Skip to main content
Erschienen in: Diabetologia 4/2018

21.12.2017 | Article

Arctic berry extracts target the gut–liver axis to alleviate metabolic endotoxaemia, insulin resistance and hepatic steatosis in diet-induced obese mice

verfasst von: Fernando F. Anhê, Thibault V. Varin, Mélanie Le Barz, Geneviève Pilon, Stéphanie Dudonné, Jocelyn Trottier, Philippe St-Pierre, Cory S. Harris, Michel Lucas, Mélanie Lemire, Éric Dewailly, Olivier Barbier, Yves Desjardins, Denis Roy, André Marette

Erschienen in: Diabetologia | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

There is growing evidence that fruit polyphenols exert beneficial effects on the metabolic syndrome, but the underlying mechanisms remain poorly understood. In the present study, we aimed to analyse the effects of polyphenolic extracts from five types of Arctic berries in a model of diet-induced obesity.

Methods

Male C57BL/6 J mice were fed a high-fat/high-sucrose (HFHS) diet and orally treated with extracts of bog blueberry (BBE), cloudberry (CLE), crowberry (CRE), alpine bearberry (ABE), lingonberry (LGE) or vehicle (HFHS) for 8 weeks. An additional group of standard-chow-fed, vehicle-treated mice was included as a reference control for diet-induced obesity. OGTTs and insulin tolerance tests were conducted, and both plasma insulin and C-peptide were assessed throughout the OGTT. Quantitative PCR, western blot analysis and ELISAs were used to assess enterohepatic immunometabolic features. Faecal DNA was extracted and 16S rRNA gene-based analysis was used to profile the gut microbiota.

Results

Treatment with CLE, ABE and LGE, but not with BBE or CRE, prevented both fasting hyperinsulinaemia (mean ± SEM [pmol/l]: chow 67.2 ± 12.3, HFHS 153.9 ± 19.3, BBE 114.4 ± 14.3, CLE 82.5 ± 13.0, CRE 152.3 ± 24.4, ABE 90.6 ± 18.0, LGE 95.4 ± 10.5) and postprandial hyperinsulinaemia (mean ± SEM AUC [pmol/l × min]: chow 14.3 ± 1.4, HFHS 31.4 ± 3.1, BBE 27.2 ± 4.0, CLE 17.7 ± 2.2, CRE 32.6 ± 6.3, ABE 22.7 ± 18.0, LGE 23.9 ± 2.5). None of the berry extracts affected C-peptide levels or body weight gain. Levels of hepatic serine phosphorylated Akt were 1.6-, 1.5- and 1.2-fold higher with CLE, ABE and LGE treatment, respectively, and hepatic carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-1 tyrosine phosphorylation was 0.6-, 0.7- and 0.9-fold increased in these mice vs vehicle-treated, HFHS-fed mice. These changes were associated with reduced liver triacylglycerol deposition, lower circulating endotoxins, alleviated hepatic and intestinal inflammation, and major gut microbial alterations (e.g. bloom of Akkermansia muciniphila, Turicibacter and Oscillibacter) in CLE-, ABE- and LGE-treated mice.

Conclusions/interpretation

Our findings reveal novel mechanisms by which polyphenolic extracts from ABE, LGE and especially CLE target the gut–liver axis to protect diet-induced obese mice against metabolic endotoxaemia, insulin resistance and hepatic steatosis, which importantly improves hepatic insulin clearance. These results support the potential benefits of these Arctic berries and their integration into health programmes to help attenuate obesity-related chronic inflammation and metabolic disorders.

