Skip to main content
Erschienen in: Brain Structure and Function 8/2018

26.07.2018 | Review

Area TEO and “Area ?”: cytoarchitectonic confusion corrected by connectivity and cortical ablation

verfasst von: Kevin S. Weiner

Erschienen in: Brain Structure and Function | Ausgabe 8/2018

Einloggen, um Zugang zu erhalten

Abstract

Throughout history, researchers who examine the structure and function of the brain debate one another about how cortical areas are defined, as well as how these areas should be named. Different pieces of empirical evidence are used to define brain areas and it is important to preserve the accurate history of this evidence and the timeline of studies that lead to areal definitions that are either still used today or have been modified. As such, this paper traces the early history of a brain area located at the junction between the occipital and temporal lobes of the macaque known as TEO. This historical analysis leads to four main findings. First, even though Bonin and Bailey are credited with the definition of area TEO in 1947, they did not have the cytoarchitectonic evidence to support the distinction of TEO from adjacent areas. Second, the first evidence definitively separating area TEO from TE was actually based on connectivity as identified with strychnine neuronography by Petr et al. in 1949. Third, causal evidence from ablation studies conducted by Iwai and Mishkin (Experimental Neurology 25(4):585–594, 1969) supported this distinction by showing that TEO and TE were functionally distinct from one another. Fourth, researchers in the 1970s began referring to TEO as posterior inferotemporal (PIT) and TE as anterior inferotemporal (AIT), which is an important historical clarification as the PIT/AIT nomenclature is presently attributed to studies conducted more than a decade later. Altogether, this paper aims to preserve the historical origin of area TEO, as well as the empirical evidence that was used to originally differentiate this cortical expanse from surrounding areas.
Fußnoten
1
During the time periods discussed in the present paper, pioneering brain research was being conducted with different types of methods. However, the focus of the present paper is on the studies of cortical ablation and strychnine neuronography as they are critical historically for the original distinction among areas TE, TEO, and OA. Pioneering neurophysiology studies of TE and TEO (Gross et al. 1969, 1972; Boussaoud et al. 1991; and many others) were also being conducted during the time periods discussed in the present paper, but discussion of these studies is beyond the scope of the present review. I should also clarify that particular attention is placed on studies conducted by Iwai et al. as many of them are conference proceedings that remain in the stacks of libraries. As such, they are largely excluded from the modern literature, but are integral for the historical origin of TEO.
 
2
If such a description does exist in the literature and I have missed it, I am hopeful that a reader would contact me or write a letter to the journal (or both) to assure that the history of TEO is preserved.
 
3
Initially, it was unclear as to why Bonin and Bailey cited Economo (1929) consistently throughout their monograph instead of the original Economo and Koskinas (1925) atlas that was published four years prior. But, in a paper published by Peden and Bonin (1947) in the same year as the Bonin and Bailey monograph, a footnote revealed that the reason was because of availability. Peden and Bonin write: “We prefer to cite Economo’s English summary since it is more readily available than the costly cytoarchitectural atlas published with Koskinas in 1925.” Peden and Bonin (1947), pg. 40.
 
4
Consistent with this idea, Triarhou (2007b) refers to area PHP as the “Basal (temporooccipital) parietal area at parietal entrance,” area PHT as the “Basal (temporooccipital) parietal area at temporal entrance,” and PHO as the “Basal (temporooccipital) parietal area at occipital entrance” (Triarhou 2007b, Table 2, pg. 208).
 
5
Interestingly, while Bonin and Bailey did not include TEO in the frontispiece of their 1947 monograph of the macaque brain, they did include area PH on the frontispiece of their 1950 monograph (with McCulloch) of the chimpanzee brain.
 
