Skip to main content
Erschienen in: Journal of Assisted Reproduction and Genetics 10/2020

11.07.2020 | Review

Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data

verfasst von: Eleonora Inácio Fernandez, André Satoshi Ferreira, Matheus Henrique Miquelão Cecílio, Dóris Spinosa Chéles, Rebeca Colauto Milanezi de Souza, Marcelo Fábio Gouveia Nogueira, José Celso Rocha

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 10/2020

Einloggen, um Zugang zu erhalten

Abstract

Over the past years, the assisted reproductive technologies (ARTs) have been accompanied by constant innovations. For instance, intracytoplasmic sperm injection (ICSI), time-lapse monitoring of the embryonic morphokinetics, and PGS are innovative techniques that increased the success of the ART. In the same trend, the use of artificial intelligence (AI) techniques is being intensively researched whether in the embryo or spermatozoa selection. Despite several studies already published, the use of AI within assisted reproduction clinics is not yet a reality. This is largely due to the different AI techniques that are being proposed to be used in the daily routine of the clinics, which causes some uncertainty in their use. To shed light on this complex scenario, this review briefly describes some of the most frequently used AI algorithms, their functionalities, and their potential use. Several databases were analyzed in search of articles where applied artificial intelligence algorithms were used on reproductive data. Our focus was on the classification of embryonic cells and semen samples. Of a total of 124 articles analyzed, 32 were selected for this review. From the proposed algorithms, most have achieved a satisfactory precision, demonstrating the potential of a wide range of AI techniques. However, the evaluation of these studies suggests the need for more standardized research to validate the proposed models and their algorithms. Routine use of AI in assisted reproduction clinics is just a matter of time. However, the choice of AI technique to be used is supported by a better understanding of the principles subjacent to each technique, that is, its robustness, pros, and cons. We provide some current (although incipient) and potential uses of AI on the clinic routine, discussing how accurate and friendly it could be. Finally, we propose some standards for AI research on the selection of the embryo to be transferred and other future hints. For us, the imminence of its use is evident, providing a revolutionary milestone that will impact the ART.
Glossar
Activation function
Mathematical function that determines the output value of the layer or the node. Used to introduce nonlinearity to the neural networks.
Directed acyclic graph
Type of graph utilized in Bayesian networks aiming to detect the influence of variables has on the solution of a problem.
Hidden layers
Layer(s) between the input and output layers, where the nodes process the input and output signals weighting them accordingly their importance.
Hyperplane
It consists of some decision boundaries that help to classify the information into different classes or categories.
Nodes
The basic information processing unit in a neural network, where inputs coming from entered variables are processed and outputs are released from the node.
Split of dataset
It is the way in which the whole dataset is split into three subsets (i.e., training, validation, and test datasets).
Test
The last step of the training process. After the model is trained and validated, it is subjected to the test dataset (completely different sample from the training and validation data). This process aims to measure the final accuracy of trained AI, since this step is no more supervised as the training step.