Data availability

All raw sequences have been deposited in the public European Nucleotide Archive server under accession number PRJEB19783 (https://​www.​ebi.​ac.​uk/​ena/​data/​view/​PRJEB19783).
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 384:766–781CrossRefPubMedPubMedCentral Ng M, Fleming T, Robinson M et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 384:766–781CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Marette A (2002) Mediators of cytokine-induced insulin resistance in obesity and other inflammatory settings. Curr Opin Clin Nutr Metab Care 5:377–383CrossRefPubMed Marette A (2002) Mediators of cytokine-induced insulin resistance in obesity and other inflammatory settings. Curr Opin Clin Nutr Metab Care 5:377–383CrossRefPubMed
3.
Zurück zum Zitat Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214CrossRefPubMed Ridaura VK, Faith JJ, Rey FE et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214CrossRefPubMed
4.
Zurück zum Zitat Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRefPubMed Le Chatelier E, Nielsen T, Qin J et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–546CrossRefPubMed
5.
Zurück zum Zitat Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772CrossRefPubMed Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772CrossRefPubMed
6.
Zurück zum Zitat Li DY, Yang M, Edwards S, Ye SQ (2013) Nonalcoholic fatty liver disease: for better or worse, blame the gut microbiota? JPEN J Parenter Enteral Nutr 37:787–793CrossRefPubMed Li DY, Yang M, Edwards S, Ye SQ (2013) Nonalcoholic fatty liver disease: for better or worse, blame the gut microbiota? JPEN J Parenter Enteral Nutr 37:787–793CrossRefPubMed
7.
8.
Zurück zum Zitat Nguyen B, Bauman A, Gale J, Banks E, Kritharides L, Ding D (2016) Fruit and vegetable consumption and all-cause mortality: evidence from a large Australian cohort study. Int J Behav Nutr Phys Act 13:9CrossRefPubMedPubMedCentral Nguyen B, Bauman A, Gale J, Banks E, Kritharides L, Ding D (2016) Fruit and vegetable consumption and all-cause mortality: evidence from a large Australian cohort study. Int J Behav Nutr Phys Act 13:9CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Anhê FF, Desjardins Y, Pilon G et al (2013) Polyphenols and type 2 diabetes: a prospective review. PharmaNutrition 1:105–114CrossRef Anhê FF, Desjardins Y, Pilon G et al (2013) Polyphenols and type 2 diabetes: a prospective review. PharmaNutrition 1:105–114CrossRef
10.
Zurück zum Zitat Zhernakova A, Kurilshikov A, Bonder MJ et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569CrossRefPubMedPubMedCentral Zhernakova A, Kurilshikov A, Bonder MJ et al (2016) Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352:565–569CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Falony G, Joossens M, Vieira-Silva S et al (2016) Population-level analysis of gut microbiome variation. Science 352:560–564CrossRefPubMed Falony G, Joossens M, Vieira-Silva S et al (2016) Population-level analysis of gut microbiome variation. Science 352:560–564CrossRefPubMed
12.
Zurück zum Zitat Anhe FF, Roy D, Pilon G et al (2015) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64:872–883CrossRefPubMed Anhe FF, Roy D, Pilon G et al (2015) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64:872–883CrossRefPubMed
13.
Zurück zum Zitat Roopchand DE, Carmody RN, Kuhn P et al (2015) Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64:2847–2858CrossRefPubMedPubMedCentral Roopchand DE, Carmody RN, Kuhn P et al (2015) Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64:2847–2858CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Heyman-Linden L, Kotowska D, Sand E et al (2016) Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice. Food Nutr Res 60:29993CrossRefPubMed Heyman-Linden L, Kotowska D, Sand E et al (2016) Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice. Food Nutr Res 60:29993CrossRefPubMed
15.
Zurück zum Zitat Matziouridou C, Marungruang N, Nguyen TD, Nyman M, Fak F (2016) Lingonberries reduce atherosclerosis in Apoe(−/−) mice in association with altered gut microbiota composition and improved lipid profile. Mol Nutr Food Res 60:1150–1160CrossRefPubMed Matziouridou C, Marungruang N, Nguyen TD, Nyman M, Fak F (2016) Lingonberries reduce atherosclerosis in Apoe(−/−) mice in association with altered gut microbiota composition and improved lipid profile. Mol Nutr Food Res 60:1150–1160CrossRefPubMed
16.
