Skip to main content
Erschienen in: BMC Psychiatry 1/2014

Open Access 01.12.2014 | Research article

Association between brain-derived neurotrophic factor genetic polymorphism Val66Met and susceptibility to bipolar disorder: a meta-analysis

verfasst von: Zuowei Wang, Zezhi Li, Keming Gao, Yiru Fang

Erschienen in: BMC Psychiatry | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

In view of previous conflicting findings, this meta-analysis was performed to comprehensively determine the overall strength of associations between brain-derived neurotrophic factor (BDNF) genetic polymorphism Val66Met and susceptibility to bipolar disorders (BPD).

Methods

Literatures published and cited in Pubmed and Wanfang Data was searched with terms of ‘Val66Met’, ‘G196A’, ‘rs6265’, ‘BDNF’, ‘association’, and ‘bipolar disorder’ up to March 2014. All original case–control association studies were meta-analyzed with a pooled OR to estimate the risk and 95% confidence interval (CI) to reflect the magnitude of variance.

Results

Twenty-one case–control association studies met our criteria for the meta-analysis. Overall, there was no significant difference in allelic distribution of Val66Met polymorphism between patients and controls with a pooled OR = 1.03 (95% CI 0.98, 1.08) although there was a trend towards association between Val66Met polymorphism and BPD in Caucasians with an OR of 1.08 (95% CI 1.00, 1.16). However, subgroup analyses showed that there was a significant association of Val allele with decreased disease susceptibility for bipolar disorder type II with a pooled OR of 0.88 (95% CI 0.78, 0.99).

Conclusions

There is no compelling evidence to supportVal66Met polymorphism in BDNF gene playing an important role in the susceptibility to BPD across different ethnicities.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12888-014-0366-9) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

ZW, KG and YF contributed to conception, design, analysis and interpretation of data and drafting of the manuscript. ZW and ZL reviewed all references and extracted the data from each eligible study. All authors have given final approval of the version to be published.

Background

Bipolar disorders (BPD) are chronic, recurrent, debilitating disorders with high lifetime prevalence and significant disease burden across different populations [1]-[3]. However, recent advances in pharmacological treatment for BPD remained quite modest. The treatment of bipolar depression is still a major challenge [4],[5]. Moreover, BPD is frequently unrecognized and misdiagnosed, particularly in patients presenting with their first-episode of depression. These patients are often treated with inappropriate and costly regimens [6]-[9]. Thus, there is an urgent need to understand the pathophysiology of BPD in order to develop earlier diagnoses and more effective treatments [10]. Family, twins and epidemiological studies unequivocally demonstrate that BPD is a highly heritable disease with a heritability of more than 85%, and involves the interaction of multiple genes or more complex genetic mechanisms [11]-[13]. To date, association studies support a possible role for several candidate genes in BPD, including brain-derived neurotrophic factor (BDNF), but consistent direction of effects and alleles have not been established [14]. These inconsistent findings from previous genetic association studies may be related to variation in ascertainment, phenotype definition and control selection, limited power and possibly confounded by ethnic heterogeneity and population substructure [10],[15].
The hypothesis of neuronal plasticity involved in mood disorders has been supported by the use of antidepressants and mood stabilizers, e.g. lithium and valproate, inducing the expression of neurotrophins (e.g. BDNF) and synaptic changes [16],[17]. Moreover, BDNF gene has been implicated in the etiology of BPD by linkage studies [18]. Position 196 in exon 5 of the BDNF gene contains a G to A transition (dbSNP: rs6265) that results in an amino acid substitution (valine to methionine) at codon 66 in the precursor BDNF peptide sequence [19]. This change results in BDNF functional polymorphisms in this region as Val66Val, Val66Met, and Met66Met. Two previous family-based association studies found that this functional polymorphism Val66Met was significantly associated with the susceptibility to BPD [20],[21]. Following these two reports, a large number of association studies between BDNF gene polymorphisms and BPD have been published. Most of them specifically focused on the Val66Met polymorphism, but yielded conflicting results [10],[15],[22]. In view of the conflicting results, a meta-analysis on all original case–control association studies was performed to comprehensively determine the overall strength of associations between BPD and Val66Met polymorphism.

Methods

Studies included in the analysis were searched from two databases: Pubmed (http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​) and Wanfang Data (http://​www.​wanfangdata.​com/​), with the keywords ‘Val66Met’, ‘G196A’, ‘rs6265’, ‘BDNF’, ‘association’, and ‘bipolar disorder’ in varying combinations. The retrieved abstracts were used to identify studies that examined the allelic association between the Val66Met polymorphism of BDNF and bipolar disorder. Bibliographies or citations from retrieved articles were also cross-referenced as well. The searched period was from the first data available in each database up to March 2014. Two independent authors extracted the following data from each eligible study: last name of the first author, year of publication, ethnicity, sample sizes and allele frequencies of cases and controls, etc. Discrepancies were resolved by mutual consent.
All eligible studies were determined against the following inclusion criteria: (i) published in a peer-reviewed journal; (ii) presented original data; (iii) provided either allele frequency of Val(G)/Met(A), or genotypes (Val/Val, Val/Met, Met/ Met) in both BPD patients and healthy controls; (iv) enrolled more than 100 subjects in both patients group and controls group; and (v) designed as a case–control study. Both family-based studies and genome-wide association studies were excluded in this research. Duplications were deleted, as well as studies that reported all or part of their data previously. The authors of studies were contacted for additional information (e.g. allele or genotype frequencies or characteristics of the samples) if there was uncertainty about whether their data met our inclusion–exclusion criteria, or if we needed additional data which were not contained in the original report.

Statistical analyses

Data were classified by diagnostic category (case or control) and allele (Val or Met), and Val was assigned as the risk allele. Meta-analysis was performed similar to that described previously [22]. The pooled OR was calculated according to the methods of DerSimonian [23], and its 95% confidence interval (CI) was constructed using Woolf’s method [24]. The Cochran chi-square-based Q statistical test was performed to assess the heterogeneity of ORs, and the significance of the pooled OR was determined by the z-test. If the result of the heterogeneity test was p ≥ 0.05, ORs were pooled according to the fixed-effects model (Mantel-Haenszel methods); otherwise, the random-effects model was used. All statistical analyses were conducted using Review Manager Version 5.2 (RevMan 5.2) [25]. A sensitivity analysis of one-study removed strategy was used to evaluate whether or not the results are being driven by any one specific study, and a funnel plot was used to detect whether or not there is evidence of publication bias. Statistical tests were two-tailed, and the significance level was set at P < 0.05, unless stated otherwise.