6
Cowey and Gross (1970) included a footnote in their paper with similar concerns. They write: “The terminology for the subdivisions of the non-striate visual areas of the occipital and temporal lobes of the monkey is still rather confusing. This is hardly surprising, for the subdivision of these areas on cytoarchitectonic grounds by different authorities is contradictory and the study of the properties of single units in these areas has only begun. Although the recent demonstrations by Zeki (1969) and Cragg and Ainsworth (1969) that lateral striate cortex has two topographic and a third non-topographic projection onto prestriate cortex is a major step forward, the exact boundaries of these projections and their detailed relations to the various cytoarchitectonic subdivisions and subdivisions based on electrophysiological data are not yet entirely clear. Since the terminology used in behavioral studies of lesions of the non-striate visual areas is also inconsistent, it may be helpful to explain the terminology we have used in this report. We have called our posterior lesions “foveal prestriate lesions” because they include the entire area of prestriate cortex to which foveal striate cortex selectively projects (Zeki 1969; Cragg and Ainsworth 1969). Simply to call them prestriate cortex lesions or posterior inferotemporal cortex lesions is misleading because they include far less than the former and far more than the latter. Our inferotemporal lesions correspond closely to Von Bonin and Bailey’s “Area TE”. However, numerous publications on the behavioral effects of removing “inferotemporal” cortex illustrate lesions which often extend posterior to “Area TE” as far as the inferior occipital sulcus and thus may include part of foveal prestriate cortex. We therefore wish to stress that our inferotemporal lesions are restricted to area TE and may not be comparable to some “inferotemporal” lesions in other studies.” Cowey and Gross (1970), Pgs. 128–129.
 
7
Table 1 included in the present manuscript is reproduced from Table 1 from Iwai (1978).
 
8
Though Zeki (1996) cites Felleman and Van Essen (1991) for the definition of PIT, Van Essen and colleagues re-proposed the definition and name of PITd and PITv in a different paper the year prior (Van Essen et al. 1990) in which they write: “The fact that there are two pairs of topographically organized foci suggests that they form two distinct areas, which we have termed PITd and PITv (dorsal and ventral subdivisions of the posterior inferotempo-ral area).” Van Essen et al. (1990, pg. 688).
 