Zurück zum Zitat Dudonné S, Dubé P, Anhê FF et al (2015) Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native Canadian berries. J Food Compos Anal 44:214–224CrossRef Dudonné S, Dubé P, Anhê FF et al (2015) Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native Canadian berries. J Food Compos Anal 44:214–224CrossRef
17.
Zurück zum Zitat Garcia-Villalba R, Gimenez-Bastida JA, Garcia-Conesa MT, Tomas-Barberan FA, Carlos Espin J, Larrosa M (2012) Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. J Sep Sci 35:1906–1913CrossRefPubMed Garcia-Villalba R, Gimenez-Bastida JA, Garcia-Conesa MT, Tomas-Barberan FA, Carlos Espin J, Larrosa M (2012) Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. J Sep Sci 35:1906–1913CrossRefPubMed
18.
Zurück zum Zitat Trottier J, Perreault M, Rudkowska I et al (2013) Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants, and response to fenofibrate. Clin Pharmacol Ther 94:533–543CrossRefPubMedPubMedCentral Trottier J, Perreault M, Rudkowska I et al (2013) Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants, and response to fenofibrate. Clin Pharmacol Ther 94:533–543CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Xu E, Dubois MJ, Leung N et al (2009) Targeted disruption of carcinoembryonic antigen-related cell adhesion molecule 1 promotes diet-induced hepatic steatosis and insulin resistance. Endocrinology 150:3503–3512CrossRefPubMed Xu E, Dubois MJ, Leung N et al (2009) Targeted disruption of carcinoembryonic antigen-related cell adhesion molecule 1 promotes diet-induced hepatic steatosis and insulin resistance. Endocrinology 150:3503–3512CrossRefPubMed
20.
Zurück zum Zitat Dubois MJ, Bergeron S, Kim HJ et al (2006) The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat Med 12:549–556CrossRefPubMed Dubois MJ, Bergeron S, Kim HJ et al (2006) The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat Med 12:549–556CrossRefPubMed
21.
Zurück zum Zitat Denis MC, Roy D, Yeganeh PR et al (2016) Apple peel polyphenols: a key player in the prevention and treatment of experimental inflammatory bowel disease. Clin Sci (Lond) 130:2217–2237CrossRef Denis MC, Roy D, Yeganeh PR et al (2016) Apple peel polyphenols: a key player in the prevention and treatment of experimental inflammatory bowel disease. Clin Sci (Lond) 130:2217–2237CrossRef
22.
Zurück zum Zitat Poy MN, Yang Y, Rezaei K et al (2002) CEACAM1 regulates insulin clearance in liver. Nat Genet 30:270–276CrossRefPubMed Poy MN, Yang Y, Rezaei K et al (2002) CEACAM1 regulates insulin clearance in liver. Nat Genet 30:270–276CrossRefPubMed
23.
Zurück zum Zitat Gensel JC, Kopper TJ, Zhang B, Orr MB, Bailey WM (2017) Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Sci Rep 7:40144CrossRefPubMedPubMedCentral Gensel JC, Kopper TJ, Zhang B, Orr MB, Bailey WM (2017) Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment. Sci Rep 7:40144CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Hildebrandt MA, Hoffmann C, Sherrill-Mix SA et al (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:1716–1724.e1-2CrossRefPubMedPubMedCentral Hildebrandt MA, Hoffmann C, Sherrill-Mix SA et al (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:1716–1724.e1-2CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Eid HM, Ouchfoun M, Brault A et al (2014) Lingonberry (Vaccinium vitis-idaea L.) exhibits antidiabetic activities in a mouse model of diet-induced obesity. Evid Based Complement Alternat Med 2014:645812CrossRefPubMedPubMedCentral Eid HM, Ouchfoun M, Brault A et al (2014) Lingonberry (Vaccinium vitis-idaea L.) exhibits antidiabetic activities in a mouse model of diet-induced obesity. Evid Based Complement Alternat Med 2014:645812CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Heyman L, Axling U, Blanco N, Sterner O, Holm C, Berger K (2014) Evaluation of beneficial metabolic effects of berries in high-fat fed C57BL/6J mice. J Nutr Metab 2014:403041CrossRefPubMedPubMedCentral Heyman L, Axling U, Blanco N, Sterner O, Holm C, Berger K (2014) Evaluation of beneficial metabolic effects of berries in high-fat fed C57BL/6J mice. J Nutr Metab 2014:403041CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Al-Share QY, DeAngelis AM, Lester SG et al (2015) Forced hepatic overexpression of CEACAM1 curtails diet-induced insulin resistance. Diabetes 64:2780–2790CrossRefPubMedPubMedCentral Al-Share QY, DeAngelis AM, Lester SG et al (2015) Forced hepatic overexpression of CEACAM1 curtails diet-induced insulin resistance. Diabetes 64:2780–2790CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Mehran AE, Templeman NM, Brigidi GS et al (2012) Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 16:723–737CrossRefPubMed Mehran AE, Templeman NM, Brigidi GS et al (2012) Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 16:723–737CrossRefPubMed
