Skip to main content
Erschienen in: Tumor Biology 1/2014

01.01.2014 | Research Article

Apicidin-resistant HA22T hepatocellular carcinoma cells massively promote pro-survival capability via IGF-IR/PI3K/Akt signaling pathway activation

verfasst von: Hsi-Hsien Hsu, Li-Hao Cheng, Tsung-Jung Ho, Wei-Wen Kuo, Yueh-Min Lin, Ming-Cheng Chen, Nien-Hung Lee, Fuu-Jen Tsai, Kun-Hsi Tsai, Chih-Yang Huang

Erschienen in: Tumor Biology | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Despite rapid advances in the diagnostic and surgical procedures, hepatocellular carcinoma (HCC) remains one of the most difficult human malignancies to treat. This may be due to the chemoresistant behaviors of HCC. It is believed that acquired resistance could be overcome and improve the overall survival of HCC patients by understanding the mechanisms of chemoresistance in HCC. A stable HA22T cancer line, which is chronically resistant to a histone deacetylase inhibitor, was established. After comparing the molecular mechanism of apicidin-R HA22T cells to parental ones by Western blotting, cell cycle-regulated proteins did not change in apicidin-R cells, but apicidin-R cells were more proliferative and had higher tumor growth (wound-healing assay and nude mice xenograft model). Moreover, apicidin-R cells displayed increased levels of p-IGF-IR, p-PI3K, p-Akt, Bcl-xL, and Bcl-2 but also significantly inhibited the tumor suppressor PTEN protein and apoptotic pathways when compared to the parental strain. Therefore, the highly proliferative effect of apicidin-R HA22T cells was blocked by Akt knockdown. For all these findings, we believe that novel strategies to attenuate IGF-IR/PI3K/Akt signaling could overcome chemoresistance toward the improvement of overall survival of HCC patients.
Literatur
1.
Zurück zum Zitat Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis. 2005;25(2):212–25.PubMedCrossRef Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis. 2005;25(2):212–25.PubMedCrossRef
2.
3.
Zurück zum Zitat Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell. 2004;5(3):215–9.PubMedCrossRef Bruix J, Boix L, Sala M, Llovet JM. Focus on hepatocellular carcinoma. Cancer Cell. 2004;5(3):215–9.PubMedCrossRef
4.
Zurück zum Zitat Donato F, Boffetta P, Puoti M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int J Cancer. 1998;75(3):347–54.PubMedCrossRef Donato F, Boffetta P, Puoti M. A meta-analysis of epidemiological studies on the combined effect of hepatitis B and C virus infections in causing hepatocellular carcinoma. Int J Cancer. 1998;75(3):347–54.PubMedCrossRef
5.
6.
Zurück zum Zitat Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94(2):153–6.PubMedCrossRef Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94(2):153–6.PubMedCrossRef
7.
Zurück zum Zitat Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther. 2005;4(4):677–85.PubMedCrossRef Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther. 2005;4(4):677–85.PubMedCrossRef
8.
9.
Zurück zum Zitat Xu GW, Sun ZT, Forrester K, Wang XW, Coursen J, Harris CC. Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology. 1996;24(5):1264–8.PubMedCrossRef Xu GW, Sun ZT, Forrester K, Wang XW, Coursen J, Harris CC. Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology. 1996;24(5):1264–8.PubMedCrossRef
10.
Zurück zum Zitat Demeret C, Vassetzky Y, Mechali M. Chromatin remodelling and DNA replication: from nucleosomes to loop domains. Oncogene. 2001;20(24):3086–93.PubMedCrossRef Demeret C, Vassetzky Y, Mechali M. Chromatin remodelling and DNA replication: from nucleosomes to loop domains. Oncogene. 2001;20(24):3086–93.PubMedCrossRef
11.
Zurück zum Zitat Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280(2):168–76.PubMedCrossRef Weichert W. HDAC expression and clinical prognosis in human malignancies. Cancer Lett. 2009;280(2):168–76.PubMedCrossRef
12.