Results

The process of identifying studied included in this meta-analysis is shown in Figure 1. Twenty-one case–control association studies met our criteria for the meta-analysis (Table 1). Data from four studies [26]-[29] were excluded due to the partial overlap with a larger sample size case–control study [30], and data from six studies were excluded due to less than 100 subjects in either patient group or control group [31]-[36]. Additionally, the case–control sample from a genome-wide association study was also excluded from current meta-analysis [37].
Table 1
Descriptive characteristics of included association studies between BDNF gene Val66Met polymorphism and bipolar disorders
Study
Year
Ancestry
Diagnostic criteria
Patient’s phenotype
Cases
Controls
Case Val
Controls Val
Hong et al. [38]
2003
Han Chinese
DSM-IV
BPD
108
392
118
406
Nakata et al. [39]
2003
Japanese
DSM-IV
BPI + BPII
130
190
152
220
Kunugi et al. [40]
2004
Japanese
DSM-IV
BPI + BPII
519
588
615
702
Oswald et al. [41]
2004
Caucasian
DSM-IV
BPAD
108
158
166
247
Skibinska et al. [42]
2004
Caucasian
DSM-IV
BPAD
352
375
588
613
Lohoff et al. [43]
2005
Caucasian
DSM-IV
BPI
621
998
1020
1576
Neves-Pereira et al. [44]
2005
Caucasian
DSM-IV
BPAD
263
350
417
547
Schumacher et al. [45]
2005
Caucasian
DSM-IV
BPAD
281
1097
456
1778
Green et al. [46]
2006
Caucasian
DSM-IV
BPI + BPII + Rapid-cycling BPD
1093
2100
1808
3404
Liu et al. [47]
2007
Han Chinese
ICD-10
BPAD
100
100
114
99
Tramontina et al. [48]
2007
Caucasian
DSM-IV
BPI
114
137
183
230
Kim et al. [49]
2008
Korean
DSM-IV
BPD
169
251
186
268
Tang et al. [50]
2008
Han Chinese
DSM-IV
BPD
197
208
238
235
Vincze et al. [51]
2008
Caucasian
DSM-IV
BPD
336
313
532
473
Ye et al. [52]
2009
Han Chinese
DSM-IV
BPD
222
357
217
367
Hosang et al. [53]
2010
Caucasian
ICD-10
BPD
488
598
780
983
Xu et al. [54]
2010
Han Chinese
DSM-IV
BPI + BPII
498
501
525
546
Min et al. [55]
2012
Korean
DSM-IV
BPD
184
214
222
245
Wang et al. [56]
2012
Han Chinese
DSM-IV
BPI + BPII
337
386
341
436
Chang et al. [30]
2013
Han Chinese
DSM-IV
BPI + BPII
967
349
962
361
Pae et al. [57]
2012
Korean
DSM-IV
BPD
132
170
150
197
Overall, the data from 7219 BPD cases and 9832 healthy controls were analyzed. The mean genotype distribution in Caucasian and Oriental population was presented in Table 2. There was no significant difference in allelic distribution of Val66Met polymorphism between patients and controls. The pooled OR was 1.03 (95% CI: 0.98-1.08, Z = 1.00, P = 0.32) (Figure 2). Similarly, there was also no significant difference in allelic distribution of Val66Met polymorphism between patients and controls in Oriental population, with a pooled OR of 0.96 (95% CI: 0.89-1.05, Z = 0.82, P = 0.41) for Han Chinese population, 0.99 (95% CI: 0.85-1.15, Z = 0.12, P = 0.90) for Japanese population, and 1.06 (95% CI: 0.89-1.25, Z = 0.67, P = 0.50) for Korean population, respectively (Figure 2). However, there was a trend towards significant difference in Caucasian population with a pooled OR of 1.08 (95% CI: 1.00-1.16, Z = 1.97, P = 0.05) (Figure 2). The sensitivity analysis showed that the results were not being driven by any one specific study, and the funnel plot did not detect there was evidence of publication bias (Figure 3).
Table 2
Pooled genotype distribution of Val66Met polymorphism in Caucasian and Oriental population
Population
BPD patients
Health controls
 
Val/Val
Val/Met
Met/Met
Val/Val
Val/Met
Met/Met
Caucasian
0.654
0.320
0.026
0.642
0.324
0.034
Oriental
0.296
0.486
0.218
0.311
0.489
0.200
Among 21 included studies, six case–control association studies made a distinction for clinical phenotypes between bipolar I disorder (BP I) and bipolar II disorder (BP II), and two other studies only recruited BP I patients (Table 3). A further meta-analysis of the data from the aforementioned eight studies did not find a significant difference in allelic distribution of Val66Met polymorphism between BP I patients and healthy controls with a pooled OR of 1.00 (95% CI: 0.93-1.08, Z = 0.04, P = 0.97) (Figure 4). However, there was a significant difference in allelic distribution of Val66Met polymorphism between BP II patients and healthy controls with a pooled OR of 0.88 (95% CI: 0.78-0.99, Z = 2.20, P = 0.03) (Figure 4). A post-hoc analysis did not find a significant difference in allelic distribution of Val66Met polymorphism between BP I patients and BP II patients with a pooled OR of 1.10 (95% CI: 0.98-1.25, Z = 1.58, P = 0.12) (Figure 5).
Table 3
Descriptive characteristics of included association studies between BDNF gene Val66Met polymorphism and subtyped bipolar disorders
Study
Year
Ancestry
Diagnostic criteria
Patient’s phenotype
Cases
Controls
Case Val
Controls Val
Bipolar I disorder
Nakata et al. [39]
2003
Japanese
DSM-IV
BPI
100
190
118
220
Kunugi et al. [40]
2004
Japanese
DSM-IV
BPI
347
588
412
702
Lohoff et al. [43]
2005
Caucasian
DSM-IV
BPI
621
998
1020
1576
Green et al. [46]
2006
Caucasian
DSM-IV
BPI
864
2100
1418
3404
Tramontina et al. [48]
2007
Caucasian
DSM-IV
BPI
114
137
183
230
Xu et al. [54]
2010
Han Chinese
DSM-IV
BPI
416
501
451
546
Wang et al. [56]
2012
Han Chinese
DSM-IV
BPI
281
386
288
436
Chang et al. [30]
2013
Han Chinese
DSM-IV
BPI
286
349
294
361
Bipolar II disorder
Nakata et al. [39]
2003
Japanese
DSM-IV
BPII
30
190
34
220
Kunugi et al. [40]
2004
Japanese
DSM-IV
BPII
172
588
203
702
Green et al. [46]
2006
Caucasian
DSM-IV
BPII
98
2100
159
3404
Xu et al. [54]
2010
Han Chinese
DSM-IV
BPII
82
501
74
546
Wang et al. [56]
2012
Han Chinese
DSM-IV
BPII
56
386
53
436
Chang et al. [30]
2013
Han Chinese
DSM-IV
BPII
681
349
668
361