30.
Zurück zum Zitat Espin JC, Larrosa M, Garcia-Conesa MT, Tomas-Barberan F (2013) Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evid Based Complement Alternat Med 2013:270418CrossRefPubMedPubMedCentral Espin JC, Larrosa M, Garcia-Conesa MT, Tomas-Barberan F (2013) Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evid Based Complement Alternat Med 2013:270418CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Ryu D, Mouchiroud L, Andreux PA et al (2016) Urolithin a induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22:879–888CrossRefPubMed Ryu D, Mouchiroud L, Andreux PA et al (2016) Urolithin a induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat Med 22:879–888CrossRefPubMed
32.
Zurück zum Zitat Panchal SK, Ward L, Brown L (2013) Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur J Nutr 52:559–568CrossRefPubMed Panchal SK, Ward L, Brown L (2013) Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats. Eur J Nutr 52:559–568CrossRefPubMed
33.
Zurück zum Zitat Denis MC, Desjardins Y, Furtos A et al (2015) Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clin Sci (Lond) 128:197–212CrossRef Denis MC, Desjardins Y, Furtos A et al (2015) Prevention of oxidative stress, inflammation and mitochondrial dysfunction in the intestine by different cranberry phenolic fractions. Clin Sci (Lond) 128:197–212CrossRef
34.
Zurück zum Zitat Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066–9071CrossRefPubMedPubMedCentral Everard A, Belzer C, Geurts L et al (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 110:9066–9071CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Shin NR, Lee JC, Lee HY et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735CrossRefPubMed Shin NR, Lee JC, Lee HY et al (2014) An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–735CrossRefPubMed
36.
Zurück zum Zitat Anhe FF, Pilon G, Roy D, Desjardins Y, Levy E, Marette A (2016) Triggering Akkermansia with dietary polyphenols: a new weapon to combat the metabolic syndrome? Gut Microbes 7:146–153CrossRefPubMedPubMedCentral Anhe FF, Pilon G, Roy D, Desjardins Y, Levy E, Marette A (2016) Triggering Akkermansia with dietary polyphenols: a new weapon to combat the metabolic syndrome? Gut Microbes 7:146–153CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Henning SM, Summanen PH, Lee RP et al (2017) Pomegranate ellagitannins stimulate the growth of Akkermansia muciniphila in vivo. Anaerobe 43:56–60CrossRefPubMed Henning SM, Summanen PH, Lee RP et al (2017) Pomegranate ellagitannins stimulate the growth of Akkermansia muciniphila in vivo. Anaerobe 43:56–60CrossRefPubMed
38.
Zurück zum Zitat Lacombe A, Li RW, Klimis-Zacas D et al (2013) Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS One 8:e67497CrossRefPubMedPubMedCentral Lacombe A, Li RW, Klimis-Zacas D et al (2013) Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS One 8:e67497CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326CrossRefPubMedPubMedCentral Newgard CB, An J, Bain JR et al (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9:311–326CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Lake AD, Novak P, Shipkova P et al (2015) Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids 47:603–615CrossRefPubMed Lake AD, Novak P, Shipkova P et al (2015) Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids 47:603–615CrossRefPubMed
Metadaten
Titel
Arctic berry extracts target the gut–liver axis to alleviate metabolic endotoxaemia, insulin resistance and hepatic steatosis in diet-induced obese mice
verfasst von
Fernando F. Anhê
Thibault V. Varin
Mélanie Le Barz
Geneviève Pilon
Stéphanie Dudonné
Jocelyn Trottier
Philippe St-Pierre
Cory S. Harris
Michel Lucas
Mélanie Lemire
Éric Dewailly
Olivier Barbier
Yves Desjardins
Denis Roy
André Marette
Publikationsdatum
21.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 4/2018
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4520-z

Weitere Artikel der Ausgabe 4/2018

Diabetologia 4/2018 Zur Ausgabe

Up Front

Up front

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.