Training
It is the first step to train an artificial neural network. It consists on the application of a sample (called training dataset), from which the machine will learn. The training dataset contains the features that characterize the subject to be evaluated and the targets to be predicted.
Validation
The second step of the training process. Using the validation dataset, this step evaluates the model (i.e., the artificial neural network being trained) to ensure that AI training takes place correctly. With a different dataset from the training step, validation ensures that the model is not overfitted.
Weights
Weights are assigned to represent the relative importance of the input coming to the node.
Literatur
2.
Zurück zum Zitat Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2014;21:411–26. Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2014;21:411–26.
3.
Zurück zum Zitat Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.PubMed Vander Borght M, Wyns C. Fertility and infertility: definition and epidemiology. Clin Biochem. 2018;62:2–10.PubMed
4.
Zurück zum Zitat Begum MR. Assisted reproductive technology: techniques and limitations. J Bangladesh Coll Physicians Surg. 1970;26:135–41. Begum MR. Assisted reproductive technology: techniques and limitations. J Bangladesh Coll Physicians Surg. 1970;26:135–41.
5.
Zurück zum Zitat Younglai EV, Holloway AC, Foster WG. Environmental and occupational factors affecting fertility and IVF success. Hum Reprod Update. 2005;11:43–57.PubMed Younglai EV, Holloway AC, Foster WG. Environmental and occupational factors affecting fertility and IVF success. Hum Reprod Update. 2005;11:43–57.PubMed
6.
Zurück zum Zitat Srouji SS, Mark A, Levine Z, Betensky RA, Hornstein MD, Ginsburg ES. Predicting in vitro fertilization live birth using stimulation day 6 estradiol, age, and follicle-stimulating hormone. Fertil Steril. 2005;84:795–7.PubMed Srouji SS, Mark A, Levine Z, Betensky RA, Hornstein MD, Ginsburg ES. Predicting in vitro fertilization live birth using stimulation day 6 estradiol, age, and follicle-stimulating hormone. Fertil Steril. 2005;84:795–7.PubMed
7.
Zurück zum Zitat Ottosen LDM, Kesmodel U, Hindkjær J, Ingerslev HJ. Pregnancy prediction models and eSET criteria for IVF patients-do we need more information? J Assist Reprod Genet. 2007;24:29–36.PubMed Ottosen LDM, Kesmodel U, Hindkjær J, Ingerslev HJ. Pregnancy prediction models and eSET criteria for IVF patients-do we need more information? J Assist Reprod Genet. 2007;24:29–36.PubMed
8.
Zurück zum Zitat Al-Shawwa M, Abu-Naser SS. Predicting birth weight using artificial neural network. Int J Acad Heal Med Res [Internet]. 2019; 3:9–14. Available from: www.ijeais.org/ijahmr Al-Shawwa M, Abu-Naser SS. Predicting birth weight using artificial neural network. Int J Acad Heal Med Res [Internet]. 2019; 3:9–14. Available from: www.​ijeais.​org/​ijahmr
9.
Zurück zum Zitat Hota HS, Shukla SP, Kiran GK. Review of intelligent techniques applied for classification and preprocessing of medical image data. Int J Comput Sci Issues. 2013;10:267–72. Hota HS, Shukla SP, Kiran GK. Review of intelligent techniques applied for classification and preprocessing of medical image data. Int J Comput Sci Issues. 2013;10:267–72.
11.
Zurück zum Zitat Rich E, Knight K, Nair S. Artificial intelligence. 3rd ed. McGraw-Hill. 2008. Rich E, Knight K, Nair S. Artificial intelligence. 3rd ed. McGraw-Hill. 2008.
12.