Discussion

With a total of 7,219 patients and 9,832 control cases, our meta-analysis included an additional 4,076 BPD cases and 3,485 healthy controls compared to a previous meta-analysis of case–control studies [22]. Similar to this previous meta-analysis, we did not find significant associations between the Val66Met polymorphism and BPD susceptibility either in a combined population or a subgroup of Oriental patients. However, there was a trend towards significant association in Caucasian population (fixed-effects pooled OR = 1.08, P = 0.05). Subgroup meta-analyses also showed that the Val allele may be a protective factor for BP II (fixed-effects pooled OR = 0.88, P = 0.03).
Our overall finding, that no convincing evidence for association between the Val66Met polymorphism and BPD as a whole, is consistent with a previous meta-analysis reported by Kanazawa et al. [22], which included 11 case–control designed studies up to February 2006. However, our overall finding is inconsistent with the result of a meta-analysis conducted by Fan et al. [15], which included all original case–control and family-based association studies published up to May 2007 and found a modest but statistically significant association between the Val allele and BPD susceptibility [15]. Both our analysis and the analysis of Kanazawa et al. [22] exclusively included case–control studies. In contrast, the analysis of Fan et al. [15] included five family-based association studies with a total of 858 families and a genome-wide association study with 1866 BPD patients and 2932 controls. The inclusion of different studies in these meta-analyses may explain the discrepancy among these three meta-analysis studies. It is well known that BPD is a highly inheritable disorder. Inclusion of family-based association studies in the meta-analysis of Fan et al. [15] might increase the probability of detecting difference between patients and controls.
The finding of insignificant association between the Val66Met polymorphism and BPD in Oriental population populations (Chinese, Japanese and Korean populations), but a trend towards significance in Caucasian population suggest that ethnic heterogeneity may affect the results of these genetic association studies. Fan et al. [15] reported that the allele frequencies of the Val66Met polymorphism in BDNF gene across individual studies and four HapMap populations (European, Chinese, Japanese and Yoruban populations) had significant global variations, which raised concerns of possible population stratification among case–control studies [15]. A more recent population genetic study found that there were substantial variations in BDNF coding regions and haplotype frequencies between 58 global populations with the Met allele of Val66Met ranged from 0-72% frequencies [58]. As previously pointed out, unless all study participants are from a homogenous ethnic group, the confounding effect from different ethnic groups is inevitable [10]. Moreover, control selection (e.g. healthy control or family control) might also result in the discrepancy of findings in these genetic association studies. A significant discrepancy between the pooled ORs from case–control studies and family-based studies raised a concern regarding a more generalized transmission distortion at this locus that is not disease related [15].
The finding of significant associations between Val66Met polymorphism and BP II suggests that the strength of association between Val66Met polymorphism and BPD could depend on the clinical phenotypes or subtypes of BPD such as with rapid cycling course, early onset, or substance comorbidity [10],[28],[30]-[32],[34],[50],[55],[59]. Interestingly, the Val allele may have opposite associations with disease susceptibility in different bipolar subtypes. The findings of two previous studies in Caucasian population (a case–control study and a family-based study) appeared that the Val allele was associated with an increased disease risk for rapid-cycling bipolar disorder (RCBD) [46],[60], but this meta-analysis showed a decreased risk for BP II (especially in Han Chinese population). However, another family-based association analysis in Caucasian population did not replicate a significant association between the Val66Met polymorphism and BPD or RCBD. Thus the discrepancy of findings in these studies may stem from the differences of clinical phenotypes, ethnic origin and control selection.
Several limitations of this meta-analysis should be considered. One important limitation is that we only investigated relatively well-studied polymorphic variations in BDNF gene. Another limitation is that family-based studies and genome-wide association studies were excluded due to the heterogeneity of research methods. In a previous meta-analysis, the pooled OR derived from nine case–control studies is nominally significant (random-effects pooled OR = 1.07, P = 0.04), while the pooled OR derived from five family-based studies increases notably to an OR of 1.54 (P = 0.000019). Finally, since we primarily designed the current analysis to demonstrate the potential association(s) between Val66Met polymorphism and bipolar diagnostic boundaries, the association of this polymorphism with other characteristics of BPD such as sex, onset age, comorbidity, impairment in brain morphology and function, or treatment response, were not explored.

Conclusions

Taken together, the Val66Met polymorphism in BDNF gene may be involved in the pathogenesis of BPD by influencing the susceptibility of specific subtypes such as BP II, but there is no compelling evidence of BDNF gene playing an important role in susceptibility to BPD across different ethnicities. The associations observed in current meta-analysis should be interpreted with caution. Further large-scale studies with same definitions of phenotypes and controls in homogenous ethnic groups are warranted to elucidate the relevance of BDNF gene variations as a risk factor for BPD (or diagnostic subtypes) susceptibility.

Acknowledgements

Funding for this study was provided by the National Natural Science Foundation of China (Grant# 81301159, 91232719), Shanghai Key Medicine Specialties Program (Grant# ZK2012A12), Training Plan for Excellent Academic Leaders of Shanghai Health System (Grant# XBR2013087), the “12th Five-year Plan” of National Key Technologies R&D Program (Grant# 2012BAI01B04), and the National Key Clinical Disciplines at Shanghai Mental Health Center (Grant# OMA-MH 2011–873). The authors thank Dr Lihua Zhi, Academic Communication Officer in Eli Lilly Asia, Inc., who provided kind help in searching the literatures.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