Zurück zum Zitat Chen J, Zhang B, Wong N, Lo AW, To KF, Chan AW, et al. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res. 2011;71(12):4138–49.PubMedCrossRef Chen J, Zhang B, Wong N, Lo AW, To KF, Chan AW, et al. Sirtuin 1 is upregulated in a subset of hepatocellular carcinomas where it is essential for telomere maintenance and tumor cell growth. Cancer Res. 2011;71(12):4138–49.PubMedCrossRef
13.
Zurück zum Zitat Klampfer L, Huang J, Shirasawa S, Sasazuki T, Augenlicht L. Histone deacetylase inhibitors induce cell death selectively in cells that harbor activated kRasV12: the role of signal transducers and activators of transcription 1 and p21. Cancer Res. 2007;67(18):8477–85.PubMedCrossRef Klampfer L, Huang J, Shirasawa S, Sasazuki T, Augenlicht L. Histone deacetylase inhibitors induce cell death selectively in cells that harbor activated kRasV12: the role of signal transducers and activators of transcription 1 and p21. Cancer Res. 2007;67(18):8477–85.PubMedCrossRef
14.
Zurück zum Zitat Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol. 2001;13(6):477–83.PubMedCrossRef Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol. 2001;13(6):477–83.PubMedCrossRef
15.
Zurück zum Zitat Kim YK, Han JW, Woo YN, Chun JK, Yoo JY, Cho EJ, et al. Expression of p21(WAF/Cip1) through Sp1 sites by histone deacetylase inhibitor apicidin requires PI 3-kinase-PKC epsilon signaling pathway. Oncogene. 2003;22(38):6023–31.PubMedCrossRef Kim YK, Han JW, Woo YN, Chun JK, Yoo JY, Cho EJ, et al. Expression of p21(WAF/Cip1) through Sp1 sites by histone deacetylase inhibitor apicidin requires PI 3-kinase-PKC epsilon signaling pathway. Oncogene. 2003;22(38):6023–31.PubMedCrossRef
16.
Zurück zum Zitat Lai JP, Yu C, Moser CD, Aderca I, Han T, Garvey TD, et al. SULF1 inhibits tumor growth and potentiates the effects of histone deacetylase inhibitors in hepatocellular carcinoma. Gastroenterology. 2006;130(7):2130–44.PubMedCrossRef Lai JP, Yu C, Moser CD, Aderca I, Han T, Garvey TD, et al. SULF1 inhibits tumor growth and potentiates the effects of histone deacetylase inhibitors in hepatocellular carcinoma. Gastroenterology. 2006;130(7):2130–44.PubMedCrossRef
17.
Zurück zum Zitat Ueda T, Takai N, Nishida M, Nasu K, Narahara H. Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells. Int J Mol Med. 2007;19(2):301–8.PubMed Ueda T, Takai N, Nishida M, Nasu K, Narahara H. Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells. Int J Mol Med. 2007;19(2):301–8.PubMed
18.
Zurück zum Zitat Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, et al. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 2000;60(21):6068–74.PubMed Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, et al. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 2000;60(21):6068–74.PubMed
19.
Zurück zum Zitat Kim MS, Son MW, Kim WB, In-Park Y, Moon A. Apicidin, an inhibitor of histone deacetylase, prevents H-ras-induced invasive phenotype. Cancer Lett. 2000;157(1):23–30.PubMedCrossRef Kim MS, Son MW, Kim WB, In-Park Y, Moon A. Apicidin, an inhibitor of histone deacetylase, prevents H-ras-induced invasive phenotype. Cancer Lett. 2000;157(1):23–30.PubMedCrossRef
20.
