Skip to main content
Erschienen in: Cardiovascular Toxicology 2/2018

30.08.2017

Asiatic Acid Ameliorates Doxorubicin-Induced Cardiac and Hepato-Renal Toxicities with Nrf2 Transcriptional Factor Activation in Rats

verfasst von: Sarika M. Kamble, Chandragouda R. Patil

Erschienen in: Cardiovascular Toxicology | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Asiatic acid (AA), a pentacyclic triterpenoid, is a key phytoconstituent of Centella asiatica. AA is a patented as a cytotoxic substance, and it exerts cytotoxicity against Hep3B, Hela and MCF-7 cell lines. However, pentacyclic triterpenoids also modulate the expression and transcriptional activities of Nrf2 and exert cytoprotective effects. In this study, we investigated the effects of AA on the doxorubicin (DXR)-induced organ toxicities and expression of the Nrf2. DXR toxicity was induced by a single intravenous injection of 65.75 mg/kg of DXR. Seven days pretreatment with AA at the doses of 5, 10 and 20 mg/kg, p.o. significantly reverted the DXR-induced oxidative stress in heart, liver and kidney. The biochemical indicators of DXR toxicity including increased activities of serum creatinine kinase isoenzyme, transaminases and lactate dehydrogenase along with increased serum creatinine and serum blood urea nitrogen were normalised by AA. AA was also protected against the DXR-induced histological alterations including necrosis, hyaline degeneration and congestion in the heart; leukocytic inflammation, centrilobular necrosis, apoptosis and fatty changes in the liver; and necrosis and inflammation in the kidney. The protective effects of AA were dose dependent, and the 20 mg/kg dose exerted protection against the DXR toxicity by increasing Nrf2 protein expression.
Literatur
1.
Zurück zum Zitat Blum, R. H., & Carter, S. K. (1974). A new drug with significant clinical activity. Annals of Internal Medicine, 80, 249–256.CrossRefPubMed Blum, R. H., & Carter, S. K. (1974). A new drug with significant clinical activity. Annals of Internal Medicine, 80, 249–256.CrossRefPubMed
2.
Zurück zum Zitat Mohan, M., Kamble, S., Ghadi, P., & Kastrure, S. (2010). Protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats. Food and Chemical Toxicology, 48, 436–440.CrossRefPubMed Mohan, M., Kamble, S., Ghadi, P., & Kastrure, S. (2010). Protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats. Food and Chemical Toxicology, 48, 436–440.CrossRefPubMed
3.
Zurück zum Zitat Aluise, C. D., Miriyal, S., Noel, T., Sultana, R., Jungsuwadee, P., Taylor, T. J., et al. (2011). 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-α release: Implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radical Biology and Medicine, 50, 1630–1638.CrossRefPubMed Aluise, C. D., Miriyal, S., Noel, T., Sultana, R., Jungsuwadee, P., Taylor, T. J., et al. (2011). 2-Mercaptoethane sulfonate prevents doxorubicin-induced plasma protein oxidation and TNF-α release: Implications for the reactive oxygen species-mediated mechanisms of chemobrain. Free Radical Biology and Medicine, 50, 1630–1638.CrossRefPubMed
4.
Zurück zum Zitat Tacar, O., Sriamornsak, P., & Dass, C. R. (2012). Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. Journal of Pharmacy and Pharmacology, 65, 157–170.CrossRefPubMed Tacar, O., Sriamornsak, P., & Dass, C. R. (2012). Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. Journal of Pharmacy and Pharmacology, 65, 157–170.CrossRefPubMed
5.
Zurück zum Zitat Cecen, E., Dost, T., Culhac, N., Karul, A., Ergur, B., & Birincioglu, M. (2011). Protective effect of sylimerin on doxorubicin-induced toxicity. Asian Pacific Journal of Cancer Prevention, 12, 2697–2704.PubMed Cecen, E., Dost, T., Culhac, N., Karul, A., Ergur, B., & Birincioglu, M. (2011). Protective effect of sylimerin on doxorubicin-induced toxicity. Asian Pacific Journal of Cancer Prevention, 12, 2697–2704.PubMed
6.
