Skip to main content
Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases 5/2022

Open Access 30.03.2022 | Brief Report

Antimicrobial activity of dalbavancin against Gram-positive bacteria isolated from patients hospitalized with bloodstream infection in United States and European medical centers (2018–2020)

verfasst von: Helio S. Sader, Mariana Castanheira, Michael D. Huband, Dee Shortridge, Cecilia G. Carvalhaes, Rodrigo M. Mendes

Erschienen in: European Journal of Clinical Microbiology & Infectious Diseases | Ausgabe 5/2022

Abstract

Dalbavancin and comparators were susceptibility tested against 8643 Gram-positive bacteria from 74 hospitals located in Europe and the United States by broth microdilution method. The most common organisms were Staphylococcus aureus (45.2%), Enterococcus faecalis (12.2%), and Staphylococcus epidermidis (8.9%), but rank order varied markedly by geographic region. Dalbavancin demonstrated potent activity and broad spectrum, with MIC90 values of 0.03 mg/L for Staphylococcus aureus, β-haemolytic streptococci, and viridans group streptococci; 0.06 mg/L for Enterococcus faecalis and Staphylococcus epidermidis; and 0.12 mg/L for vancomycin-susceptible Enterococcus faecium. All organisms, except vancomycin-resistant enterococci and 1 Staphylococcus haemolyticus isolate, were inhibited at ≤ 0.25 mg/L of dalbavancin.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Bloodstream infection (BSI) includes a wide variety of syndromes caused by a range of pathogens; accordingly, BSI produces significant patient morbidity and mortality worldwide [1]. Changing pathogen distribution, antimicrobial resistance rates, and demographics may affect the epidemiology of BSI. Thus, it is important to continuously monitor trends in the pathogen frequency and antimicrobial resistance patterns of organisms causing BSI globally [2, 3]. Examining microbiological trends can help when planning diagnostic approaches, treatment strategies, and prevention programs.
The International Dalbavancin Evaluation of Activity (IDEA) Program monitors the in vitro activity of dalbavancin and comparators against Gram-positive bacteria causing BSI and other infections in Europe (EU) and the United States (US). Strengths of this surveillance program include the broad geographic distribution of medical centers submitting clinical isolates and the use of reference identification and antimicrobial susceptibility testing methods at a central laboratory [4].
Dalbavancin belongs to the lipoglycopeptide class of antimicrobial agents that act by interrupting bacterial cell wall synthesis resulting in bacterial death [5]. Dalbavancin allows for convenient parenteral administration to treat acute bacterial skin and skin structure infections, either through a single dose of 1500 mg or one dose of 1000 mg followed by another dose of 500 mg a week later [6, 7]. Dalbavancin was approved in the US (2014) and EU (2015) to treat adults with acute bacterial skin and skin structure infection (ABSSSI) caused by Staphylococcus aureus, including methicillin-resistant (MRSA) isolates, Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus anginosus group, and vancomycin-susceptible Enterococcus faecalis. Dalbavancin is not licensed to treat patients with BSI, but it could be an important option to treat infections due to highly resistant Gram-positive cocci [8, 9]. It is also important to note that ABSSSI can be secondarily complicated by bacteremia or it can be the result of skin/subcutaneous tissue seeding during bacteremia from a distant focus. Furthermore, catheter-related infections may commonly present as both ABSSSI and BSI due to the same organism. In this investigation, we evaluated dalbavancin in vitro activity and potency when tested against a large collection of Gram-positive bacteria collected from patients with BSI in US and European medical centers.

Materials and methods

Organism collection

A total of 8643 organisms were consecutively collected (1/patient) from 74 medical centers located in western Europe (W-EU; n = 3330; 28 centers from 10 countries: Belgium, France, Germany, Ireland, Italy, Portugal, Spain, Sweden, Switzerland, and the UK), eastern Europe (E-EU; n = 769; 13 centers from 10 countries: Belarus, Czech Republic, Greece, Hungary, Israel, Poland, Romania, Russia, Slovenia, and Turkey), and the US (n = 4544; 33 centers). Isolates determined to be clinically significant based on local guidelines were submitted to a central monitoring laboratory (JMI Laboratories, North Liberty, IA, USA) [2]. Species identification was initially performed by the participating laboratories then confirmed at JMI Laboratories by standard algorithms and/or MALDI-TOF.