ZW, KG and YF contributed to conception, design, analysis and interpretation of data and drafting of the manuscript. ZW and ZL reviewed all references and extracted the data from each eligible study. All authors have given final approval of the version to be published.
Literatur
1.
Zurück zum Zitat Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RM, Petukhova M, Kessler RC: Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry. 2007, 64: 543-552. 10.1001/archpsyc.64.5.543.CrossRefPubMedPubMedCentral Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RM, Petukhova M, Kessler RC: Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry. 2007, 64: 543-552. 10.1001/archpsyc.64.5.543.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, Viana MC, Andrade LH, Hu C, Karam EG, Ladea M, Medina-Mora ME, Ono Y, Posada-Villa J, Sagar R, Wells JE, Zarkov Z: Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry. 2011, 68: 241-251. 10.1001/archgenpsychiatry.2011.12.CrossRefPubMedPubMedCentral Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, Viana MC, Andrade LH, Hu C, Karam EG, Ladea M, Medina-Mora ME, Ono Y, Posada-Villa J, Sagar R, Wells JE, Zarkov Z: Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry. 2011, 68: 241-251. 10.1001/archgenpsychiatry.2011.12.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Phillips MR, Zhang J, Shi Q, Song Z, Ding Z, Pang S, Li X, Zhang Y, Wang Z: Prevalence, treatment, and associated disability of mental disorders in four provinces in China during 2001–05: an epidemiological survey. Lancet. 2009, 373: 2041-2053. 10.1016/S0140-6736(09)60660-7.CrossRefPubMed Phillips MR, Zhang J, Shi Q, Song Z, Ding Z, Pang S, Li X, Zhang Y, Wang Z: Prevalence, treatment, and associated disability of mental disorders in four provinces in China during 2001–05: an epidemiological survey. Lancet. 2009, 373: 2041-2053. 10.1016/S0140-6736(09)60660-7.CrossRefPubMed
4.
Zurück zum Zitat Geddes JR, Miklowitz DJ: Treatment of bipolar disorder. Lancet. 2013, 381: 1672-1682. 10.1016/S0140-6736(13)60857-0.CrossRefPubMed Geddes JR, Miklowitz DJ: Treatment of bipolar disorder. Lancet. 2013, 381: 1672-1682. 10.1016/S0140-6736(13)60857-0.CrossRefPubMed
5.
Zurück zum Zitat Yatham LN, Kennedy SH, Parikh SV, Schaffer A, Beaulieu S, Alda M, O’Donovan C, Macqueen G, McIntyre RS, Sharma V, Ravindran A, Young LT, Milev R, Bond DJ, Frey BN, Goldstein BI, Lafer B, Birmaher B, Ha K, Nolen WA, Berk M: Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord. 2013, 15: 1-44. 10.1111/bdi.12025.CrossRefPubMed Yatham LN, Kennedy SH, Parikh SV, Schaffer A, Beaulieu S, Alda M, O’Donovan C, Macqueen G, McIntyre RS, Sharma V, Ravindran A, Young LT, Milev R, Bond DJ, Frey BN, Goldstein BI, Lafer B, Birmaher B, Ha K, Nolen WA, Berk M: Canadian Network for Mood and Anxiety Treatments (CANMAT) and International Society for Bipolar Disorders (ISBD) collaborative update of CANMAT guidelines for the management of patients with bipolar disorder: update 2013. Bipolar Disord. 2013, 15: 1-44. 10.1111/bdi.12025.CrossRefPubMed
6.
Zurück zum Zitat Muzina DJ, Kemp DE, McIntyre RS: Differentiating bipolar disorders from major depressive disorders: treatment implications. Ann Clin Psychiatry. 2007, 19: 305-312. 10.1080/10401230701653591.CrossRefPubMed Muzina DJ, Kemp DE, McIntyre RS: Differentiating bipolar disorders from major depressive disorders: treatment implications. Ann Clin Psychiatry. 2007, 19: 305-312. 10.1080/10401230701653591.CrossRefPubMed
7.
Zurück zum Zitat Gao K, Kemp DE, Conroy C, Ganocy SJ, Findling RL, Calabrese JR: Comorbid anxiety and substance use disorders associated with a lower use of mood stabilizers in patients with rapid cycling bipolar disorder: a descriptive analysis of the cross-sectional data of 566 patients. Int J Clin Prac. 2010, 64: 336-344. 10.1111/j.1742-1241.2009.02284.x.CrossRef Gao K, Kemp DE, Conroy C, Ganocy SJ, Findling RL, Calabrese JR: Comorbid anxiety and substance use disorders associated with a lower use of mood stabilizers in patients with rapid cycling bipolar disorder: a descriptive analysis of the cross-sectional data of 566 patients. Int J Clin Prac. 2010, 64: 336-344. 10.1111/j.1742-1241.2009.02284.x.CrossRef
8.
Zurück zum Zitat Hu C, Xiang YT, Ungvari GS, Dickerson FB, Kilbourne AM, Si TM, Fang YR, Lu Z, Yang HC, Chiu HF, Lai KY, Hu J, Chen ZY, Huang Y, Sun J, Wang XP, Li HC, Zhang JB, Wang G: Undiagnosed bipolar disorder in patients treated for major depression in China. J Affect Disord. 2012, 140: 181-186. 10.1016/j.jad.2012.02.014.CrossRefPubMed Hu C, Xiang YT, Ungvari GS, Dickerson FB, Kilbourne AM, Si TM, Fang YR, Lu Z, Yang HC, Chiu HF, Lai KY, Hu J, Chen ZY, Huang Y, Sun J, Wang XP, Li HC, Zhang JB, Wang G: Undiagnosed bipolar disorder in patients treated for major depression in China. J Affect Disord. 2012, 140: 181-186. 10.1016/j.jad.2012.02.014.CrossRefPubMed
9.
Zurück zum Zitat Xiang YT, Zhang L, Wang G, Hu C, Ungvari GS, Dickerson FB, Kilbourne AM, Si TM, Fang YR, Lu Z, Yang HC, Lai KY, Lee EH, Hu J, Chen ZY, Huang Y, Sun J, Wang XP, Li HC, Zhang JB, Chiu HF: Sociodemographic and clinical features of bipolar disorder patients misdiagnosed with major depressive disorder in China. Bipolar Disord. 2013, 15: 199-205. 10.1111/bdi.12052.CrossRefPubMed Xiang YT, Zhang L, Wang G, Hu C, Ungvari GS, Dickerson FB, Kilbourne AM, Si TM, Fang YR, Lu Z, Yang HC, Lai KY, Lee EH, Hu J, Chen ZY, Huang Y, Sun J, Wang XP, Li HC, Zhang JB, Chiu HF: Sociodemographic and clinical features of bipolar disorder patients misdiagnosed with major depressive disorder in China. Bipolar Disord. 2013, 15: 199-205. 10.1111/bdi.12052.CrossRefPubMed