Zurück zum Zitat Zordoky, B. M., Anwar-Mohamed, A., Aboutabl, M. E., & Ayman, O. S. (2011). Acute doxorubicin toxicity differentially alters cytochrome P450 expression and arachidonic acid metabolism in rat kidney and liver. Drug Metabolism and Disposition, 39, 1140–1150.CrossRef Zordoky, B. M., Anwar-Mohamed, A., Aboutabl, M. E., & Ayman, O. S. (2011). Acute doxorubicin toxicity differentially alters cytochrome P450 expression and arachidonic acid metabolism in rat kidney and liver. Drug Metabolism and Disposition, 39, 1140–1150.CrossRef
7.
Zurück zum Zitat Saad, S. Y., Najjar, T. A., & Al-Rykaby, A. C. (2001). The preventive role of deferoxamine against acute doxorubicin-s induced kidney, renal and hepatotoxicity in rats. Pharmacological Research, 43, 211–218.CrossRefPubMed Saad, S. Y., Najjar, T. A., & Al-Rykaby, A. C. (2001). The preventive role of deferoxamine against acute doxorubicin-s induced kidney, renal and hepatotoxicity in rats. Pharmacological Research, 43, 211–218.CrossRefPubMed
8.
Zurück zum Zitat Li, S., Wang, W., Niu, T., Wang, H., Li, B., Shao, L., et al. (2014). Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxidative Medicine and Cellular Longevity, 2014, 1–15. Li, S., Wang, W., Niu, T., Wang, H., Li, B., Shao, L., et al. (2014). Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxidative Medicine and Cellular Longevity, 2014, 1–15.
9.
Zurück zum Zitat European Patent. (2009). Anti-glycation properties of Asiatic acid and Madecassic acid. Bayer consumer care Ag and Caroline Segond. Patent No WO2001213 A1. European Patent. (2009). Anti-glycation properties of Asiatic acid and Madecassic acid. Bayer consumer care Ag and Caroline Segond. Patent No WO2001213 A1.
10.
Zurück zum Zitat US Patent. (2004). Use of asiatic acid and asiaticoside for treatment of cancer. Oh et al and Wolf greenfield Sacks PC, Boston. Patent No US 2004/0097463 A1. US Patent. (2004). Use of asiatic acid and asiaticoside for treatment of cancer. Oh et al and Wolf greenfield Sacks PC, Boston. Patent No US 2004/0097463 A1.
11.
Zurück zum Zitat Matsuda, H., Morikawa, T., Ueda, H., & Yoshikawa, M. (2001). Medicinal foodstuffs. XXVII. (1) Saponin constituents of gotu kola (2): Structures of new ursane-and oleanane-type triterpene oligoglycosides, centellasaponins B, C, and D, from Centella asiatica cultivated in Sri Lanka. Chemical and Pharmaceutical Bulletin, 49, 1368–1371.CrossRefPubMed Matsuda, H., Morikawa, T., Ueda, H., & Yoshikawa, M. (2001). Medicinal foodstuffs. XXVII. (1) Saponin constituents of gotu kola (2): Structures of new ursane-and oleanane-type triterpene oligoglycosides, centellasaponins B, C, and D, from Centella asiatica cultivated in Sri Lanka. Chemical and Pharmaceutical Bulletin, 49, 1368–1371.CrossRefPubMed
12.
Zurück zum Zitat Wongekalak, L., Sakulsom, P., Jirasripongpun, K., & Hongsprabhas, P. (2011). Potential use of antioxidative mungbean protein hydrolysate as an anticancer Asiatic acid carrier. Food Research International, 44, 812–817.CrossRef Wongekalak, L., Sakulsom, P., Jirasripongpun, K., & Hongsprabhas, P. (2011). Potential use of antioxidative mungbean protein hydrolysate as an anticancer Asiatic acid carrier. Food Research International, 44, 812–817.CrossRef
13.