Antimicrobial susceptibility testing

Isolates were susceptibility tested by broth microdilution following guidelines in the CLSI M07 document [10] with reference 96-well panels manufactured by JMI Laboratories. All isolates were tested at JMI Laboratories. Polysorbate-80 at a final concentration of 0.002% was added to the medium to test dalbavancin. Isolates with elevated dalbavancin MIC values (> 0.25 mg/L) were retested to confirm the dalbavancin MIC results. Quality assurance was performed by concurrently testing the following CLSI-recommended quality control (QC) reference strains: S. aureus ATCC 29213, E. faecalis ATCC 29212, and S. pneumoniae ATCC 49619. All QC results were within published acceptable ranges. Dalbavancin breakpoints approved by the US FDA (≤ 0.25 mg/L) [6], CLSI (≤ 0.25 mg/L) [11], and EUCAST (≤ 0.125 mg/L) [12] were applied when appropriate. US FDA, CLSI, and EUCAST breakpoint criteria were used for the comparator agents.

Results

Overall, the most common Gram-positive organisms were S. aureus, E. faecalis, S. epidermidis, β-hemolytic streptococci (BHS), and E. faecium, but rank order varied markedly by geographic region (Fig. 1). S. aureus ranked first in all 3 regions, with frequencies varying from 49.2% in the US to 40.3% in W-EU. The second most common organism was E. faecalis in the US and W-EU and S. pneumoniae in E-EU. The third most frequently isolated Gram-positive organism was BHS in the US and E-EU and E. faecium in W-EU (Fig. 1).
Dalbavancin was highly active against methicillin-susceptible S. aureus (MSSA) and MRSA, with an MIC90 of 0.03 mg/L in all 3 regions and 100.0% susceptibility overall per US FDA, CLSI, and EUCAST criteria (Tables 1 and 2). Based on MIC50/90 values, dalbavancin (MIC50/90, 0.03/0.03 mg/L) was 8- to 16-fold more active than daptomycin (MIC50/90, 0.25/0.5 mg/L) and 32-fold more active than vancomycin (MIC50/90, 1/1 mg/L) against S. aureus (Table 2). MRSA rates were higher in the US (41.3%) than W-EU (21.5%) or E-EU (27.3%). S. aureus susceptibility to ceftaroline ranged from 96.6% (US) to 95.4% (W-EU), whereas S. aureus susceptibility to clindamycin and levofloxacin (US FDA and CLSI criteria) was lower in the US (85.5% and 67.6%, respectively) than W-EU (96.2% and 79.4%, respectively) and E-EU (89.1% and 85.8%, respectively; Table 2).
Table 1
Antimicrobial activity of dalbavancin tested against the most common organisms and organism groups
Organism (no. of isolates)
No. and cumulative % of isolates inhibited at dalbavancin MIC (mg/L) of:
  
 ≤ 0.004
0.008
0.015
0.03
0.06
0.12
0.25
0.5
1
2
 > 2
MIC50
MIC90
 
S. aureus (3908)
4
0.1
31
0.9
970
25.7
2,840
98.4
62
 > 99.9
1
100.0
     
0.03
0.03
 
  MSSA (2607)
3
0.1
25
1.1
661
26.4
1882
98.6
35
 > 99.9
1
100.0
     
0.03
0.03
 
  MRSA (1301)
1
0.1
6
0.5
309
24.3
958
97.9
27
100.0
      
0.03
0.03
 
E. faecalis (1053)
  
159
15.1
752
86.5
117
97.6
6
98.2
1
98.3
0
98.3
0
98.3
1
98.4
17
100.0
0.03
0.06
 
  VAN-S (≤ 4 mg/L) (1030)
  
159
15.4
752
88.4
112
99.3
6
99.9
1
100.0
    
0.03
0.06
 
S. epidermidis (765)
3
0.4
17
2.6
201
28.9
436
85.9
90
97.6
17
99.9
1
100.0
    
0.03
0.06
 
β-hemolytic streptococci (735)
130
17.7
213
46.7
307
88.4
66
97.4
17
99.7
2
100.0
     
0.015
0.03
 
E. faecium (659)
  
71
10.8
155
34.3
138
55.2
52
63.1
15
65.4
6
66.3
3
66.8
11
68.4
208
100.0
0.06
 > 2
 
  VAN-S (≤ 4 mg/L) (397)
  
68
17.1
143
53.1
133
86.6
47
98.5
6
100.0
    
0.03
0.12
 
Viridans group streptococci (508)
116
22.8
126
47.6
140
75.2
100
94.9
20
98.8
6
100.0
     