Zurück zum Zitat Peixoto MS, Barros LC, Bassanezi RC, Fernandes OA. An approach via fuzzy systems for dynamics and control of the soybean aphid. Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology. Atlantic Press. Adv Intel Syst Res. 2015;89:1295–301. Peixoto MS, Barros LC, Bassanezi RC, Fernandes OA. An approach via fuzzy systems for dynamics and control of the soybean aphid. Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology. Atlantic Press. Adv Intel Syst Res. 2015;89:1295–301.
13.
Zurück zum Zitat McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5:115–33. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. 1943;5:115–33.
14.
Zurück zum Zitat Hsu F. IBM’S deep blue chess grandmaster chips. IEEE Micro. 1999;63:70–81. Hsu F. IBM’S deep blue chess grandmaster chips. IEEE Micro. 1999;63:70–81.
15.
Zurück zum Zitat Da Silva IN, Spatti DH, Flauzino RA, Liboni LHB, Dos Reis Alves SF. Artificial neural networks, vol. 39. Cham: Springer International Publishing; 2017. Da Silva IN, Spatti DH, Flauzino RA, Liboni LHB, Dos Reis Alves SF. Artificial neural networks, vol. 39. Cham: Springer International Publishing; 2017.
16.
Zurück zum Zitat Durairaj M, Thamilselvan P. Applications of artificial neural network for IVF data analysis and prediction. J Eng Comput Appl Sci. 2013;2:11–5. Durairaj M, Thamilselvan P. Applications of artificial neural network for IVF data analysis and prediction. J Eng Comput Appl Sci. 2013;2:11–5.
17.
Zurück zum Zitat Milewski R, Kuczyńska A, Stankiewicz B, Kuczyński W. How much information about embryo implantation potential is included in morphokinetic data? A prediction model based on artificial neural networks and principal component analysis. Adv Med Sci. 2017;62:202–6.PubMed Milewski R, Kuczyńska A, Stankiewicz B, Kuczyński W. How much information about embryo implantation potential is included in morphokinetic data? A prediction model based on artificial neural networks and principal component analysis. Adv Med Sci. 2017;62:202–6.PubMed
18.
Zurück zum Zitat Girela JL, Gil D, Johnsson M, Gomez-Torres MJ, De Juan J. Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. Biol Reprod. 2013;88:1–8. Girela JL, Gil D, Johnsson M, Gomez-Torres MJ, De Juan J. Semen parameters can be predicted from environmental factors and lifestyle using artificial intelligence methods. Biol Reprod. 2013;88:1–8.
19.
Zurück zum Zitat El-Shafeiy E, El-Desouky A, El-Ghamrawy S. An optimized artificial neural network approach based on sperm whale optimization algorithm for predicting fertility quality. Stud Inform Control. 2018;27:349–58. El-Shafeiy E, El-Desouky A, El-Ghamrawy S. An optimized artificial neural network approach based on sperm whale optimization algorithm for predicting fertility quality. Stud Inform Control. 2018;27:349–58.
20.
Zurück zum Zitat Sahoo AJ, Kumar Y. Seminal quality prediction using data mining methods. Technol Health Care. 2014;22:531–45.PubMed Sahoo AJ, Kumar Y. Seminal quality prediction using data mining methods. Technol Health Care. 2014;22:531–45.PubMed
21.
Zurück zum Zitat Miyagi Y, Habara T, Hirata R, Hayashi N. Feasibility of artificial intelligence for predicting live birth without aneuploidy from a blastocyst image. Reprod Med Biol. 2019;18:204–11.PubMedPubMedCentral Miyagi Y, Habara T, Hirata R, Hayashi N. Feasibility of artificial intelligence for predicting live birth without aneuploidy from a blastocyst image. Reprod Med Biol. 2019;18:204–11.PubMedPubMedCentral
23.
Zurück zum Zitat Manna C, Nanni L, Lumini A, Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod BioMed Online. 2013;26:42–9.PubMed Manna C, Nanni L, Lumini A, Pappalardo S. Artificial intelligence techniques for embryo and oocyte classification. Reprod BioMed Online. 2013;26:42–9.PubMed
24.
Zurück zum Zitat Candemir C. Estimating the semen quality from life style using fuzzy radial basis functions. Int J Mach Learn Comput. 2018;8:44–8. Candemir C. Estimating the semen quality from life style using fuzzy radial basis functions. Int J Mach Learn Comput. 2018;8:44–8.