Zurück zum Zitat Ramachandran, V., & Saravanan, R. (2013). Asiatic acid prevents lipid peroxidation and improves antioxidant status in rats with streptozotocin-induced diabetes. Journal of Functional Foods, 5, 1077–1087.CrossRef Ramachandran, V., & Saravanan, R. (2013). Asiatic acid prevents lipid peroxidation and improves antioxidant status in rats with streptozotocin-induced diabetes. Journal of Functional Foods, 5, 1077–1087.CrossRef
14.
Zurück zum Zitat Yun, K., Kim, J., Lee, K., Jeong, S., Park, H., Jung, H., et al. (2008). Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-κB inactivation in RAW 264.7 macrophages: Possible involvement of the IKK and MAPK pathways. International Immunopharmacology, 8, 431–441.CrossRefPubMed Yun, K., Kim, J., Lee, K., Jeong, S., Park, H., Jung, H., et al. (2008). Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-κB inactivation in RAW 264.7 macrophages: Possible involvement of the IKK and MAPK pathways. International Immunopharmacology, 8, 431–441.CrossRefPubMed
15.
Zurück zum Zitat Gao, J., Chen, J., Tang, X., Pan, L., Fang, F., Xu, L., et al. (2006). Mechanism underlying mitochondrial protection of Asiatic acid against hepatotoxicity in mice. Journal of Pharmacy and Pharmacology, 58, 227–233.CrossRefPubMed Gao, J., Chen, J., Tang, X., Pan, L., Fang, F., Xu, L., et al. (2006). Mechanism underlying mitochondrial protection of Asiatic acid against hepatotoxicity in mice. Journal of Pharmacy and Pharmacology, 58, 227–233.CrossRefPubMed
16.
Zurück zum Zitat Krishnamurthy, R. G., Senut, M., Zemke, D., Min, J., Frenkel, M. B., Greenberg, E. J., et al. (2009). Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. Journal of Neuroscience Research, 87, 2541–2550.CrossRefPubMedPubMedCentral Krishnamurthy, R. G., Senut, M., Zemke, D., Min, J., Frenkel, M. B., Greenberg, E. J., et al. (2009). Asiatic acid, a pentacyclic triterpene from Centella asiatica, is neuroprotective in a mouse model of focal cerebral ischemia. Journal of Neuroscience Research, 87, 2541–2550.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Li, R., Lan, H. Y., & Chung, A. K. (2013). Distinct roles of Smads and microRNAs in TGF-b signaling during kidney diseases. Hong Kong Journal of Nephrology, 15, 14–21.CrossRef Li, R., Lan, H. Y., & Chung, A. K. (2013). Distinct roles of Smads and microRNAs in TGF-b signaling during kidney diseases. Hong Kong Journal of Nephrology, 15, 14–21.CrossRef
18.
Zurück zum Zitat Lee, M. K., Kim, S. H., Yang, H., Lim, D. Y., Ryu, J. H., Lee, E. S., et al. (2009). Asiatic acid protect primary cell cultures of rat hepatocyte against carbon tetrachloride-induced injury via the cellular antioxidant system. Natural Product Communication, 4, 765–768. Lee, M. K., Kim, S. H., Yang, H., Lim, D. Y., Ryu, J. H., Lee, E. S., et al. (2009). Asiatic acid protect primary cell cultures of rat hepatocyte against carbon tetrachloride-induced injury via the cellular antioxidant system. Natural Product Communication, 4, 765–768.
19.