Literatur
Zurück zum Zitat Afraz A, Boyden EA, DiCarlo JJ (2015) Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. PNAS 112(21):6730–6735CrossRefPubMedPubMedCentral Afraz A, Boyden EA, DiCarlo JJ (2015) Optogenetic and pharmacological suppression of spatial clusters of face neurons reveal their causal role in face gender discrimination. PNAS 112(21):6730–6735CrossRefPubMedPubMedCentral
Zurück zum Zitat Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88(6):1086–1107CrossRefPubMed Amunts K, Zilles K (2015) Architectonic mapping of the human brain beyond Brodmann. Neuron 88(6):1086–1107CrossRefPubMed
Zurück zum Zitat Bailey P, Bonin GV, Garol HW, McCulloch WS (1943) Long association fibers in cerebral hemispheres of monkey and chimpanzee. J Neurophysiol 6(2):129–134CrossRef Bailey P, Bonin GV, Garol HW, McCulloch WS (1943) Long association fibers in cerebral hemispheres of monkey and chimpanzee. J Neurophysiol 6(2):129–134CrossRef
Zurück zum Zitat Bailey P, Bonin GV, McCulloch WS (1950) The isocortex of the chimpanzee. University of Illinois Press, Urbana Bailey P, Bonin GV, McCulloch WS (1950) The isocortex of the chimpanzee. University of Illinois Press, Urbana
Zurück zum Zitat Bender DB (1973) Visual sensitivity following inferotemporal and foveal prestriate lesions in the rhesus monkey. J Comp Physiol Psychol 84:613–621CrossRefPubMed Bender DB (1973) Visual sensitivity following inferotemporal and foveal prestriate lesions in the rhesus monkey. J Comp Physiol Psychol 84:613–621CrossRefPubMed
Zurück zum Zitat Bender DB, Gross CG (1981) Backward masking in monkeys after foveal prestriate and inferior temporal cortex lesions. Physiol Psychol 9(3):257–259CrossRef Bender DB, Gross CG (1981) Backward masking in monkeys after foveal prestriate and inferior temporal cortex lesions. Physiol Psychol 9(3):257–259CrossRef
Zurück zum Zitat Bertini G, Buffalo EA, De Weerd P, Desimone R, Ungerleider LG (2004) Visual responses to targets and distractors by inferior temporal neurons after lesions of extrastriate areas V4 and TEO. Neuroreport 15(10):1611–1615CrossRefPubMed Bertini G, Buffalo EA, De Weerd P, Desimone R, Ungerleider LG (2004) Visual responses to targets and distractors by inferior temporal neurons after lesions of extrastriate areas V4 and TEO. Neuroreport 15(10):1611–1615CrossRefPubMed
Zurück zum Zitat Bolster B, Crowne DP (1979) Effects of anterior and posterior inferotemporal lesions on discrimination reversal in the monkey. Neuropsychologia 17:11–20CrossRefPubMed Bolster B, Crowne DP (1979) Effects of anterior and posterior inferotemporal lesions on discrimination reversal in the monkey. Neuropsychologia 17:11–20CrossRefPubMed
Zurück zum Zitat Bonin GV, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana Bonin GV, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana
Zurück zum Zitat Boussaoud D, Desimone R, Ungerleider LG (1991) Visual topography of area TEO in the macaque. J Comp Neurol 306(4): 554–75CrossRefPubMed Boussaoud D, Desimone R, Ungerleider LG (1991) Visual topography of area TEO in the macaque. J Comp Neurol 306(4): 554–75CrossRefPubMed
Zurück zum Zitat Brewer AA, Press WA, Logothetis NK, Wandell BA (2002) Visual areas in macaque cortex measured using functional magnetic resonance imaging. J Neurosci 22(23):10416–10426CrossRefPubMedPubMedCentral Brewer AA, Press WA, Logothetis NK, Wandell BA (2002) Visual areas in macaque cortex measured using functional magnetic resonance imaging. J Neurosci 22(23):10416–10426CrossRefPubMedPubMedCentral
Zurück zum Zitat Brodmann K (1907) Beitraege zur histologischen Lokalisation der Grosshirnrinde. Vite Mitteilung: Die Cortexgliederung des Menschen. J Psychol Neurol 10:231–246 Brodmann K (1907) Beitraege zur histologischen Lokalisation der Grosshirnrinde. Vite Mitteilung: Die Cortexgliederung des Menschen. J Psychol Neurol 10:231–246
Zurück zum Zitat Buffalo EA, Bertini G, Ungerleider LG, Desimone R (2005) Impaired filtering of distractor stimuli by TE neurons following V4 and TEO lesions in macaques. Cereb Cortex 15(2):141–151CrossRefPubMed Buffalo EA, Bertini G, Ungerleider LG, Desimone R (2005) Impaired filtering of distractor stimuli by TE neurons following V4 and TEO lesions in macaques. Cereb Cortex 15(2):141–151CrossRefPubMed