Zurück zum Zitat Weiller M, Weiland T, Dunstl G, Sack U, Kunstle G, Wendel A. Differential immunotoxicity of histone deacetylase inhibitors on malignant and naive hepatocytes. Exp Toxicol Patho. 2011;63(5):511–7.CrossRef Weiller M, Weiland T, Dunstl G, Sack U, Kunstle G, Wendel A. Differential immunotoxicity of histone deacetylase inhibitors on malignant and naive hepatocytes. Exp Toxicol Patho. 2011;63(5):511–7.CrossRef
21.
Zurück zum Zitat Lai JP, Sandhu DS, Moser CD, Cazanave SC, Oseini AM, Shire AM, et al. Additive effect of apicidin and doxorubicin in sulfatase 1 expressing hepatocellular carcinoma in vitro and in vivo. J Hepatol. 2009;50(6):1112–21.PubMedCentralPubMedCrossRef Lai JP, Sandhu DS, Moser CD, Cazanave SC, Oseini AM, Shire AM, et al. Additive effect of apicidin and doxorubicin in sulfatase 1 expressing hepatocellular carcinoma in vitro and in vivo. J Hepatol. 2009;50(6):1112–21.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Rubin R, Baserga R. Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab Investig. 1995;73(3):311–31.PubMed Rubin R, Baserga R. Insulin-like growth factor-I receptor. Its role in cell proliferation, apoptosis, and tumorigenicity. Lab Investig. 1995;73(3):311–31.PubMed
24.
Zurück zum Zitat Samani AA, Brodt P. The receptor for the type I insulin-like growth factor and its ligands regulate multiple cellular functions that impact on metastasis. Surg Oncol Clin N Am. 2001;10(2):289–312. viii.PubMed Samani AA, Brodt P. The receptor for the type I insulin-like growth factor and its ligands regulate multiple cellular functions that impact on metastasis. Surg Oncol Clin N Am. 2001;10(2):289–312. viii.PubMed
26.
Zurück zum Zitat Basera R. Controlling IGF-receptor function: a possible strategy for tumor therapy. Trends Biotechnol. 1996;14(5):150–2.CrossRef Basera R. Controlling IGF-receptor function: a possible strategy for tumor therapy. Trends Biotechnol. 1996;14(5):150–2.CrossRef
27.
Zurück zum Zitat Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren 2nd PG, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 2009;69(5):1951–7.PubMedCentralPubMedCrossRef Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van Buren 2nd PG, et al. Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res. 2009;69(5):1951–7.PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat Benini S, Manara MC, Baldini N, Cerisano V, Massimo S, Mercuri M, et al. Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing’s sarcoma cells. Clin Cancer Res. 2001;7(6):1790–7.PubMed Benini S, Manara MC, Baldini N, Cerisano V, Massimo S, Mercuri M, et al. Inhibition of insulin-like growth factor I receptor increases the antitumor activity of doxorubicin and vincristine against Ewing’s sarcoma cells. Clin Cancer Res. 2001;7(6):1790–7.PubMed
29.
Zurück zum Zitat Hellawell GO, Ferguson DJ, Brewster SF, Macaulay VM. Chemosensitization of human prostate cancer using antisense agents targeting the type 1 insulin-like growth factor receptor. BJU Int. 2003;91(3):271–7.PubMedCrossRef Hellawell GO, Ferguson DJ, Brewster SF, Macaulay VM. Chemosensitization of human prostate cancer using antisense agents targeting the type 1 insulin-like growth factor receptor. BJU Int. 2003;91(3):271–7.PubMedCrossRef
30.
Zurück zum Zitat Warshamana-Greene GS, Litz J, Buchdunger E, Garcia-Echeverria C, Hofmann F, Krystal GW. The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res. 2005;11(4):1563–71.PubMedCrossRef Warshamana-Greene GS, Litz J, Buchdunger E, Garcia-Echeverria C, Hofmann F, Krystal GW. The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res. 2005;11(4):1563–71.PubMedCrossRef
31.