25.
Zurück zum Zitat Kumar V, Minz S. Feature selection: a literature review. Smart Comput Rev. 2014;4:211–29. Kumar V, Minz S. Feature selection: a literature review. Smart Comput Rev. 2014;4:211–29.
27.
Zurück zum Zitat Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2:359–66. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2:359–66.
28.
Zurück zum Zitat Riley P. Three pitfalls to avoid in machine learning. Nature. 2019;572:27–9.PubMed Riley P. Three pitfalls to avoid in machine learning. Nature. 2019;572:27–9.PubMed
29.
Zurück zum Zitat Gianaroli L, Magli MC, Gambardella L, Giusti A, Grugnetti C, Corani G. Objective way to support embryo transfer: a probabilistic decision. Hum Reprod. 2013;28:1210–20.PubMed Gianaroli L, Magli MC, Gambardella L, Giusti A, Grugnetti C, Corani G. Objective way to support embryo transfer: a probabilistic decision. Hum Reprod. 2013;28:1210–20.PubMed
30.
Zurück zum Zitat Hernández-González J, Inza I, Crisol-Ortíz L, Guembe MA, Iñarra MJ, Lozano JA. Fitting the data from embryo implantation prediction: learning from label proportions. Stat Methods Med Res. 2018;27:1056–66.PubMed Hernández-González J, Inza I, Crisol-Ortíz L, Guembe MA, Iñarra MJ, Lozano JA. Fitting the data from embryo implantation prediction: learning from label proportions. Stat Methods Med Res. 2018;27:1056–66.PubMed
31.
Zurück zum Zitat Morales DA, Bengoetxea E, Larrañaga P. Selection of human embryos for transfer by Bayesian classifiers. Comput Biol Med. 2008;38:1177–86.PubMed Morales DA, Bengoetxea E, Larrañaga P. Selection of human embryos for transfer by Bayesian classifiers. Comput Biol Med. 2008;38:1177–86.PubMed
33.
Zurück zum Zitat Morales DA, Bengoetxea E, Larrañaga P, García M, Franco Y, Fresnada M, et al. Bayesian classification for the selection of in vitro human embryos using morphological and clinical data. Comput Methods Prog Biomed. 2008;90:104–16. Morales DA, Bengoetxea E, Larrañaga P, García M, Franco Y, Fresnada M, et al. Bayesian classification for the selection of in vitro human embryos using morphological and clinical data. Comput Methods Prog Biomed. 2008;90:104–16.
34.
Zurück zum Zitat Uyar A, Bener A, Ciray HN. Predictive modeling of implantation outcome in an in vitro fertilization setting: an application of machine learning methods. Med Decis Mak. 2015;35:714–25. Uyar A, Bener A, Ciray HN. Predictive modeling of implantation outcome in an in vitro fertilization setting: an application of machine learning methods. Med Decis Mak. 2015;35:714–25.
35.
Zurück zum Zitat Jakkula V. Tutorial on support vector machine (SVM). Sch EECS, Washington State Univ. 2006;1–13. Jakkula V. Tutorial on support vector machine (SVM). Sch EECS, Washington State Univ. 2006;1–13.
37.
Zurück zum Zitat Santos Filho E, Noble JA, Poli M, Griffiths T, Emerson G, Wells D. A method for semi-automatic grading of human blastocyst microscope images. Hum Reprod. 2012;27:2641–8.PubMed Santos Filho E, Noble JA, Poli M, Griffiths T, Emerson G, Wells D. A method for semi-automatic grading of human blastocyst microscope images. Hum Reprod. 2012;27:2641–8.PubMed
38.
Zurück zum Zitat Gardner D, Schoolcraft W. In-vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: infertility and genetics beyond. Carnforth: Parthenon Press; 1999. p. 378–88. Gardner D, Schoolcraft W. In-vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Towards reproductive certainty: infertility and genetics beyond. Carnforth: Parthenon Press; 1999. p. 378–88.
39.