Zurück zum Zitat Christensen CA, Pribram KH (1977) The visual discrimination performance of monkeys with foveal prestriate and inferotemporal lesions. Physiol Behavior 18:403–407CrossRef Christensen CA, Pribram KH (1977) The visual discrimination performance of monkeys with foveal prestriate and inferotemporal lesions. Physiol Behavior 18:403–407CrossRef
Zurück zum Zitat Christensen C, Pribram K (1979) The effect of inferotemporal or foveal prestriate ablation on serial reversal learning in monkeys. Neuropsychologia 17(1):1–10CrossRefPubMed Christensen C, Pribram K (1979) The effect of inferotemporal or foveal prestriate ablation on serial reversal learning in monkeys. Neuropsychologia 17(1):1–10CrossRefPubMed
Zurück zum Zitat Cragg BG, Ainsworth A (1969) The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res 9:737–747CrossRef Cragg BG, Ainsworth A (1969) The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res 9:737–747CrossRef
Zurück zum Zitat Cowey A, Gross CG (1970) Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys. Exp Brain Res 11:128–144CrossRefPubMed Cowey A, Gross CG (1970) Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys. Exp Brain Res 11:128–144CrossRefPubMed
Zurück zum Zitat De Weerd P, Desimone R, Ungerleider LG (2003ab) Impairments in spatial generalization of visual skills after V4 and TEO lesions in macaques (Macaca mulatta). Behav Neurosci 117(6):1441–1447CrossRefPubMed De Weerd P, Desimone R, Ungerleider LG (2003ab) Impairments in spatial generalization of visual skills after V4 and TEO lesions in macaques (Macaca mulatta). Behav Neurosci 117(6):1441–1447CrossRefPubMed
Zurück zum Zitat De Weerd P, Desimone R, Ungerleider LG (2003ba) Generalized deficits in visual selective attention after V4 and TEO lesions in macaques. Eur J Neurosci 18(6):167–191CrossRef De Weerd P, Desimone R, Ungerleider LG (2003ba) Generalized deficits in visual selective attention after V4 and TEO lesions in macaques. Eur J Neurosci 18(6):167–191CrossRef
Zurück zum Zitat Dean P (1976) Effects of inferotemporal lesions on the behavior of monkeys. Psychol Bull 83(1):41–71CrossRefPubMed Dean P (1976) Effects of inferotemporal lesions on the behavior of monkeys. Psychol Bull 83(1):41–71CrossRefPubMed
Zurück zum Zitat Desimone R, Fleming J, Gross CG (1980) Prestriate afferents to inferior temporal cortex: an HRP study. Brain Res 184:41–55CrossRefPubMed Desimone R, Fleming J, Gross CG (1980) Prestriate afferents to inferior temporal cortex: an HRP study. Brain Res 184:41–55CrossRefPubMed
Zurück zum Zitat Economo C (1929) The cytoarchitecture of the human cerebral cortex. Oxford University Press, New York Economo C (1929) The cytoarchitecture of the human cerebral cortex. Oxford University Press, New York
Zurück zum Zitat Economo C, Koskinas GN (1925) Cytoarchitektonik der Grosshirnrinde des erwachsenen Menschen. Springer, Berlin Economo C, Koskinas GN (1925) Cytoarchitektonik der Grosshirnrinde des erwachsenen Menschen. Springer, Berlin
Zurück zum Zitat Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed
Zurück zum Zitat Fenstemaker SB (1986) The organization and connections of visual cortical area TEO in the macaque. Ph.D. thesis, Princeton University. New Jersey Fenstemaker SB (1986) The organization and connections of visual cortical area TEO in the macaque. Ph.D. thesis, Princeton University. New Jersey
Zurück zum Zitat Fize D, Vanduffel W, Nelissen K, Denys K, Chef d’Hotel C, Faugeras O, Orban GA (2003) The retinotopic organization of primate dorsal V4 and surrounding areas: a functional magnetic resonance imaging study in awake monkeys. J Neurosci 23(19):7395–7406CrossRefPubMedPubMedCentral Fize D, Vanduffel W, Nelissen K, Denys K, Chef d’Hotel C, Faugeras O, Orban GA (2003) The retinotopic organization of primate dorsal V4 and surrounding areas: a functional magnetic resonance imaging study in awake monkeys. J Neurosci 23(19):7395–7406CrossRefPubMedPubMedCentral