10.
Zurück zum Zitat Wu R, Fan J, Zhao J, Calabrese JR, Gao K: The relationship between neurotrophins and bipolar disorder. Expert Rev Neurother. 2014, 14: 51-65. 10.1586/14737175.2014.863709.CrossRefPubMed Wu R, Fan J, Zhao J, Calabrese JR, Gao K: The relationship between neurotrophins and bipolar disorder. Expert Rev Neurother. 2014, 14: 51-65. 10.1586/14737175.2014.863709.CrossRefPubMed
12.
Zurück zum Zitat McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A: The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry. 2003, 60: 497-502. 10.1001/archpsyc.60.5.497.CrossRefPubMed McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A: The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry. 2003, 60: 497-502. 10.1001/archpsyc.60.5.497.CrossRefPubMed
13.
Zurück zum Zitat Smoller JW, Finn CT: Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet. 2003, 123C: 48-58. 10.1002/ajmg.c.20013.CrossRefPubMed Smoller JW, Finn CT: Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet. 2003, 123C: 48-58. 10.1002/ajmg.c.20013.CrossRefPubMed
14.
Zurück zum Zitat Hayden EP, Nurnberger JI: Molecular genetics of bipolar disorder. Genes Brain Behav. 2006, 5: 85-95. 10.1111/j.1601-183X.2005.00138.x.CrossRefPubMed Hayden EP, Nurnberger JI: Molecular genetics of bipolar disorder. Genes Brain Behav. 2006, 5: 85-95. 10.1111/j.1601-183X.2005.00138.x.CrossRefPubMed
15.
Zurück zum Zitat Fan J, Sklar P: Genetics of bipolar disorder: focus on BDNF Val66Met polymorphism. Novartis Found Symp. 2008, 289: 60-72. 10.1002/9780470751251.ch5.CrossRefPubMed Fan J, Sklar P: Genetics of bipolar disorder: focus on BDNF Val66Met polymorphism. Novartis Found Symp. 2008, 289: 60-72. 10.1002/9780470751251.ch5.CrossRefPubMed
16.
Zurück zum Zitat Duman RS, Malberg J, Nakagawa S, D’Sa C: Neuronal plasticity and survival in mood disorders. Biol Psychiatry. 2000, 48: 732-739. 10.1016/S0006-3223(00)00935-5.CrossRefPubMed Duman RS, Malberg J, Nakagawa S, D’Sa C: Neuronal plasticity and survival in mood disorders. Biol Psychiatry. 2000, 48: 732-739. 10.1016/S0006-3223(00)00935-5.CrossRefPubMed
17.
Zurück zum Zitat Manji HK, Moore GJ, Rajkowska G, Chen G: Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry. 2000, 5: 578-593. 10.1038/sj.mp.4000811.CrossRefPubMed Manji HK, Moore GJ, Rajkowska G, Chen G: Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry. 2000, 5: 578-593. 10.1038/sj.mp.4000811.CrossRefPubMed
18.
Zurück zum Zitat Craddock N, Lendon C: Chromosome workshop: chromosomes 11, 14, and 15. Am J Med Genet. 1999, 88: 244-254. 10.1002/(SICI)1096-8628(19990618)88:3<244::AID-AJMG7>3.0.CO;2-1.CrossRefPubMed Craddock N, Lendon C: Chromosome workshop: chromosomes 11, 14, and 15. Am J Med Genet. 1999, 88: 244-254. 10.1002/(SICI)1096-8628(19990618)88:3<244::AID-AJMG7>3.0.CO;2-1.CrossRefPubMed
19.
Zurück zum Zitat Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES: Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999, 22: 231-238. 10.1038/10290.CrossRefPubMed Cargill M, Altshuler D, Ireland J, Sklar P, Ardlie K, Patil N, Shaw N, Lane CR, Lim EP, Kalyanaraman N, Nemesh J, Ziaugra L, Friedland L, Rolfe A, Warrington J, Lipshutz R, Daley GQ, Lander ES: Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 1999, 22: 231-238. 10.1038/10290.CrossRefPubMed
20.
Zurück zum Zitat Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL: The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet. 2002, 71: 651-655. 10.1086/342288.CrossRefPubMedPubMedCentral Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL: The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet. 2002, 71: 651-655. 10.1086/342288.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim Y, Tsan G, Schaffner S, Kirov G, Jones I, Owen M, Craddock N, DePaulo JR, Lander ES: Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. brain-derived neutrophic factor. Mol Psychiatry. 2002, 7: 579-593. 10.1038/sj.mp.4001058.CrossRefPubMed Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim Y, Tsan G, Schaffner S, Kirov G, Jones I, Owen M, Craddock N, DePaulo JR, Lander ES: Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. brain-derived neutrophic factor. Mol Psychiatry. 2002, 7: 579-593. 10.1038/sj.mp.4001058.CrossRefPubMed
22.
Zurück zum Zitat Kanazawa T, Glatt SJ, Kia-Keating B, Yoneda H, Tsuang MT: Meta-analysis reveals no association of the Val66Met polymorphism of brain-derived neurotrophic factor with either schizophrenia or bipolar disorder. Psychiatr Genet. 2007, 17: 165-170. 10.1097/YPG.0b013e32801da2e2.CrossRefPubMed Kanazawa T, Glatt SJ, Kia-Keating B, Yoneda H, Tsuang MT: Meta-analysis reveals no association of the Val66Met polymorphism of brain-derived neurotrophic factor with either schizophrenia or bipolar disorder. Psychiatr Genet. 2007, 17: 165-170. 10.1097/YPG.0b013e32801da2e2.CrossRefPubMed
23.
Zurück zum Zitat Dersimonian R: Combining evidence from clinical-trials. Anesth Analg. 1990, 70: 475-476. 10.1213/00000539-199005000-00001.CrossRefPubMed Dersimonian R: Combining evidence from clinical-trials. Anesth Analg. 1990, 70: 475-476. 10.1213/00000539-199005000-00001.CrossRefPubMed