Zurück zum Zitat Wang L-H, Fu Z-X, Ye S-Z, Ke D-G. Pattern recognition of IVF’s early embryo images based on support vector machines and texture features. Int J Eng Trends Technol. 2018;66:7–11. Wang L-H, Fu Z-X, Ye S-Z, Ke D-G. Pattern recognition of IVF’s early embryo images based on support vector machines and texture features. Int J Eng Trends Technol. 2018;66:7–11.
40.
Zurück zum Zitat Xu L, Wei X, Yin Y, Wang W, Tian Y, Zhou M. Automatic classification of human embryo microscope images based on LBP feature. Commun Comput Inf Sci. 2014;437:145–52. Xu L, Wei X, Yin Y, Wang W, Tian Y, Zhou M. Automatic classification of human embryo microscope images based on LBP feature. Commun Comput Inf Sci. 2014;437:145–52.
41.
Zurück zum Zitat Pathak B, Barooah D. Texture analysis based on the gray-level co-occurrence matrix considering possible orientations. Int J Adv Res Electr Electron Instrum Eng. 2013;2:4206–12. Pathak B, Barooah D. Texture analysis based on the gray-level co-occurrence matrix considering possible orientations. Int J Adv Res Electr Electron Instrum Eng. 2013;2:4206–12.
42.
Zurück zum Zitat Rahim A, Hossain N, Wahid T, Azam S. Face recognition using local binary patterns (LBP). Glob J Comput Sci Technol Graph Vis. 2013;13:469–81. Rahim A, Hossain N, Wahid T, Azam S. Face recognition using local binary patterns (LBP). Glob J Comput Sci Technol Graph Vis. 2013;13:469–81.
43.
Zurück zum Zitat Galloway C, Swiatek L. Public relations and artificial intelligence: it’s not (just) about robots. Public Relat Rev. 2018;44:734–40. Galloway C, Swiatek L. Public relations and artificial intelligence: it’s not (just) about robots. Public Relat Rev. 2018;44:734–40.
44.
Zurück zum Zitat Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43.PubMedPubMedCentral Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43.PubMedPubMedCentral
45.
Zurück zum Zitat Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016.
46.
Zurück zum Zitat Patil SN, Wali U, Swamy MK, Nagaraj SP, Patil N. Deep learning techniques for automatic classification and analysis of human in vitro fertilized (IVF) embryos. J Emerg Technol Innov Res. 2018;5:100–6. Patil SN, Wali U, Swamy MK, Nagaraj SP, Patil N. Deep learning techniques for automatic classification and analysis of human in vitro fertilized (IVF) embryos. J Emerg Technol Innov Res. 2018;5:100–6.
47.
Zurück zum Zitat Khan A, Gould S, Salzmann M. Segmentation of developing human embryo in time-lapse microscopy. International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016; IEEE, TBC;930–934. Khan A, Gould S, Salzmann M. Segmentation of developing human embryo in time-lapse microscopy. International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2016; IEEE, TBC;930–934.
48.
Zurück zum Zitat Chen T-J, Zheng W-L, Liu C-H, Huang I, Lai H-H, Liu M. Using deep learning with large dataset of microscope images to develop an automated embryo grading system. Fertil Reprod. 2019;1:51–6. Chen T-J, Zheng W-L, Liu C-H, Huang I, Lai H-H, Liu M. Using deep learning with large dataset of microscope images to develop an automated embryo grading system. Fertil Reprod. 2019;1:51–6.
49.
Zurück zum Zitat Matusevičius A, Dirvanauskas D, Maskeliūnas R, Raudonis V. Embryo cell detection using regions with convolutional neural networks. CEUR Workshop Proc. 1856;2017:89–93. Matusevičius A, Dirvanauskas D, Maskeliūnas R, Raudonis V. Embryo cell detection using regions with convolutional neural networks. CEUR Workshop Proc. 1856;2017:89–93.
50.
Zurück zum Zitat Miyagi Y, Habara T, Hirata R, Hayashi N. Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age. Reprod Med Biol. 2019;18:190–203.PubMedPubMedCentral Miyagi Y, Habara T, Hirata R, Hayashi N. Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age. Reprod Med Biol. 2019;18:190–203.PubMedPubMedCentral