Zurück zum Zitat Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 15:536–548CrossRefPubMedPubMedCentral Grill-Spector K, Weiner KS (2014) The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 15:536–548CrossRefPubMedPubMedCentral
Zurück zum Zitat Gross CG (1973) Visual functions of inferotemporal cortex. In: Jung R (ed) Handbook of sensory physiology, vol II, Part 3B. Springer, Berlin, pp 451–482 Gross CG (1973) Visual functions of inferotemporal cortex. In: Jung R (ed) Handbook of sensory physiology, vol II, Part 3B. Springer, Berlin, pp 451–482
Zurück zum Zitat Gross CG (1994) How inferior temporal cortex became a visual area. Cereb Cortex 5:455–469CrossRef Gross CG (1994) How inferior temporal cortex became a visual area. Cereb Cortex 5:455–469CrossRef
Zurück zum Zitat Gross CG, Bender DB, Rocha-Miranda CE (1969) Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166(3910):1303–1306CrossRefPubMed Gross CG, Bender DB, Rocha-Miranda CE (1969) Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166(3910):1303–1306CrossRefPubMed
Zurück zum Zitat Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol 35(1):96–111CrossRefPubMed Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in inferotemporal cortex of the Macaque. J Neurophysiol 35(1):96–111CrossRefPubMed
Zurück zum Zitat Iversen SD (1973a) Visual discrimination deficits associated with posterior inferotemporal lesions in the monkey. Brain Res 62:89–101CrossRefPubMed Iversen SD (1973a) Visual discrimination deficits associated with posterior inferotemporal lesions in the monkey. Brain Res 62:89–101CrossRefPubMed
Zurück zum Zitat Iversen SD (1973b) Brain lesions and memory in animals. In: Deutsch AJ (eds) The physiological basis of memory. Academic Press, New York, pp 305–364 Iversen SD (1973b) Brain lesions and memory in animals. In: Deutsch AJ (eds) The physiological basis of memory. Academic Press, New York, pp 305–364
Zurück zum Zitat Iversen SD, Humphrey NK (1971) Ventral temporal lobe lesions and visual oddity performance. Brain Res 30:253–263CrossRefPubMed Iversen SD, Humphrey NK (1971) Ventral temporal lobe lesions and visual oddity performance. Brain Res 30:253–263CrossRefPubMed
Zurück zum Zitat Iwai E (1971) Experimental visual agnosia. Advanc Neurol Sci 71–86 (in Japanese) Iwai E (1971) Experimental visual agnosia. Advanc Neurol Sci 71–86 (in Japanese)
Zurück zum Zitat Iwai E (1978) The visual learning area in the inferotemporal cortex of monkeys. In: Ito M, Kubota K, Tsukahara N, Yagi K (eds) Integrative control functions of the brain, vol I. Elsevier, New York, pp 419–427 Iwai E (1978) The visual learning area in the inferotemporal cortex of monkeys. In: Ito M, Kubota K, Tsukahara N, Yagi K (eds) Integrative control functions of the brain, vol I. Elsevier, New York, pp 419–427
Zurück zum Zitat Iwai E (1980) Visual mechanisms in the temporal and prestriate association cortices of the monkey. In: Adam G, Meszaros I, Banyai EI (eds) Brain and behaviour. Pergamon Press, New York, pp 279–286 Iwai E (1980) Visual mechanisms in the temporal and prestriate association cortices of the monkey. In: Adam G, Meszaros I, Banyai EI (eds) Brain and behaviour. Pergamon Press, New York, pp 279–286
Zurück zum Zitat Iwai E (1982) A model regarding system of information processing in visual goal-directed behavior of macaque monkeys. In: Saito S, McGaugh JL (eds) Learning and memory. Excerpta Medica, Amsterdam, pp 39–58 Iwai E (1982) A model regarding system of information processing in visual goal-directed behavior of macaque monkeys. In: Saito S, McGaugh JL (eds) Learning and memory. Excerpta Medica, Amsterdam, pp 39–58
Zurück zum Zitat Iwai E, Mishkin M (1969) Further evidence on the locus of the visual area in the temporal lobe of the monkey. Exp Neurol 25(4):585–594CrossRefPubMed Iwai E, Mishkin M (1969) Further evidence on the locus of the visual area in the temporal lobe of the monkey. Exp Neurol 25(4):585–594CrossRefPubMed
Zurück zum Zitat Iwai E, Yukie M (1987) Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta, and M. fascicularis). J Comp Neurol 261:362–387CrossRefPubMed Iwai E, Yukie M (1987) Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta, and M. fascicularis). J Comp Neurol 261:362–387CrossRefPubMed