0.015
0.03
 
S. pneumoniae (461)
12
2.6
245
55.7
187
96.3
16
99.8
1
100.0
      
0.008
0.015
 
S. hominis (175)
1
0.6
4
2.9
52
32.6
95
86.9
19
97.7
4
100.0
     
0.03
0.06
 
S. haemolyticus (104)
  
3
2.9
16
18.3
51
67.3
29
95.2
4
99.0
1
100.0
   
0.06
0.12
 
Abbreviations: VAN-S, vancomycin-susceptible
Table 2
Antimicrobial activity of dalbavancin and comparator agents against the most common Gram-positive cocci isolated from patients with BSI in the United States (US), western Europe (W-EU), and eastern Europe (E-EU)
Organism/antimicrobial
(no. tested)
MIC50 a
MIC90 a
% Susceptible per US FDA and CLSI (no. tested)
US
W-EU
E-EU
S. aureus (3908)
  
(2,235)
(1,343)
(330)
  Dalbavancin
0.03
0.03
100.0
100.0
100.0
  Daptomycin
0.25
0.5
 > 99.9
100.0
100.0
  Vancomycin
1
1
100.0
100.0
100.0
  Teicoplanin
0.5
0.5
100.0
100.0
100.0
  Linezolid
1
2
100.0
100.0
100.0
  Oxacillin
0.5
 > 2
58.7
78.5
72.7
  Ceftaroline
0.25
1
96.6
95.4
96.4
  Clindamycin
0.06
 > 2
85.5
96.2
89.1
  Levofloxacin
0.25
 > 4
67.6
79.4
85.8
  Tetracycline
 ≤ 0.5
 ≤ 0.5
95.1
96.0
83.6
  TMP-SMXb
 ≤ 0.5
 ≤ 0.5
97.7
99.8
99.7
E. faecalis (1053)
  
(515)
(463)
(75)
  Dalbavancin
0.03
0.06
97.9 c
98.7 c
98.7 c
  Daptomycin
1
1
99.2
99.6
100.0
  Vancomycin
1
2
97.5
98.3
97.3
  Teicoplanin
0.5
0.5
97.9
98.7
98.7
  Linezolid
1
2
99.8
99.8
97.3
  Ampicillin
1
1
100.0
100.0
100.0
  Levofloxacin
1
 > 4
78.8
73.4
70.7
S. epidermidis (765)
  
(396)
(332)
(37)
  Dalbavancin
0.03
0.06
[100.0]d
[100.0]d
[100.0]d
  Daptomycin
0.25
0.5
100.0
100.0
100.0
  Vancomycin
2
2
100.0
100.0
100.0
  Teicoplanin
2
8
99.2
99.4
97.3
  Linezolid
1
1
93.9
96.4
94.6
  Oxacillin
 > 2
 > 2
26.8
33.1
13.5
  Clindamycin
0.06
 > 2
52.5
66.6
70.3
  Levofloxacin
4
 > 4
40.9
44.6
24.3
  Tetracycline
1
 > 8
80.8
85.2
73.0
  TMP-SMXb
1
8
54.3
58.4
73.0
β-hemolytic streptococci (735)
  
(430)
(228)
(77)
  Dalbavancin
0.015
0.03
100.0e
100.0e
100.0e
  Daptomycin
 ≤ 0.06
0.25
100.0
100.0
100.0
  Vancomycin
0.5
0.5
100.0
100.0
100.0
  Linezolid
1
2
100.0
100.0
100.0
  Ceftriaxone
0.03
0.06
100.0
100.0
100.0
  Ceftaroline
 ≤ 0.008
0.015
100.0
100.0
100.0
  Penicillin
0.015
0.06
100.0
100.0
100.0
  Clindamycin
 ≤ 0.25
 > 2
79.8
87.7
85.7
  Levofloxacin
0.5
1
98.1
97.4
98.7
  Tetracycline
 > 4
 > 4
41.7
52.2
55.8
E. faecium (659)
  