24.
Zurück zum Zitat Woolf B: On estimating the relation between blood group and disease. Ann Hum Genet. 1955, 19: 251-253. 10.1111/j.1469-1809.1955.tb01348.x.CrossRefPubMed Woolf B: On estimating the relation between blood group and disease. Ann Hum Genet. 1955, 19: 251-253. 10.1111/j.1469-1809.1955.tb01348.x.CrossRefPubMed
25.
Zurück zum Zitat The Cochrane Collaboration: Review Manager (RevMan) [Computer program] Version 5.2. 2012, The Nordic Cochrane Centre, Copenhagen The Cochrane Collaboration: Review Manager (RevMan) [Computer program] Version 5.2. 2012, The Nordic Cochrane Centre, Copenhagen
26.
Zurück zum Zitat Huang CC, Chang YH, Lee SY, Chen SL, Chen SH, Chu CH, Huang SY, Tzeng NS, Lee IH, Yeh TL, Yang YK, Lu RB: The interaction between BDNF and DRD2 in bipolar II disorder but not in bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet. 2012, 159B: 501-507. 10.1002/ajmg.b.32055.CrossRefPubMed Huang CC, Chang YH, Lee SY, Chen SL, Chen SH, Chu CH, Huang SY, Tzeng NS, Lee IH, Yeh TL, Yang YK, Lu RB: The interaction between BDNF and DRD2 in bipolar II disorder but not in bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet. 2012, 159B: 501-507. 10.1002/ajmg.b.32055.CrossRefPubMed
27.
Zurück zum Zitat Lee SY, Chen SL, Chen SH, Chu CH, Chang YH, Lin SH, Huang SY, Tzeng NS, Kuo PH, Lee IH, Yeh TL, Yang YK, Lu RB: Interaction of the DRD3 and BDNF gene variants in subtyped bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2012, 39: 382-387. 10.1016/j.pnpbp.2012.07.015.CrossRefPubMed Lee SY, Chen SL, Chen SH, Chu CH, Chang YH, Lin SH, Huang SY, Tzeng NS, Kuo PH, Lee IH, Yeh TL, Yang YK, Lu RB: Interaction of the DRD3 and BDNF gene variants in subtyped bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2012, 39: 382-387. 10.1016/j.pnpbp.2012.07.015.CrossRefPubMed
28.
Zurück zum Zitat Lee SY, Chen SL, Wang YS, Chang YH, Huang SY, Tzeng NS, Lee IH, Yeh TL, Yang YK, Lu RB: COMT and BDNF interacted in bipolar II disorder not comorbid with anxiety disorder. Behav Brain Res. 2013, 237: 243-248. 10.1016/j.bbr.2012.09.039.CrossRefPubMed Lee SY, Chen SL, Wang YS, Chang YH, Huang SY, Tzeng NS, Lee IH, Yeh TL, Yang YK, Lu RB: COMT and BDNF interacted in bipolar II disorder not comorbid with anxiety disorder. Behav Brain Res. 2013, 237: 243-248. 10.1016/j.bbr.2012.09.039.CrossRefPubMed
29.
Zurück zum Zitat Chen SL, Lee SY, Chang YH, Chen SH, Chu CH, Wang TY, Chen PS, Lee IH, Yang YK, Hong JS, Lu RB: The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese patients with bipolar disorder and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2014, 51C: 99-104. 10.1016/j.pnpbp.2014.01.012.CrossRef Chen SL, Lee SY, Chang YH, Chen SH, Chu CH, Wang TY, Chen PS, Lee IH, Yang YK, Hong JS, Lu RB: The BDNF Val66Met polymorphism and plasma brain-derived neurotrophic factor levels in Han Chinese patients with bipolar disorder and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2014, 51C: 99-104. 10.1016/j.pnpbp.2014.01.012.CrossRef
30.
Zurück zum Zitat Chang YH, Lee SY, Chen SL, Tzeng NS, Wang TY, Lee IH, Chen PS, Huang SY, Yang YK, Ko HC, Lu RB: Genetic variants of the BDNF and DRD3 genes in bipolar disorder comorbid with anxiety disorder. J Affect Disord. 2013, 151: 967-972. 10.1016/j.jad.2013.08.017.CrossRefPubMed Chang YH, Lee SY, Chen SL, Tzeng NS, Wang TY, Lee IH, Chen PS, Huang SY, Yang YK, Ko HC, Lu RB: Genetic variants of the BDNF and DRD3 genes in bipolar disorder comorbid with anxiety disorder. J Affect Disord. 2013, 151: 967-972. 10.1016/j.jad.2013.08.017.CrossRefPubMed
31.
Zurück zum Zitat Chepenik LG, Fredericks C, Papademetris X, Spencer L, Lacadie C, Wang F, Pittman B, Duncan JS, Staib LH, Duman RS, Gelernter J, Blumberg HP: Effects of the brain-derived neurotrophic growth factor val66met variation on hippocampus morphology in bipolar disorder. Neuropsychopharmacology. 2009, 34: 944-951. 10.1038/npp.2008.107.CrossRefPubMed Chepenik LG, Fredericks C, Papademetris X, Spencer L, Lacadie C, Wang F, Pittman B, Duncan JS, Staib LH, Duman RS, Gelernter J, Blumberg HP: Effects of the brain-derived neurotrophic growth factor val66met variation on hippocampus morphology in bipolar disorder. Neuropsychopharmacology. 2009, 34: 944-951. 10.1038/npp.2008.107.CrossRefPubMed
32.
Zurück zum Zitat Matsuo K, Walss-Bass C, Nery FG, Nicoletti MA, Hatch JP, Frey BN, Monkul ES, Zunta-Soares GB, Bowden CL, Escamilla MA, Soares JC: Neuronal correlates of brain-derived neurotrophic factor Val66Met polymorphism and morphometric abnormalities in bipolar disorder. Neuropsychopharmacology. 2009, 34: 1904-1913. 10.1038/npp.2009.23.CrossRefPubMed Matsuo K, Walss-Bass C, Nery FG, Nicoletti MA, Hatch JP, Frey BN, Monkul ES, Zunta-Soares GB, Bowden CL, Escamilla MA, Soares JC: Neuronal correlates of brain-derived neurotrophic factor Val66Met polymorphism and morphometric abnormalities in bipolar disorder. Neuropsychopharmacology. 2009, 34: 1904-1913. 10.1038/npp.2009.23.CrossRefPubMed
33.