Zurück zum Zitat Iwai E, Yukie M, Watanabe J, Kazuo H, Suyama H, Ishikawa S (1990) A role of amygdala in visual perception and cognition in macaque monkeys (Macaca fuscata and Macaca mulatta). Tohoku J Exp Med 161:95–120CrossRefPubMed Iwai E, Yukie M, Watanabe J, Kazuo H, Suyama H, Ishikawa S (1990) A role of amygdala in visual perception and cognition in macaque monkeys (Macaca fuscata and Macaca mulatta). Tohoku J Exp Med 161:95–120CrossRefPubMed
Zurück zum Zitat Janssens T, Zhu Q, Popivanov ID, Vanduffel W (2014) Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex. J Neurosci 34(31):10156–10167CrossRefPubMedPubMedCentral Janssens T, Zhu Q, Popivanov ID, Vanduffel W (2014) Probabilistic and single-subject retinotopic maps reveal the topographic organization of face patches in the macaque cortex. J Neurosci 34(31):10156–10167CrossRefPubMedPubMedCentral
Zurück zum Zitat Keating EG (1975) Effects of prestriate and striate lesions on the monkey's ability to locate and discriminate visual forms. Exp Neurol 47:16–25CrossRefPubMed Keating EG (1975) Effects of prestriate and striate lesions on the monkey's ability to locate and discriminate visual forms. Exp Neurol 47:16–25CrossRefPubMed
Zurück zum Zitat Kikuchi R, Iwai E (1980) The locus of the posterior subdivision of the inferotemporal visual learning area in the monkey. Brain Res 198:347–360CrossRefPubMed Kikuchi R, Iwai E (1980) The locus of the posterior subdivision of the inferotemporal visual learning area in the monkey. Brain Res 198:347–360CrossRefPubMed
Zurück zum Zitat Kolster H, Janssens T, Orban GA, Vanduffel W (2014) The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. J Neurosci 34(31):10168–10191CrossRefPubMedPubMedCentral Kolster H, Janssens T, Orban GA, Vanduffel W (2014) The retinotopic organization of macaque occipitotemporal cortex anterior to V4 and caudoventral to the middle temporal (MT) cluster. J Neurosci 34(31):10168–10191CrossRefPubMedPubMedCentral
Zurück zum Zitat Lafer-Sousa R, Conway BR (2013) Parallel, multi-stage processing of colors, faces, and shapes in macaque inferior temporal cortex. Nat Neurosci 16(12):1870–1878CrossRefPubMedPubMedCentral Lafer-Sousa R, Conway BR (2013) Parallel, multi-stage processing of colors, faces, and shapes in macaque inferior temporal cortex. Nat Neurosci 16(12):1870–1878CrossRefPubMedPubMedCentral
Zurück zum Zitat Manning FJ (1971) Punishment for errors and visual discrimination learning by monkeys with inferotemporal lesions. J Comp Physiol Psychol 75:146–152CrossRefPubMed Manning FJ (1971) Punishment for errors and visual discrimination learning by monkeys with inferotemporal lesions. J Comp Physiol Psychol 75:146–152CrossRefPubMed
Zurück zum Zitat Manning FJ (1972) Serial reversal learning by monkeys with inferotemporal and foveal prestriate lesions. Physiol Behav 8:177–181CrossRefPubMed Manning FJ (1972) Serial reversal learning by monkeys with inferotemporal and foveal prestriate lesions. Physiol Behav 8:177–181CrossRefPubMed
Zurück zum Zitat McCulloch WS (1944) The functional organization of the cerebral cortex. Physiol Rev 24(3):390–407CrossRef McCulloch WS (1944) The functional organization of the cerebral cortex. Physiol Rev 24(3):390–407CrossRef
Zurück zum Zitat Mishkin M (1972) Cortical visual areas and their interactions. In: Karczmer AG, Eccles JC (eds) Brain and human behavior. Springer, Berlin, pp 187–208CrossRef Mishkin M (1972) Cortical visual areas and their interactions. In: Karczmer AG, Eccles JC (eds) Brain and human behavior. Springer, Berlin, pp 187–208CrossRef
Zurück zum Zitat Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417CrossRef Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417CrossRef
Zurück zum Zitat Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320(5881):1355–1359CrossRefPubMedPubMedCentral Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320(5881):1355–1359CrossRefPubMedPubMedCentral