(238)
(348)
(73)
  Dalbavancin
0.06
 > 2
[38.7]c
[81.9]c
[74.0]c
  Daptomycin
1
2
[96.2]f
[100.0]f
[100.0]f
  Vancomycin
0.5
 > 16
36.6
76.1
61.6
  Teicoplanin
1
 > 16
39.9
82.2
67.1
  Linezolid
1
2
99.2
99.7
100.0
  Ampicillin
 > 16
 > 16
18.5
12.6
2.7
  Levofloxacin
 > 4
 > 4
14.7
10.1
2.7
aMIC50 and MIC90 values for the US, W-EU, and E-EU collection combined
bTrimethoprim-sulfamethoxazole
cThese breakpoints have been applied to all E. faecalis and E. faecium but are only approved for vancomycin-susceptible E. faecalis
dThe percentage inhibited at ≤ 0.25 mg/L, the susceptible breakpoint for S. aureus published by US FDA and CLSI
eThese breakpoints have been applied to all Streptococcus spp. other than S. pneumoniae, but are only approved for S. pyogenes, S. agalactiae, and S. dysgalactiae group
fThe value in the brackets indicates percentage susceptible dose-dependent (SDD)
Vancomycin susceptibility varied from 97.3% (E-EU) to 98.3% (W-EU) among E. faecalis (97.5% in US; Table 2), and dalbavancin was highly active against vancomycin-susceptible E. faecalis (MIC50/90, 0.03/0.06 mg/L; 100.0% susceptible [S] per US FDA and CLSI [98.5% inhibited at ≤ 0.12 mg/L]; Table 1). Dalbavancin coverage against E. faecalis per US FDA and CLSI criteria (97.9–98.7%S) was identical to teicoplanin (97.9–98.7%S) and comparable to daptomycin (99.2–100.0%S), vancomycin (97.3–98.3%S), and linezolid (97.3–99.8%S); however, based on MIC50 values, dalbavancin was 16- to 32-fold more potent than those compounds (Table 2). All E. faecalis isolates were ampicillin susceptible (MIC50/90, 1/1 mg/L; Table 2).
S. epidermidis was the third most common organism overall but ranked fourth in the US and W-EU and sixth in E-EU (Fig. 1). Oxacillin resistance rates among S. epidermidis were 66.9% in W-EU, 73.2% in US, and 86.5% in E-EU, and all isolates were inhibited at ≤ 0.25 mg/L of dalbavancin (MIC50/90, 0.03/0.06 mg/L; 99.9% inhibited at ≤ 0.12 mg/L; Tables 1 and 2). Daptomycin (MIC50/90, 0.25/0.5 mg/L) and vancomycin (MIC50/90, 2/2 mg/L) were active against all S. epidermidis, whereas susceptibility to teicoplanin (US FDA and CLSI criteria) ranged from 97.3% (E-EU) to 99.2% (US) and 99.4% (W-EU) and susceptibility to linezolid ranged from 93.9% (US) to 96.4% (W-EU; Table 2).
BHS exhibited low dalbavancin MIC values (MIC50/90, 0.015/0.03 mg/L) and high susceptibility rates for most comparator agents tested (Tables 1 and 2). E. faecium ranked third in W-EU, fifth in E-EU, and sixth in the US, and showed vancomycin susceptibility rates of 76.1% in W-EU, 61.6% in E-EU, and only 36.6% in the US (Table 2). Dalbavancin inhibited 100.0% of vancomycin-susceptible E. faecium at ≤ 0.25 mg/L (98.5% inhibited at ≤ 0.12 mg/L) but exhibited very limited activity against vancomycin-resistant E. faecium (Table 1). Linezolid was the most active compound tested against E. faecium (MIC50/90, 1/2 mg/L; 99.5%S per US FDA and CLSI and 99.8%S per EUCAST; Table 2).

Discussion

Dalbavancin is a long-acting lipoglycopeptide characterized by a long elimination half-life coupled with excellent in vitro activity against multidrug-resistant Gram-positives [5, 7]. Although dalbavancin has not been evaluated in clinical trials for BSI and it is currently approved only for the treatment of ABSSSI, dalbavancin has shown clinical efficacy and good tolerability for various infections. Some observational studies and real-world clinical experiences suggest the efficacy of dalbavancin for infections needing long-term treatment courses, including osteomyelitis, prosthetic joint infection, and endocarditis. In these studies, dalbavancin was used as either first-line agent or, more commonly, as consolidation to complete the treatment course and allow for an early discharge [9, 13, 14].
Data from the dalbavancin clinical trials, where all patients had blood cultures obtained at baseline, indicated that a total of 40 ABSSSI patients who received dalbavancin had bacteremia at baseline caused by one or more of the following organisms: 26 S. aureus (21 MSSA and 5 MRSA), 6 S. agalactiae, 7 S. pyogenes, 2 S. anginosus group, and 1 E. faecalis. Thirty-four of 40 (85.0%) patients who received dalbavancin showed favorable clinical responses at 48 to 72 h and 32/40 (80.0%) were clinical successes at days 26 to 30 [6, 15]. Moreover, the efficacy and safety of dalbavancin for the treatment of BSI and cardiovascular infections have been evaluated in many observational studies and case reports [9, 14, 1620].
Gatti et al. recently summarized the results of 144 patients affected by BSI or vascular infection that were treated with dalbavancin. Different dalbavancin dosage treatment durations were administered. Clinical success was obtained in 81.3% of cases and relapse was reported in 3.5% of cases [9]. In a case of prosthetic graft infection due to E. faecium, dalbavancin was successfully administered as a long-term suppressive therapy for a total of 62 weeks [13]. In the DALBACEN cohort study, 49 patients affected by BSI that received at least one dose of dalbavancin were assessed. Dalbavancin was administered as a single dose of 1000–1500 mg, or 1000 mg followed by 500 mg at day 8. Clinical success was documented in 100.0% of patients at 90 days (including two cases of BSI caused by E. faecium), with no case of relapse or resistance development [18].
In the present investigation, dalbavancin demonstrated potent in vitro and broad-spectrum activity against Gram-positive organisms isolated from patients with BSI in European and US medical centers, with MIC90 values of 0.03 mg/L for S. aureus, BHS, and VGS; 0.06 mg/L for E. faecalis and S. epidermidis; and 0.12 mg/L for vancomycin-susceptible E. faecium. All organisms, except vancomycin-resistant enterococci and 1 S. haemolyticus isolate, were inhibited at the dalbavancin-susceptible breakpoint of ≤ 0.25 mg/L (US FDA and CLSI criteria). Additionally, dalbavancin MIC values were 8- to 16-fold lower than those of daptomycin and 32-fold lower than those of vancomycin when tested against S. aureus. These results are consistent with in vitro surveillance studies reported since 2002 and cited in several recent reviews. Additionally, these results indicate that resistance to other antimicrobial classes, with the exception of the VanA vancomycin-resistance phenotype, does not adversely affect dalbavancin activity [4, 8, 21, 22]. These results support further investigations to determine the role of dalbavancin in the treatment of BSI.