Zurück zum Zitat Resende, F. A., de Andrade, C. A., da Silva, M. C., Kato, F. H., Cunha, W. R., & Tavares, D. C. (2006). Antimutagenicity of ursolic acid and oleanolic acid against doxorubicin-induced clastogenesis in Balb/c mice. Life Sciences, 79, 1268–1273.CrossRef Resende, F. A., de Andrade, C. A., da Silva, M. C., Kato, F. H., Cunha, W. R., & Tavares, D. C. (2006). Antimutagenicity of ursolic acid and oleanolic acid against doxorubicin-induced clastogenesis in Balb/c mice. Life Sciences, 79, 1268–1273.CrossRef
20.
Zurück zum Zitat Cipak, L., Grausova, L., Miadokova, E., Novotny, L., & Rauko, P. (2006). Dual activity of triterpenoids: Apoptotic versus antidifferentiation effects. Archives of Toxicology, 80, 429–435.CrossRefPubMed Cipak, L., Grausova, L., Miadokova, E., Novotny, L., & Rauko, P. (2006). Dual activity of triterpenoids: Apoptotic versus antidifferentiation effects. Archives of Toxicology, 80, 429–435.CrossRefPubMed
21.
Zurück zum Zitat Ryu, K., Susa, M., Choy, E., Yang, C., Hornicek, F. J., Mankin, H. J., et al. (2010). Oleanan triterpenoid CDDO-me induced apoptosis in multidrug resistance osteosarcoma cells through inhibition of stat 3 pathway. BMC Cancer, 10, 1–7.CrossRef Ryu, K., Susa, M., Choy, E., Yang, C., Hornicek, F. J., Mankin, H. J., et al. (2010). Oleanan triterpenoid CDDO-me induced apoptosis in multidrug resistance osteosarcoma cells through inhibition of stat 3 pathway. BMC Cancer, 10, 1–7.CrossRef
22.
Zurück zum Zitat Kamble, S., Goyal, S., & Patil, C. (2014). Multifunctional pentacyclic triterpenoids as adjuvants in cancer chemotherapy: A review. RSC Advances, 4, 33370–33382.CrossRef Kamble, S., Goyal, S., & Patil, C. (2014). Multifunctional pentacyclic triterpenoids as adjuvants in cancer chemotherapy: A review. RSC Advances, 4, 33370–33382.CrossRef
23.
Zurück zum Zitat Smirnova, N. A., Haskew-Layton, R. E., Basso, M., Hushpulian, D. M., Payappilly, J. B., Speer, R. E., et al. (2011). Development of Neh2-luciferase reporter and its application for high throughput screening and real-time monitoring of Nrf2 activators. Chemistry and Biology, 18, 752–765.CrossRefPubMedPubMedCentral Smirnova, N. A., Haskew-Layton, R. E., Basso, M., Hushpulian, D. M., Payappilly, J. B., Speer, R. E., et al. (2011). Development of Neh2-luciferase reporter and its application for high throughput screening and real-time monitoring of Nrf2 activators. Chemistry and Biology, 18, 752–765.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Wakabayashi, N., Dinkova-Kostova, A. T., Holtzclaw, W. D., Kang, M., Kobayashi, A., Yamamoto, M., et al. (2005). Extremely potent triterpenoid inducers of the phase 2 response: Correlations of protection against oxidant and inflammatory stress. Proceedings of the National Academy of Sciences of the United States of America, 101, 2040–2045.CrossRef Wakabayashi, N., Dinkova-Kostova, A. T., Holtzclaw, W. D., Kang, M., Kobayashi, A., Yamamoto, M., et al. (2005). Extremely potent triterpenoid inducers of the phase 2 response: Correlations of protection against oxidant and inflammatory stress. Proceedings of the National Academy of Sciences of the United States of America, 101, 2040–2045.CrossRef
25.
Zurück zum Zitat Danesi, R., Tacca, M. D., & Soldan, G. (1986). Measurement of the SαT segment as the most reliable electrocardiogram parameter for the assessment of adriamycin-induced cardiotoxicity in the rat. Journal of Pharmaceutical Methods, 16, 251–259.CrossRef Danesi, R., Tacca, M. D., & Soldan, G. (1986). Measurement of the SαT segment as the most reliable electrocardiogram parameter for the assessment of adriamycin-induced cardiotoxicity in the rat. Journal of Pharmaceutical Methods, 16, 251–259.CrossRef
26.