Zurück zum Zitat Petr R, Holden LB, Jirout J (1949) The efferent intercortical connections of teh superficial corten of the temporal lobe (macaca mulatta)*. J Neuropathol Exp Neurol 8(1):100–103CrossRefPubMed Petr R, Holden LB, Jirout J (1949) The efferent intercortical connections of teh superficial corten of the temporal lobe (macaca mulatta)*. J Neuropathol Exp Neurol 8(1):100–103CrossRefPubMed
Zurück zum Zitat Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ, Gross CG, Kastner S (2009) Neural representations of faces and body parts in macaque and human cortex: a comparative fMRI study. J Neurophysiol 101(5):2581–2600CrossRefPubMedPubMedCentral Pinsk MA, Arcaro M, Weiner KS, Kalkus JF, Inati SJ, Gross CG, Kastner S (2009) Neural representations of faces and body parts in macaque and human cortex: a comparative fMRI study. J Neurophysiol 101(5):2581–2600CrossRefPubMedPubMedCentral
Zurück zum Zitat Saghal A, Iversen SD (1978) Categorization and retrieval after selective inferotemporal lesions in monkeys. Brain Res 146:341–350CrossRef Saghal A, Iversen SD (1978) Categorization and retrieval after selective inferotemporal lesions in monkeys. Brain Res 146:341–350CrossRef
Zurück zum Zitat Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F (2016) A major human white-matter pathway between dorsal and ventral visual cortex. Cereb Cortex 26(5):2205–2214CrossRefPubMed Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F (2016) A major human white-matter pathway between dorsal and ventral visual cortex. Cereb Cortex 26(5):2205–2214CrossRefPubMed
Zurück zum Zitat Takemura H, Pestilli F, Weiner KS, Keliris GA, Landi SM, Sliwa J, Ye FQ, Barnett MA, Leopold DA, Freiwald WA, Logothetis NK, Wandell BA (2017) Occipital white matter tracts in human and macaque. Cereb Cortex 27(6):3346–3359CrossRefPubMedPubMedCentral Takemura H, Pestilli F, Weiner KS, Keliris GA, Landi SM, Sliwa J, Ye FQ, Barnett MA, Leopold DA, Freiwald WA, Logothetis NK, Wandell BA (2017) Occipital white matter tracts in human and macaque. Cereb Cortex 27(6):3346–3359CrossRefPubMedPubMedCentral
Zurück zum Zitat Triarhou LC (2006) The signalling contributions of Constantin von Economo to basic, clinical and evolutionary neuroscience. Brain Res Bull 69:223–243CrossRefPubMed Triarhou LC (2006) The signalling contributions of Constantin von Economo to basic, clinical and evolutionary neuroscience. Brain Res Bull 69:223–243CrossRefPubMed
Zurück zum Zitat Triarhou LC (2007a) The Economo–Koskinas atlas revisited: cytoarchitectonics and functional context. Stereotact Funct Neurosurg 85(5):195–203CrossRefPubMed Triarhou LC (2007a) The Economo–Koskinas atlas revisited: cytoarchitectonics and functional context. Stereotact Funct Neurosurg 85(5):195–203CrossRefPubMed
Zurück zum Zitat Triarhou LC (2007b) A proposed number system for the 107 cortical areas of Economo and Koskinas, and Brodmann area correlations. Stereotact Funct Neurosurg 85(5):204–215CrossRefPubMed Triarhou LC (2007b) A proposed number system for the 107 cortical areas of Economo and Koskinas, and Brodmann area correlations. Stereotact Funct Neurosurg 85(5):204–215CrossRefPubMed
Zurück zum Zitat Triarhou LC (2005) Georg N Koskinas (1885–1975) and his scientific contributions to the normal and pathological anatomy of the human brain. Brain Res Bull 68:121–139CrossRefPubMed Triarhou LC (2005) Georg N Koskinas (1885–1975) and his scientific contributions to the normal and pathological anatomy of the human brain. Brain Res Bull 68:121–139CrossRefPubMed
Zurück zum Zitat Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311(5761):670–674CrossRefPubMedPubMedCentral Tsao DY, Freiwald WA, Tootell RB, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311(5761):670–674CrossRefPubMedPubMedCentral
Zurück zum Zitat Umitsu Y, Iwai E (1980) The posterior inferotemporal cortex as an anatomically distinguishable area from adjacent cortical areas of the anterior inferotemporal cortex and the prestriate cortex. In: Ito M, Kubota K, Tsukahara N, Yagi K (eds) Integrative control functions of the brain, vol III. Elsevier, New York, pp 384–386 Umitsu Y, Iwai E (1980) The posterior inferotemporal cortex as an anatomically distinguishable area from adjacent cortical areas of the anterior inferotemporal cortex and the prestriate cortex. In: Ito M, Kubota K, Tsukahara N, Yagi K (eds) Integrative control functions of the brain, vol III. Elsevier, New York, pp 384–386