Acknowledgements

The authors thank all participants of the International Dalbavancin Evaluation of Activity (IDEA) Program for their work in providing isolates. The authors also would like to thank Amy Chen and Judy Oberholser for editorial assistance.

Declarations

Ethics approval

Not applicable.
Not applicable.
The content has been read and approved by all co-authors and the manuscript has not been submitted elsewhere. Furthermore, all authors agree to transfer the copyright, following the policies of the journal at the time of acceptance/publication.

Conflict of interest

JMI Laboratories has no conflicts of interest to declare.
JMI Laboratories contracted to perform services in 2018–2020 for Achaogen, Inc., Affinity Biosensors, Albany College of Pharmacy and Health Sciences, Allecra Therapeutics, Allergan, Amicrobe Advanced Biomaterials, Inc., American Proficiency Institute, AmpliPhi Biosciences Corp., Amplyx Pharma, Antabio, Arietis Corp., Arixa Pharmaceuticals, Inc., Artugen Therapeutics USA, Inc., Astellas Pharma Inc., Athelas, Becton, Basilea Pharmaceutica Ltd., Bayer AG, Becton, Beth Israel Deaconess Medical Center, BIDMC, bioMerieux, Inc., bioMerieux SA, BioVersys Ag, Boston Pharmaceuticals, Bugworks Research Inc., CEM-102 Pharmaceuticals, Cepheid, Cidara Therapeutics, Inc., Cipla, Contrafect, Cormedix Inc., Crestone, Inc., Curza, CXC7, DePuy Synthes, Destiny Pharma, Dickinson and Company, Discuva Ltd., Dr. Falk Pharma GmbH, Emery Pharma, Entasis Therapeutics, Eurofarma Laboratorios SA, Fedora Pharmaceutical, F. Hoffmann-La Roche Ltd., Fimbrion Therapeutics, US Food and Drug Administration, Fox Chase Chemical Diversity Center, Inc., Gateway Pharmaceutical LLC, GenePOC Inc., Geom Therapeutics, Inc., GlaxoSmithKline plc, Guardian Therapeutics, Hardy Diagnostics, Harvard University, Helperby, HiMedia Laboratories, ICON plc, Idorsia Pharmaceuticals Ltd., IHMA, Iterum Therapeutics plc, Janssen Research & Development, Johnson & Johnson, Kaleido Biosciences, KBP Biosciences, Laboratory Specialists, Inc., Luminex, Matrivax, Mayo Clinic, Medpace, Meiji Seika Pharma Co., Ltd., Melinta Therapeutics, Inc., Menarini, Merck & Co., Inc., Meridian Bioscience Inc., Micromyx, Microchem Laboratory, MicuRx Pharmaceutics, Inc., Mutabilis Co., N8 Medical, Nabriva Therapeutics plc, National Institutes of Health, NAEJA-RGM, National University of Singapore, North Bristol NHS Trust, Novartis AG, Novome Biotechnologies, Oxoid Ltd., Paratek Pharmaceuticals, Inc., Pfizer, Inc., Pharmaceutical Product Development, LLC, Polyphor Ltd., Prokaryotics Inc., QPEX Biopharma, Inc., Ra Pharmaceuticals, Inc., Rhode Island Hospital, RIHML, Roche, Roivant Sciences, Ltd., Safeguard Biosystems, Salvat, Scynexis, Inc., SeLux Diagnostics, Inc., Shionogi and Co., Ltd., SinSa Labs, Specific Diagnostics, Spero Therapeutics, Summit Pharmaceuticals International Corp., SuperTrans Medical LT, Synlogic, T2 Biosystems, Taisho Pharmaceutical Co., Ltd., TenNor Therapeutics Ltd., Tetraphase Pharmaceuticals, The Medicines Company, The University of Queensland, Theravance Biopharma, Thermo Fisher Scientific, Tufts Medical Center, Universite de Sherbrooke, University of Colorado, University of Southern California-San Diego, University of Iowa, University of Iowa Hospitals and Clinics, University of North Texas Health Science Center, University of Wisconsin, UNT System College of Pharmacy, URMC, UT Southwestern, VenatoRx, Viosera Therapeutics, Vyome Therapeutics Inc., Wayne State University, Wockhardt, Yukon Pharmaceuticals, Inc., Zai Lab, and Zavante Therapeutics, Inc. There are no speakers’ bureaus or stock options to declare.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Kern WV, Rieg S (2020) Burden of bacterial bloodstream infection-a brief update on epidemiology and significance of multidrug-resistant pathogens. Clin Microbiol Infect 26(2):151–157CrossRef Kern WV, Rieg S (2020) Burden of bacterial bloodstream infection-a brief update on epidemiology and significance of multidrug-resistant pathogens. Clin Microbiol Infect 26(2):151–157CrossRef