Zurück zum Zitat Atessahin, A., Yilmaz, S., Karahan, I., Ceribasi, A. O., & Karaoglu, A. (2005). Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology, 212, 116–123.CrossRefPubMed Atessahin, A., Yilmaz, S., Karahan, I., Ceribasi, A. O., & Karaoglu, A. (2005). Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology, 212, 116–123.CrossRefPubMed
27.
Zurück zum Zitat Kono, Y. (1978). Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics, 186, 189–195.CrossRefPubMed Kono, Y. (1978). Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics, 186, 189–195.CrossRefPubMed
28.
Zurück zum Zitat Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefPubMed Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefPubMed
29.
Zurück zum Zitat Ellman, G. L. (1959). Tissue sulfhydril groups. Archives of Biochemistry and Biophysics, 82, 70–77.CrossRefPubMed Ellman, G. L. (1959). Tissue sulfhydril groups. Archives of Biochemistry and Biophysics, 82, 70–77.CrossRefPubMed
30.
Zurück zum Zitat Kavitha, K., Thiyagarajan, P., Rathna, J., Mishra, R., & Nagini, S. (2013). Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie, 95, 1629–1639.CrossRefPubMed Kavitha, K., Thiyagarajan, P., Rathna, J., Mishra, R., & Nagini, S. (2013). Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie, 95, 1629–1639.CrossRefPubMed
31.
Zurück zum Zitat Tran, K., Risinsong, R., Royce, D., Williams, C. R., Sporn, M. B., & Liby, K. (2012). The synthetic triterpenoid CDDO-methyl ester delays estrogen receptor-negative mammary carcinogenesis in polyoma middle T mice. Cancer Prevention Research, 5, 726–734.CrossRefPubMed Tran, K., Risinsong, R., Royce, D., Williams, C. R., Sporn, M. B., & Liby, K. (2012). The synthetic triterpenoid CDDO-methyl ester delays estrogen receptor-negative mammary carcinogenesis in polyoma middle T mice. Cancer Prevention Research, 5, 726–734.CrossRefPubMed
32.
Zurück zum Zitat Babu, T. D., Kuttan, G., & Padikkala, J. (1995). Cytotoxic and anti-tumour properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.) Urban. Journal of Ethnopharmacology, 48, 53–57.CrossRefPubMed Babu, T. D., Kuttan, G., & Padikkala, J. (1995). Cytotoxic and anti-tumour properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.) Urban. Journal of Ethnopharmacology, 48, 53–57.CrossRefPubMed
33.
Zurück zum Zitat Tallaj, J. A., Veronica, F., Rayburn, B. K., Pinderski, L., Benza, R. L., Pamboukian, S., et al. (2005). Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. The Journal of Heart and Lung Transplantation, 24, 2196–2200.CrossRefPubMed Tallaj, J. A., Veronica, F., Rayburn, B. K., Pinderski, L., Benza, R. L., Pamboukian, S., et al. (2005). Response of doxorubicin-induced cardiomyopathy to the current management strategy of heart failure. The Journal of Heart and Lung Transplantation, 24, 2196–2200.CrossRefPubMed
34.
Zurück zum Zitat Bachur, N. R., Gordon, S. L., Gee, M. V., & Kon, H. (1979). NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proceedings of the National Academy of Sciences of the United States of America, USA, 76, 954–957.CrossRefPubMedPubMedCentral Bachur, N. R., Gordon, S. L., Gee, M. V., & Kon, H. (1979). NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals. Proceedings of the National Academy of Sciences of the United States of America, USA, 76, 954–957.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Keizer, H. G., Pinedo, H. M., Schuurhuis, G. J., & Joenje, H. (1990). Doxorubicin (adriamycin): A critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacology and Therapeutics, 47, 219–231.CrossRefPubMed Keizer, H. G., Pinedo, H. M., Schuurhuis, G. J., & Joenje, H. (1990). Doxorubicin (adriamycin): A critical review of free radical-dependent mechanisms of cytotoxicity. Pharmacology and Therapeutics, 47, 219–231.CrossRefPubMed
36.