Zurück zum Zitat Carrard A, Salzmann A, Perrou N, Gafner J, Malafoss A, Karege F: Genetic association of the Phosphoinositide-3 kinase in schizophrenia and bipolar disorder and interaction with a BDNF gene polymorphism. Brain Behav. 2011, 1: 119-124. 10.1002/brb3.23.CrossRefPubMedPubMedCentral Carrard A, Salzmann A, Perrou N, Gafner J, Malafoss A, Karege F: Genetic association of the Phosphoinositide-3 kinase in schizophrenia and bipolar disorder and interaction with a BDNF gene polymorphism. Brain Behav. 2011, 1: 119-124. 10.1002/brb3.23.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Gruber O, Hasan A, Scherk H, Wobrock T, Schneider-Axmann T, Ekawardhani S, Schmitt A, Backens M, Reith W, Meyer J, Falkai P: Association of the brain-derived neurotrophic factor val66met polymorphism with magnetic resonance spectroscopic markers in the human hippocampus: in vivo evidence for effects on the glutamate system. Eur Arch Psychiatry Clin Neurosci. 2012, 262: 23-31. 10.1007/s00406-011-0214-6.CrossRefPubMed Gruber O, Hasan A, Scherk H, Wobrock T, Schneider-Axmann T, Ekawardhani S, Schmitt A, Backens M, Reith W, Meyer J, Falkai P: Association of the brain-derived neurotrophic factor val66met polymorphism with magnetic resonance spectroscopic markers in the human hippocampus: in vivo evidence for effects on the glutamate system. Eur Arch Psychiatry Clin Neurosci. 2012, 262: 23-31. 10.1007/s00406-011-0214-6.CrossRefPubMed
35.
Zurück zum Zitat Teh CA, Lee TS, Kuchibhatla M, Ashley-Koch A, Macfall J, Krishnan R, Beyer J: Bipolar disorder, brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and brain morphology. PLoS One. 2012, 7: e38469-10.1371/journal.pone.0038469.CrossRefPubMedPubMedCentral Teh CA, Lee TS, Kuchibhatla M, Ashley-Koch A, Macfall J, Krishnan R, Beyer J: Bipolar disorder, brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and brain morphology. PLoS One. 2012, 7: e38469-10.1371/journal.pone.0038469.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Kenna HA, Reynolds-May M, Stepanenko A, Ketter TA, Hallmayer J, Rasgon NL: Blood levels of brain derived neurotrophic factor in women with bipolar disorder and healthy control women. J Affect Disord. 2014, 156: 214-218. 10.1016/j.jad.2013.01.054.CrossRefPubMed Kenna HA, Reynolds-May M, Stepanenko A, Ketter TA, Hallmayer J, Rasgon NL: Blood levels of brain derived neurotrophic factor in women with bipolar disorder and healthy control women. J Affect Disord. 2014, 156: 214-218. 10.1016/j.jad.2013.01.054.CrossRefPubMed
37.
Zurück zum Zitat Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007, 447: 661-678. 10.1038/nature05911.CrossRef Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007, 447: 661-678. 10.1038/nature05911.CrossRef
38.
Zurück zum Zitat Hong CJ, Huo SJ, Yen FC, Tung CL, Pan GM, Tsai SJ: Association study of a brain-derived neurotrophic-factor genetic polymorphism and mood disorders, age of onset and suicidal behavior. Neuropsychobiology. 2003, 48: 186-189. 10.1159/000074636.CrossRefPubMed Hong CJ, Huo SJ, Yen FC, Tung CL, Pan GM, Tsai SJ: Association study of a brain-derived neurotrophic-factor genetic polymorphism and mood disorders, age of onset and suicidal behavior. Neuropsychobiology. 2003, 48: 186-189. 10.1159/000074636.CrossRefPubMed
39.
Zurück zum Zitat Nakata K, Ujike H, Sakai A, Uchida N, Nomura A, Imamura T, Katsu T, Tanaka Y, Hamamura T, Kuroda S: Association study of the brain-derived neurotrophic factor (BDNF) gene with bipolar disorder. Neurosci Lett. 2003, 337: 17-20. 10.1016/S0304-3940(02)01292-2.CrossRefPubMed Nakata K, Ujike H, Sakai A, Uchida N, Nomura A, Imamura T, Katsu T, Tanaka Y, Hamamura T, Kuroda S: Association study of the brain-derived neurotrophic factor (BDNF) gene with bipolar disorder. Neurosci Lett. 2003, 337: 17-20. 10.1016/S0304-3940(02)01292-2.CrossRefPubMed
40.
Zurück zum Zitat Kunugi H, Iijima Y, Tatsumi M, Yoshida M, Hashimoto R, Kato T, Sakamoto K, Fukunaga T, Inada T, Suzuki T, Iwata N, Ozaki N, Yamada K, Yoshikawa T: No association between the Val66Met polymorphism of the brain-derived neurotrophic factorgene and bipolar disorder in a Japanese population: a multicenter study. Biol Psychiatry. 2004, 56: 376-378. 10.1016/j.biopsych.2004.06.017.CrossRefPubMed Kunugi H, Iijima Y, Tatsumi M, Yoshida M, Hashimoto R, Kato T, Sakamoto K, Fukunaga T, Inada T, Suzuki T, Iwata N, Ozaki N, Yamada K, Yoshikawa T: No association between the Val66Met polymorphism of the brain-derived neurotrophic factorgene and bipolar disorder in a Japanese population: a multicenter study. Biol Psychiatry. 2004, 56: 376-378. 10.1016/j.biopsych.2004.06.017.CrossRefPubMed
41.
Zurück zum Zitat Oswald P, Del-Favero J, Massat I, Souery D, Claes S, Van Broeckhoven C, Mendlewicz J: Non-replication of the brain-derived neurotrophic factor (BDNF) association in bipolar affective disorder: a Belgian patient-control study. Am J Med Genet B Neuropsychiatr Genet. 2004, 129B: 34-35. 10.1002/ajmg.b.30056.CrossRefPubMed Oswald P, Del-Favero J, Massat I, Souery D, Claes S, Van Broeckhoven C, Mendlewicz J: Non-replication of the brain-derived neurotrophic factor (BDNF) association in bipolar affective disorder: a Belgian patient-control study. Am J Med Genet B Neuropsychiatr Genet. 2004, 129B: 34-35. 10.1002/ajmg.b.30056.CrossRefPubMed
42.
Zurück zum Zitat Skibinska M, Hauser J, Czerski PM, Leszczynska-Rodziewicz A, Kosmowska M, Kapelski P, Slopien A, Zakrzewska M, Rybakowski JK: Association analysis of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism in schizophrenia and bipolar affective disorder. World J Biol Psychiatry. 2004, 5: 215-220. 10.1080/15622970410029936.CrossRefPubMed Skibinska M, Hauser J, Czerski PM, Leszczynska-Rodziewicz A, Kosmowska M, Kapelski P, Slopien A, Zakrzewska M, Rybakowski JK: Association analysis of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism in schizophrenia and bipolar affective disorder. World J Biol Psychiatry. 2004, 5: 215-220. 10.1080/15622970410029936.CrossRefPubMed