2.
Zurück zum Zitat Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, Jones RN (2019) The microbiology of bloodstream infection: 20-year trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 63(7):e00355CrossRef Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, Jones RN (2019) The microbiology of bloodstream infection: 20-year trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 63(7):e00355CrossRef
3.
Zurück zum Zitat McNamara JF, Righi E, Wright H, Hartel GF, Harris PNA, Paterson DL (2018) Long-term morbidity and mortality following bloodstream infection: a systematic literature review. J Infect 77(1):1–8CrossRef McNamara JF, Righi E, Wright H, Hartel GF, Harris PNA, Paterson DL (2018) Long-term morbidity and mortality following bloodstream infection: a systematic literature review. J Infect 77(1):1–8CrossRef
4.
Zurück zum Zitat Pfaller MA, Mendes RE, Duncan LR, Flamm RK, Sader HS (2018) Activity of dalbavancin and comparator agents against Gram-positive cocci from clinical infections in the USA and Europe 2015–16. J Antimicrob Chemother 73(10):2748–2756CrossRef Pfaller MA, Mendes RE, Duncan LR, Flamm RK, Sader HS (2018) Activity of dalbavancin and comparator agents against Gram-positive cocci from clinical infections in the USA and Europe 2015–16. J Antimicrob Chemother 73(10):2748–2756CrossRef
5.
Zurück zum Zitat Boucher HW, Wilcox M, Talbot GH, Puttagunta S, Das AF, Dunne MW (2014) Once-weekly dalbavancin versus daily conventional therapy for skin infection. N Engl J Med 370(23):2169–2179CrossRef Boucher HW, Wilcox M, Talbot GH, Puttagunta S, Das AF, Dunne MW (2014) Once-weekly dalbavancin versus daily conventional therapy for skin infection. N Engl J Med 370(23):2169–2179CrossRef
6.
Zurück zum Zitat Dalvance®, (2018) Package insert. Allergan USA Inc, Madison Dalvance®, (2018) Package insert. Allergan USA Inc, Madison
7.
Zurück zum Zitat Smith JR, Roberts KD, Rybak MJ (2015) Dalbavancin: a novel lipoglycopeptide antibiotic with extended activity against Gram-positive infections. Infect Dis Ther 4(3):245–258CrossRef Smith JR, Roberts KD, Rybak MJ (2015) Dalbavancin: a novel lipoglycopeptide antibiotic with extended activity against Gram-positive infections. Infect Dis Ther 4(3):245–258CrossRef
8.
Zurück zum Zitat Sader HS, Mendes RE, Duncan LR, Pfaller MA, Flamm RK (2018) Antimicrobial activity of dalbavancin against Staphylococcus aureus with decreased susceptibility to glycopeptides, daptomycin, and/or linezolid from U.S. Medical Centers. Antimicrob Agents Chemother 62(3):e02397CrossRef Sader HS, Mendes RE, Duncan LR, Pfaller MA, Flamm RK (2018) Antimicrobial activity of dalbavancin against Staphylococcus aureus with decreased susceptibility to glycopeptides, daptomycin, and/or linezolid from U.S. Medical Centers. Antimicrob Agents Chemother 62(3):e02397CrossRef
9.
Zurück zum Zitat Gatti M, Andreoni M, Pea F, Viale P (2021) Real-world use of dalbavancin in the era of empowerment of outpatient antimicrobial treatment: a careful appraisal beyond approved indications focusing on unmet clinical needs. Drug Des Dev Ther 15:3349–3378CrossRef Gatti M, Andreoni M, Pea F, Viale P (2021) Real-world use of dalbavancin in the era of empowerment of outpatient antimicrobial treatment: a careful appraisal beyond approved indications focusing on unmet clinical needs. Drug Des Dev Ther 15:3349–3378CrossRef
