Zitat Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50(2):546–52.PubMedCrossRef Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50(2):546–52.PubMedCrossRef
83.
Zurück zum Zitat Gomez-Hernandez A, Otero YF, de las Heras N, Escribano O, Cachofeiro V, Lahera V, Benito M. Brown fat lipoatrophy and increased visceral adiposity through a concerted adipocytokines overexpression induces vascular insulin resistance and dysfunction. Endocrinology. 2012;153(3):1242–55.PubMedCrossRef Gomez-Hernandez A, Otero YF, de las Heras N, Escribano O, Cachofeiro V, Lahera V, Benito M. Brown fat lipoatrophy and increased visceral adiposity through a concerted adipocytokines overexpression induces vascular insulin resistance and dysfunction. Endocrinology. 2012;153(3):1242–55.PubMedCrossRef
84.
Zurück zum Zitat Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMPactivated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes. 2003;52(6):1355–63.PubMedCrossRef Wu X, Motoshima H, Mahadev K, Stalker TJ, Scalia R, Goldstein BJ. Involvement of AMPactivated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes. 2003;52(6):1355–63.PubMedCrossRef
85.
Zurück zum Zitat Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(2):143–9.PubMedCrossRef Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17(2):143–9.PubMedCrossRef
86.
Zurück zum Zitat Ginter E, Simko V. Brown fat tissue––a potential target to combat obesity. Bratisl Lek Listy. 2012;113(1):52–6.PubMed Ginter E, Simko V. Brown fat tissue––a potential target to combat obesity. Bratisl Lek Listy. 2012;113(1):52–6.PubMed
87.
Zurück zum Zitat • Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121(1):96–105. Demonstrates BAT-derived factors can improve WAT function and whole body metabolic homeostasis.PubMedCrossRef • Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121(1):96–105. Demonstrates BAT-derived factors can improve WAT function and whole body metabolic homeostasis.PubMedCrossRef
88.
Zurück zum Zitat • Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8. Demonstrates BAT-derived factors can improve WAT function and whole body metabolic homeostasis.PubMedCrossRef • Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463–8. Demonstrates BAT-derived factors can improve WAT function and whole body metabolic homeostasis.PubMedCrossRef
89.
Zurück zum Zitat Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105(3):271–8.PubMedCrossRef Gavrilova O, Marcus-Samuels B, Graham D, Kim JK, Shulman GI, Castle AL, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. J Clin Invest. 2000;105(3):271–8.PubMedCrossRef
90.
Zurück zum Zitat Klebanov S, Astle CM, DeSimone O, Ablamunits V, Harrison DE. Adipose tissue transplantation protects ob/ob mice from obesity, normalizes insulin sensitivity and restores fertility. J Endocrinol. 2005;186(1):203–11.PubMedCrossRef Klebanov S, Astle CM, DeSimone O, Ablamunits V, Harrison DE. Adipose tissue transplantation protects ob/ob mice from obesity, normalizes insulin sensitivity and restores fertility. J Endocrinol. 2005;186(1):203–11.PubMedCrossRef
91.
Zurück zum Zitat • Ablamunits V, Klebanov S, Giese SY, Herold KC. Functional human to mouse adipose tissue xenotransplantation. J Endocrinol. 2012;212(1):41–7. Successful xenotransplantation of WAT to compensate for hormone deficiency.PubMedCrossRef • Ablamunits V, Klebanov S, Giese SY, Herold KC. Functional human to mouse adipose tissue xenotransplantation. J Endocrinol. 2012;212(1):41–7. Successful xenotransplantation of WAT to compensate for hormone deficiency.PubMedCrossRef
92.
Zurück zum Zitat Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6(4):195–213.PubMedCrossRef Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6(4):195–213.PubMedCrossRef
93.
Zurück zum Zitat Skarulis MC, Celi FS, Mueller E, Zemskova M, Malek R, Hugendubler L, et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J Clin Endocrinol Metab. 2010;95(1):256–62.PubMedCrossRef Skarulis MC, Celi FS, Mueller E, Zemskova M, Malek R, Hugendubler L, et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J Clin Endocrinol Metab. 2010;95(1):256–62.PubMedCrossRef
94.
Zurück zum Zitat Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science. 2010;328(5982):1158–61.PubMedCrossRef Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science. 2010;328(5982):1158–61.PubMedCrossRef
95.
Zurück zum Zitat Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122(3):1022–36.PubMedCrossRef Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest. 2012;122(3):1022–36.PubMedCrossRef
Metadaten
Titel
Adipose Tissue, Hormones, and Treatment of Type 1 Diabetes
verfasst von
Subhadra C. Gunawardana
Publikationsdatum
01.10.2012
Verlag
Current Science Inc.
Erschienen in
Current Diabetes Reports / Ausgabe 5/2012
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-012-0300-9

Weitere Artikel der Ausgabe 5/2012

Current Diabetes Reports 5/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Frühzeitige HbA1c-Kontrolle macht sich lebenslang bemerkbar

22.05.2024 Typ-2-Diabetes Nachrichten

Menschen mit Typ-2-Diabetes von Anfang an intensiv BZ-senkend zu behandeln, wirkt sich positiv auf Komplikationen und Mortalität aus – und das offenbar lebenslang, wie eine weitere Nachfolgeuntersuchung der UKPD-Studie nahelegt.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.