Zurück zum Zitat Yuen JS, Akkaya E, Wang Y, Takiguchi M, Peak S, Sullivan M, et al. Validation of the type 1 insulin-like growth factor receptor as a therapeutic target in renal cancer. Mol Cancer Ther. 2009;8(6):1448–59.PubMedCrossRef Yuen JS, Akkaya E, Wang Y, Takiguchi M, Peak S, Sullivan M, et al. Validation of the type 1 insulin-like growth factor receptor as a therapeutic target in renal cancer. Mol Cancer Ther. 2009;8(6):1448–59.PubMedCrossRef
32.
Zurück zum Zitat Costantini P, Jacotot E, Decaudin Dand Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst. 2000;92(13):1042–53.PubMedCrossRef Costantini P, Jacotot E, Decaudin Dand Kroemer G. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst. 2000;92(13):1042–53.PubMedCrossRef
33.
Zurück zum Zitat Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics. Cancer J Clin. 2008;58(2):71–96.CrossRef Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics. Cancer J Clin. 2008;58(2):71–96.CrossRef
34.
Zurück zum Zitat Puisieux A, Galvin K, Troalen F, Bressac B, Marcais C, Galun E, et al. Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines. FASEB J. 1993;7(14):1407–13.PubMed Puisieux A, Galvin K, Troalen F, Bressac B, Marcais C, Galun E, et al. Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines. FASEB J. 1993;7(14):1407–13.PubMed
35.
Zurück zum Zitat Butt AJ, Firth SM, Baxter RC. The IGF axis and programmed cell death. Immunol Cell Biol. 1999;77(3):256–62.PubMedCrossRef Butt AJ, Firth SM, Baxter RC. The IGF axis and programmed cell death. Immunol Cell Biol. 1999;77(3):256–62.PubMedCrossRef
36.
Zurück zum Zitat Bettaieb A, Dubrez-Daloz L, Launay S, Plenchette S, Rebe C, Cathelin S, et al. Bcl-2 proteins: targets and tools for chemosensitisation of tumor cells. Curr Med Chem Anticancer Agents. 2003;3(4):307–18.PubMedCrossRef Bettaieb A, Dubrez-Daloz L, Launay S, Plenchette S, Rebe C, Cathelin S, et al. Bcl-2 proteins: targets and tools for chemosensitisation of tumor cells. Curr Med Chem Anticancer Agents. 2003;3(4):307–18.PubMedCrossRef
37.
Zurück zum Zitat Brenner C, le Bras M, Kroemer G. Insights into the mitochondrial signaling pathway: what lessons for chemotherapy? J Clin Immunol. 2003;23(2):73–80.PubMedCrossRef Brenner C, le Bras M, Kroemer G. Insights into the mitochondrial signaling pathway: what lessons for chemotherapy? J Clin Immunol. 2003;23(2):73–80.PubMedCrossRef
38.
Zurück zum Zitat Hersey P, Zhang XD. Overcoming resistance of cancer cells to apoptosis. J Cell Physiol. 2003;196(1):9–18.PubMedCrossRef Hersey P, Zhang XD. Overcoming resistance of cancer cells to apoptosis. J Cell Physiol. 2003;196(1):9–18.PubMedCrossRef
39.
Zurück zum Zitat Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene. 2004;23(16):2746–56.PubMedCrossRef Jaattela M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene. 2004;23(16):2746–56.PubMedCrossRef
40.
Zurück zum Zitat Kasibhatla S, Tseng B. Why target apoptosis in cancer treatment? Mol Cancer Ther. 2003;2(6):573–80.PubMed Kasibhatla S, Tseng B. Why target apoptosis in cancer treatment? Mol Cancer Ther. 2003;2(6):573–80.PubMed
41.
Zurück zum Zitat Kim R, Emi M, Tanabe K, Toge T. Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer. 2004;101(11):2491–502.PubMedCrossRef Kim R, Emi M, Tanabe K, Toge T. Therapeutic potential of antisense Bcl-2 as a chemosensitizer for cancer therapy. Cancer. 2004;101(11):2491–502.PubMedCrossRef
42.