10.
Zurück zum Zitat CLSI (2018) M07ED11 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: eleventh edition. Clinical and Laboratory Standards Institute, Wayne CLSI (2018) M07ED11 Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: eleventh edition. Clinical and Laboratory Standards Institute, Wayne
11.
Zurück zum Zitat CLSI (2021) M100Ed31. Performance standards for antimicrobial susceptibility testing: 31st informational supplement. Clinical and Laboratory Standards Institute, Wayne CLSI (2021) M100Ed31. Performance standards for antimicrobial susceptibility testing: 31st informational supplement. Clinical and Laboratory Standards Institute, Wayne
12.
Zurück zum Zitat EUCAST (2021) Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, January 2021. European Committee on Antimicrobial Susceptibility Testing EUCAST (2021) Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, January 2021. European Committee on Antimicrobial Susceptibility Testing
13.
Zurück zum Zitat Nunez-Nunez M, PharmD M, Casas-Hidalgo I, Garcia-Fumero R, Vallejo-Rodriguez I, Anguita-Santos F, Hernandez-Quero J, Cabeza-Barrera J, Ruiz-Sancho A (2020) Dalbavancin is a novel antimicrobial against Gram-positive pathogens: clinical experience beyond labelled indications. Eur J Hosp Pharm 27(5):310–312CrossRef Nunez-Nunez M, PharmD M, Casas-Hidalgo I, Garcia-Fumero R, Vallejo-Rodriguez I, Anguita-Santos F, Hernandez-Quero J, Cabeza-Barrera J, Ruiz-Sancho A (2020) Dalbavancin is a novel antimicrobial against Gram-positive pathogens: clinical experience beyond labelled indications. Eur J Hosp Pharm 27(5):310–312CrossRef
14.
Zurück zum Zitat Tobudic S, Forstner C, Burgmann H, Lagler H, Ramharter M, Steininger C, Vossen MG, Winkler S, Thalhammer F (2018) Dalbavancin as primary and sequential treatment for Gram-positive infective endocarditis: 2-year experience at the General Hospital of Vienna. Clin Infect Dis 67(5):795–798CrossRef Tobudic S, Forstner C, Burgmann H, Lagler H, Ramharter M, Steininger C, Vossen MG, Winkler S, Thalhammer F (2018) Dalbavancin as primary and sequential treatment for Gram-positive infective endocarditis: 2-year experience at the General Hospital of Vienna. Clin Infect Dis 67(5):795–798CrossRef
15.
Zurück zum Zitat Gonzalez PL, Rappo U, Akinapelli K, McGregor JS, Puttagunta S, Dunne MW (2022) Outcomes in patients with Staphylococcus aureus bacteremia treated with dalbavancin in clinical trials. Infect Dis Ther 11(1):423–434CrossRef Gonzalez PL, Rappo U, Akinapelli K, McGregor JS, Puttagunta S, Dunne MW (2022) Outcomes in patients with Staphylococcus aureus bacteremia treated with dalbavancin in clinical trials. Infect Dis Ther 11(1):423–434CrossRef
16.
Zurück zum Zitat Ajaka L, Heil E, Schmalzle S (2020) Dalbavancin in the treatment of bacteremia and endocarditis in people with barriers to standard care. Antibiotics (Basel) 9(10):700CrossRef Ajaka L, Heil E, Schmalzle S (2020) Dalbavancin in the treatment of bacteremia and endocarditis in people with barriers to standard care. Antibiotics (Basel) 9(10):700CrossRef
17.
Zurück zum Zitat Cho JC, Estrada SJ, Beltran AJ, Revuelta MP (2015) Treatment of methicillin-sensitive Staphylococcus aureus bacteremia secondary to septic phlebitis using dalbavancin. J Clin Pharm Ther 40(5):604–606CrossRef Cho JC, Estrada SJ, Beltran AJ, Revuelta MP (2015) Treatment of methicillin-sensitive Staphylococcus aureus bacteremia secondary to septic phlebitis using dalbavancin. J Clin Pharm Ther 40(5):604–606CrossRef