52.
Zurück zum Zitat Cao Q, Liao SS, Meng X, Ye H, Yan Z, Wang P. Identification of viable embryos using deep learning for medical image. ACM 5th Int Conf Proceeding Ser. 2018;69–72. Cao Q, Liao SS, Meng X, Ye H, Yan Z, Wang P. Identification of viable embryos using deep learning for medical image. ACM 5th Int Conf Proceeding Ser. 2018;69–72.
54.
Zurück zum Zitat Rad RM, Saeedi P, Au J, Havelock J. Blastomere cell counting and centroid localization in microscopic images of human embryo. 2018 IEEE 20th Int Work Multimed Signal Process MMSP 2018. IEEE; 2018;1–6. Rad RM, Saeedi P, Au J, Havelock J. Blastomere cell counting and centroid localization in microscopic images of human embryo. 2018 IEEE 20th Int Work Multimed Signal Process MMSP 2018. IEEE; 2018;1–6.
55.
Zurück zum Zitat Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum Reprod. 2019;34:1011–8.PubMedPubMedCentral Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum Reprod. 2019;34:1011–8.PubMedPubMedCentral
56.
Zurück zum Zitat Bormann CL, Thirumalaraju P, Kanakasabapathy MK, Kandula H, Souter I, Dimitriadis I, et al. Consistency and objectivity of automated embryo assessments using deep neural networks. Fertil Steril. 2020;113:781–7.PubMedPubMedCentral Bormann CL, Thirumalaraju P, Kanakasabapathy MK, Kandula H, Souter I, Dimitriadis I, et al. Consistency and objectivity of automated embryo assessments using deep neural networks. Fertil Steril. 2020;113:781–7.PubMedPubMedCentral
57.
Zurück zum Zitat VerMilyea M, Hall JMM, Diakiw SM, Johnston A, Nguyen T, Perugini D, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35:770–84.PubMedPubMedCentral VerMilyea M, Hall JMM, Diakiw SM, Johnston A, Nguyen T, Perugini D, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35:770–84.PubMedPubMedCentral
59.
Zurück zum Zitat Ratna MB, Bhattacharya S, Abdulrahim B, McLernon DJ. A systematic review of the quality of clinical prediction models in in vitro fertilisation. Hum Reprod. 2020;35(1):100–16.PubMed Ratna MB, Bhattacharya S, Abdulrahim B, McLernon DJ. A systematic review of the quality of clinical prediction models in in vitro fertilisation. Hum Reprod. 2020;35(1):100–16.PubMed
Metadaten
Titel
Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data
verfasst von
Eleonora Inácio Fernandez
André Satoshi Ferreira
Matheus Henrique Miquelão Cecílio
Dóris Spinosa Chéles
Rebeca Colauto Milanezi de Souza
Marcelo Fábio Gouveia Nogueira
José Celso Rocha
Publikationsdatum
11.07.2020
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 10/2020
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-020-01881-9

Weitere Artikel der Ausgabe 10/2020

Journal of Assisted Reproduction and Genetics 10/2020 Zur Ausgabe

Hirsutismus bei PCOS: Laser- und Lichttherapien helfen

26.04.2024 Hirsutismus Nachrichten

Laser- und Lichtbehandlungen können bei Frauen mit polyzystischem Ovarialsyndrom (PCOS) den übermäßigen Haarwuchs verringern und das Wohlbefinden verbessern – bei alleiniger Anwendung oder in Kombination mit Medikamenten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Weniger postpartale Depressionen nach Esketamin-Einmalgabe

Bislang gibt es kein Medikament zur Prävention von Wochenbettdepressionen. Das Injektionsanästhetikum Esketamin könnte womöglich diese Lücke füllen.

Bei RSV-Impfung vor 60. Lebensjahr über Off-Label-Gebrauch aufklären!

22.04.2024 DGIM 2024 Kongressbericht

Durch die Häufung nach der COVID-19-Pandemie sind Infektionen mit dem Respiratorischen Synzytial-Virus (RSV) in den Fokus gerückt. Fachgesellschaften empfehlen eine Impfung inzwischen nicht nur für Säuglinge und Kleinkinder.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.