Zurück zum Zitat Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K. The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia. 2001;15(7):1022–32.PubMedCrossRef Daniel PT, Wieder T, Sturm I, Schulze-Osthoff K. The kiss of death: promises and failures of death receptors and ligands in cancer therapy. Leukemia. 2001;15(7):1022–32.PubMedCrossRef
43.
Zurück zum Zitat Debatin KM, Poncet D, Kroemer G. Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene. 2002;21(57):8786–803.PubMedCrossRef Debatin KM, Poncet D, Kroemer G. Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene. 2002;21(57):8786–803.PubMedCrossRef
44.
Zurück zum Zitat Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626–9.PubMedCrossRef Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626–9.PubMedCrossRef
45.
Zurück zum Zitat Reed JC. Apoptosis mechanisms: implications for cancer drug discovery. Oncology. 2004;18(13 Suppl 10):11–20.PubMed Reed JC. Apoptosis mechanisms: implications for cancer drug discovery. Oncology. 2004;18(13 Suppl 10):11–20.PubMed
46.
Zurück zum Zitat Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16:395–419.PubMedCrossRef Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16:395–419.PubMedCrossRef
47.
Zurück zum Zitat Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene. 2003;22(53):8590–607.PubMedCrossRef Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene. 2003;22(53):8590–607.PubMedCrossRef
48.
Zurück zum Zitat Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275(5303):1132–6.PubMedCrossRef Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science. 1997;275(5303):1132–6.PubMedCrossRef
49.
Zurück zum Zitat Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003;112(4):481–90.PubMedCrossRef Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003;112(4):481–90.PubMedCrossRef
50.
Zurück zum Zitat Zhivotovsky B, Hanson KP, Orrenius S. Back to the future: the role of cytochrome c in cell death. Cell Death Differ. 1998;5(6):459–60.PubMedCrossRef Zhivotovsky B, Hanson KP, Orrenius S. Back to the future: the role of cytochrome c in cell death. Cell Death Differ. 1998;5(6):459–60.PubMedCrossRef
51.
Zurück zum Zitat Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281(5381):1305–8.PubMedCrossRef Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281(5381):1305–8.PubMedCrossRef
52.
53.
Zurück zum Zitat Abe K, Kurakin A, Mohseni-Maybodi M, Kay B, Khosravi-Far R. The complexity of TNF-related apoptosis-inducing ligand. Ann NY Acad Sci. 2000;926:52–63.PubMedCrossRef Abe K, Kurakin A, Mohseni-Maybodi M, Kay B, Khosravi-Far R. The complexity of TNF-related apoptosis-inducing ligand. Ann NY Acad Sci. 2000;926:52–63.PubMedCrossRef
54.
Zurück zum Zitat Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 2004;23(15):3175–85.PubMedCrossRef Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME. CD95 ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J. 2004;23(15):3175–85.PubMedCrossRef
55.
Zurück zum Zitat el-Deiry WS. Role of oncogenes in resistance and killing by cancer therapeutic agents. Curr Opin Oncol. 1997;9(1):79–87.PubMedCrossRef el-Deiry WS. Role of oncogenes in resistance and killing by cancer therapeutic agents. Curr Opin Oncol. 1997;9(1):79–87.PubMedCrossRef
Metadaten
Titel
Apicidin-resistant HA22T hepatocellular carcinoma cells massively promote pro-survival capability via IGF-IR/PI3K/Akt signaling pathway activation
verfasst von
Hsi-Hsien Hsu
Li-Hao Cheng
Tsung-Jung Ho
Wei-Wen Kuo
Yueh-Min Lin
Ming-Cheng Chen
Nien-Hung Lee
Fuu-Jen Tsai
Kun-Hsi Tsai
Chih-Yang Huang
Publikationsdatum
01.01.2014
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 1/2014
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1041-3

Weitere Artikel der Ausgabe 1/2014

Tumor Biology 1/2014 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.