Zurück zum Zitat Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586 Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, pp 549–586
Zurück zum Zitat Van Essen DC (2003) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS (eds) The visual neurosciences. Bradford Books, Boston, pp. 507–521 Van Essen DC (2003) Organization of visual areas in macaque and human cerebral cortex. In: Chalupa LM, Werner JS (eds) The visual neurosciences. Bradford Books, Boston, pp. 507–521
Zurück zum Zitat Van Essen DC, Felleman DJ, DeYoe EA, Olavarria J, Knierim J (1990) Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. Cold Spring Harb Symp Quant Biol 55:679–696CrossRefPubMed Van Essen DC, Felleman DJ, DeYoe EA, Olavarria J, Knierim J (1990) Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey. Cold Spring Harb Symp Quant Biol 55:679–696CrossRefPubMed
Zurück zum Zitat Van Essen DC, Glasser MF, Dierker DL, Harwell J (2012aa) Cortical parcellations of the macaque monkey analyzed on surface-based atlases. Cereb Cortex 22(10):2227–2240CrossRefPubMed Van Essen DC, Glasser MF, Dierker DL, Harwell J (2012aa) Cortical parcellations of the macaque monkey analyzed on surface-based atlases. Cereb Cortex 22(10):2227–2240CrossRefPubMed
Zurück zum Zitat Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T (2012b) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22(10):2241–2262CrossRefPubMed Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T (2012b) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22(10):2241–2262CrossRefPubMed
Zurück zum Zitat Wade A, Augath M, Logothetis N, Wandell BA (2008) fMRI measurements of color in macaque and human. J Vis 8(10):1–19CrossRefPubMed Wade A, Augath M, Logothetis N, Wandell BA (2008) fMRI measurements of color in macaque and human. J Vis 8(10):1–19CrossRefPubMed
Zurück zum Zitat Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts K, Zilles K, Fischl B, Grill-Spector K (2017) The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb Cortex 27(1):146–161CrossRefPubMed Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts K, Zilles K, Fischl B, Grill-Spector K (2017) The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb Cortex 27(1):146–161CrossRefPubMed
Zurück zum Zitat Wilson M, Kaufman HM, Zieler RE, Lieb JP (1972) Visual identification and memory in monkeys with circumscribed inferotemporal lesions. J Comp Physiol Psychol 78(2):173–183CrossRefPubMed Wilson M, Kaufman HM, Zieler RE, Lieb JP (1972) Visual identification and memory in monkeys with circumscribed inferotemporal lesions. J Comp Physiol Psychol 78(2):173–183CrossRefPubMed
Zurück zum Zitat Zeki SM (1969) Representation of central visual fields in prestriate cortex of monkey. Brain Res. 14:271–291CrossRefPubMed Zeki SM (1969) Representation of central visual fields in prestriate cortex of monkey. Brain Res. 14:271–291CrossRefPubMed
Zurück zum Zitat Zeki SM (1977) Colour coding in the superior temporal sulcus of the rhesus monkey visual cortex. Proc R Soc B Biol Sci 197:195–223CrossRef Zeki SM (1977) Colour coding in the superior temporal sulcus of the rhesus monkey visual cortex. Proc R Soc B Biol Sci 197:195–223CrossRef
Zurück zum Zitat Zeki S (1996) Are areas TEO and PIT of monkey visual cortex wholly distinct from the fourth visual complex (V4 complex)? Proc R Soc B Biol Sci 263(1376):1539–1544CrossRef Zeki S (1996) Are areas TEO and PIT of monkey visual cortex wholly distinct from the fourth visual complex (V4 complex)? Proc R Soc B Biol Sci 263(1376):1539–1544CrossRef
Metadaten
Titel
Area TEO and “Area ?”: cytoarchitectonic confusion corrected by connectivity and cortical ablation
verfasst von
Kevin S. Weiner
Publikationsdatum
26.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 8/2018
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1714-1

Weitere Artikel der Ausgabe 8/2018

Brain Structure and Function 8/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.