18.
Zurück zum Zitat Hidalgo-Tenorio C, Vinuesa D, Plata A, Martin Davila P, Iftimie S, Sequera S, Loeches B, Lopez-Cortes LE, Farinas MC, Fernandez-Roldan C, Javier-Martinez R, Munoz P, Arenas-Miras MDM, Martinez-Marcos FJ, Miro JM, Herrero C, Bereciartua E, De Jesus SE, Pasquau J (2019) DALBACEN cohort: dalbavancin as consolidation therapy in patients with endocarditis and/or bloodstream infection produced by gram-positive cocci. Ann Clin Microbiol Antimicrob 18(1):30CrossRef Hidalgo-Tenorio C, Vinuesa D, Plata A, Martin Davila P, Iftimie S, Sequera S, Loeches B, Lopez-Cortes LE, Farinas MC, Fernandez-Roldan C, Javier-Martinez R, Munoz P, Arenas-Miras MDM, Martinez-Marcos FJ, Miro JM, Herrero C, Bereciartua E, De Jesus SE, Pasquau J (2019) DALBACEN cohort: dalbavancin as consolidation therapy in patients with endocarditis and/or bloodstream infection produced by gram-positive cocci. Ann Clin Microbiol Antimicrob 18(1):30CrossRef
19.
Zurück zum Zitat Hitzenbichler F, Mohr A, Camboni D, Simon M, Salzberger B, Hanses F (2021) Dalbavancin as long-term suppressive therapy for patients with Gram-positive bacteremia due to an intravascular source-a series of four cases. Infection 49(1):181–186CrossRef Hitzenbichler F, Mohr A, Camboni D, Simon M, Salzberger B, Hanses F (2021) Dalbavancin as long-term suppressive therapy for patients with Gram-positive bacteremia due to an intravascular source-a series of four cases. Infection 49(1):181–186CrossRef
20.
Zurück zum Zitat Jones BM, Keedy C, Wynn M (2018) Successful treatment of Enterococcus faecalis bacteremia with dalbavancin as an outpatient in an intravenous drug user. Int J Infect Dis 76:4–5CrossRef Jones BM, Keedy C, Wynn M (2018) Successful treatment of Enterococcus faecalis bacteremia with dalbavancin as an outpatient in an intravenous drug user. Int J Infect Dis 76:4–5CrossRef
21.
Zurück zum Zitat McCurdy SP, Jones RN, Mendes RE, Puttagunta S, Dunne MW (2015) In vitro activity of dalbavancin against drug resistant Staphylococcus aureus from a global surveillance program. Antimicrob Agents Chemother 59(8):5007–5009CrossRef McCurdy SP, Jones RN, Mendes RE, Puttagunta S, Dunne MW (2015) In vitro activity of dalbavancin against drug resistant Staphylococcus aureus from a global surveillance program. Antimicrob Agents Chemother 59(8):5007–5009CrossRef
22.
Zurück zum Zitat Zhanel GG, Calic D, Schweizer F, Zelenitsky S, Adam H, Lagace-Wiens PR, Rubinstein E, Gin AS, Hoban DJ, Karlowsky JA (2010) New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. Drugs 70(7):859–886CrossRef Zhanel GG, Calic D, Schweizer F, Zelenitsky S, Adam H, Lagace-Wiens PR, Rubinstein E, Gin AS, Hoban DJ, Karlowsky JA (2010) New lipoglycopeptides: a comparative review of dalbavancin, oritavancin and telavancin. Drugs 70(7):859–886CrossRef
Metadaten
Titel
Antimicrobial activity of dalbavancin against Gram-positive bacteria isolated from patients hospitalized with bloodstream infection in United States and European medical centers (2018–2020)
verfasst von
Helio S. Sader
Mariana Castanheira
Michael D. Huband
Dee Shortridge
Cecilia G. Carvalhaes
Rodrigo M. Mendes
Publikationsdatum
30.03.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Clinical Microbiology & Infectious Diseases / Ausgabe 5/2022
Print ISSN: 0934-9723
Elektronische ISSN: 1435-4373
DOI
https://doi.org/10.1007/s10096-022-04437-0

Weitere Artikel der Ausgabe 5/2022

European Journal of Clinical Microbiology & Infectious Diseases 5/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.