Zurück zum Zitat Lee, V., Randhawa, A. K., & Singhal, P. K. (1991). Adriamycin induced myocardial dysfunction in vitro is mediated by free radicals. American Journal of Physiology, 261, 989–995. Lee, V., Randhawa, A. K., & Singhal, P. K. (1991). Adriamycin induced myocardial dysfunction in vitro is mediated by free radicals. American Journal of Physiology, 261, 989–995.
37.
Zurück zum Zitat Kamble, S., Mohan, M., & Kasture, S. (2009). Protective effect of Solanum torvum on doxorubicin-induced cardiactoxicity in rats. Pharmacologyonline, 2, 1192–1204. Kamble, S., Mohan, M., & Kasture, S. (2009). Protective effect of Solanum torvum on doxorubicin-induced cardiactoxicity in rats. Pharmacologyonline, 2, 1192–1204.
38.
Zurück zum Zitat Mohan, M., Kamble, S., Satyanarayana, J., Nageshwar, M., & Reddy, N. (2011). Protective effect of Solanum torvum on doxorubicin-induced hepatotoxicity. International Journal of Drug Development and Research, 3, 131–138. Mohan, M., Kamble, S., Satyanarayana, J., Nageshwar, M., & Reddy, N. (2011). Protective effect of Solanum torvum on doxorubicin-induced hepatotoxicity. International Journal of Drug Development and Research, 3, 131–138.
39.
Zurück zum Zitat Tkachev, V. O., Menshchikova, E. B., & Zenkov, N. K. (2011). Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry (Moscow), 76, 407–422.CrossRef Tkachev, V. O., Menshchikova, E. B., & Zenkov, N. K. (2011). Mechanism of the Nrf2/Keap1/ARE signaling system. Biochemistry (Moscow), 76, 407–422.CrossRef
40.
Zurück zum Zitat Hayes, J. D., McMahon, M., Chowdhry, S., & Dinkova-Kostova, A. T. (2010). Cancer chemoprevention mechanisms mediated through the Keap1–Nrf2 pathway. Antioxidants and Redox Signaling, 13, 1714–1748.CrossRef Hayes, J. D., McMahon, M., Chowdhry, S., & Dinkova-Kostova, A. T. (2010). Cancer chemoprevention mechanisms mediated through the Keap1–Nrf2 pathway. Antioxidants and Redox Signaling, 13, 1714–1748.CrossRef
41.
Zurück zum Zitat Ma, K., Zhang, Y., Zhu, D., & Lou, Y. (2009). Protective effect of asiatic acid d-galactosamine/lipopolysaccharide-induced hepatotocixicity in hepatocyte and Kupffer cells co-cultured system via redox regulated leukotrien C4 synthase expression pathways. European Journal of Pharmacology, 603, 98–107.CrossRefPubMed Ma, K., Zhang, Y., Zhu, D., & Lou, Y. (2009). Protective effect of asiatic acid d-galactosamine/lipopolysaccharide-induced hepatotocixicity in hepatocyte and Kupffer cells co-cultured system via redox regulated leukotrien C4 synthase expression pathways. European Journal of Pharmacology, 603, 98–107.CrossRefPubMed
Metadaten
Titel
Asiatic Acid Ameliorates Doxorubicin-Induced Cardiac and Hepato-Renal Toxicities with Nrf2 Transcriptional Factor Activation in Rats
verfasst von
Sarika M. Kamble
Chandragouda R. Patil
Publikationsdatum
30.08.2017
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 2/2018
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-017-9424-0

Weitere Artikel der Ausgabe 2/2018

Cardiovascular Toxicology 2/2018 Zur Ausgabe