43.
Zurück zum Zitat Lohoff FW, Sander T, Ferraro TN, Dahl JP, Gallinat J, Berrettini WH: Confirmation of association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene and bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet. 2005, 139B: 51-53. 10.1002/ajmg.b.30215.CrossRefPubMed Lohoff FW, Sander T, Ferraro TN, Dahl JP, Gallinat J, Berrettini WH: Confirmation of association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene and bipolar I disorder. Am J Med Genet B Neuropsychiatr Genet. 2005, 139B: 51-53. 10.1002/ajmg.b.30215.CrossRefPubMed
44.
Zurück zum Zitat Neves-Pereira M, Cheung JK, Pasdar A, Zhang F, Breen G, Yates P, Sinclair M, Crombie C, Walker N, St Clair DM: BDNF gene is a risk factor for schizophrenia in a Scottish population. Mol Psychiatry. 2005, 10: 208-212. 10.1038/sj.mp.4001575.CrossRefPubMed Neves-Pereira M, Cheung JK, Pasdar A, Zhang F, Breen G, Yates P, Sinclair M, Crombie C, Walker N, St Clair DM: BDNF gene is a risk factor for schizophrenia in a Scottish population. Mol Psychiatry. 2005, 10: 208-212. 10.1038/sj.mp.4001575.CrossRefPubMed
45.
Zurück zum Zitat Schumacher J, Jamra RA, Becker T, Ohlraun S, Klopp N, Binder EB, Schulze TG, Deschner M, Schmäl C, Höfels S, Zobel A, Illig T, Propping P, Holsboer F, Rietschel M, Nöthen MM, Cichon S: Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry. 2005, 58: 307-314. 10.1016/j.biopsych.2005.04.006.CrossRefPubMed Schumacher J, Jamra RA, Becker T, Ohlraun S, Klopp N, Binder EB, Schulze TG, Deschner M, Schmäl C, Höfels S, Zobel A, Illig T, Propping P, Holsboer F, Rietschel M, Nöthen MM, Cichon S: Evidence for a relationship between genetic variants at the brain-derived neurotrophic factor (BDNF) locus and major depression. Biol Psychiatry. 2005, 58: 307-314. 10.1016/j.biopsych.2005.04.006.CrossRefPubMed
46.
Zurück zum Zitat Green EK, Raybould R, Macgregor S, Hyde S, Young AH, O’Donovan MC, Owen MJ, Kirov G, Jones L, Jones I, Craddock N: Genetic variation of brain-derived neurotrophic factor (BDNF) in bipolar disorder: case–control study of over 3000 individuals from the UK. Br J Psychiatry. 2006, 188: 21-25. 10.1192/bjp.bp.105.009969.CrossRefPubMed Green EK, Raybould R, Macgregor S, Hyde S, Young AH, O’Donovan MC, Owen MJ, Kirov G, Jones L, Jones I, Craddock N: Genetic variation of brain-derived neurotrophic factor (BDNF) in bipolar disorder: case–control study of over 3000 individuals from the UK. Br J Psychiatry. 2006, 188: 21-25. 10.1192/bjp.bp.105.009969.CrossRefPubMed
47.
Zurück zum Zitat Liu M, Ling SH, Li WB, Wang CY, Chen DF, Wang G: An association study between GRIN1, BDNF genes and bipolar disorder. Yi Chuan. 2007, 29: 41-46. 10.1360/yc-007-0041.CrossRefPubMed Liu M, Ling SH, Li WB, Wang CY, Chen DF, Wang G: An association study between GRIN1, BDNF genes and bipolar disorder. Yi Chuan. 2007, 29: 41-46. 10.1360/yc-007-0041.CrossRefPubMed
48.
Zurück zum Zitat Tramontina J, Frey BN, Andreazza AC, Zandona M, Santin A, Kapczinski F: Val66met polymorphism and serum brain-derived neurotrophic factor levels in bipolar disorder. Mol Psychiatry. 2007, 12: 230-231. 10.1038/sj.mp.4001941.CrossRefPubMed Tramontina J, Frey BN, Andreazza AC, Zandona M, Santin A, Kapczinski F: Val66met polymorphism and serum brain-derived neurotrophic factor levels in bipolar disorder. Mol Psychiatry. 2007, 12: 230-231. 10.1038/sj.mp.4001941.CrossRefPubMed
49.
Zurück zum Zitat Kim B, Kim CY, Hong JP, Kim SY, Lee C, Joo YH: Brain-derived neurotrophic factor Val/Met polymorphism and bipolar disorder. association of the Met allele with suicidal behavior of bipolar patients. Neuropsychobiology. 2008, 58: 97-103. 10.1159/000162356.CrossRefPubMed Kim B, Kim CY, Hong JP, Kim SY, Lee C, Joo YH: Brain-derived neurotrophic factor Val/Met polymorphism and bipolar disorder. association of the Met allele with suicidal behavior of bipolar patients. Neuropsychobiology. 2008, 58: 97-103. 10.1159/000162356.CrossRefPubMed
50.
Zurück zum Zitat Tang J, Xiao L, Shu C, Wang G, Liu Z, Wang X, Wang H, Bai X: Association of the brain-derived neurotrophic factor gene and bipolar disorder with early age of onset in mainland China. Neurosci Lett. 2008, 433: 98-102. 10.1016/j.neulet.2008.01.001.CrossRefPubMed Tang J, Xiao L, Shu C, Wang G, Liu Z, Wang X, Wang H, Bai X: Association of the brain-derived neurotrophic factor gene and bipolar disorder with early age of onset in mainland China. Neurosci Lett. 2008, 433: 98-102. 10.1016/j.neulet.2008.01.001.CrossRefPubMed
51.
Zurück zum Zitat Vincze I, Perroud N, Buresi C, Baud P, Bellivier F, Etain B, Fournier C, Karege F, Matthey ML, Preisig M, Leboyer M, Malafosse A: Association between brain-derived neurotrophic factor gene and a severe form of bipolar disorder, but no interaction with the serotonin transporter gene. Bipolar Disord. 2008, 10: 580-587. 10.1111/j.1399-5618.2008.00603.x.CrossRefPubMed Vincze I, Perroud N, Buresi C, Baud P, Bellivier F, Etain B, Fournier C, Karege F, Matthey ML, Preisig M, Leboyer M, Malafosse A: Association between brain-derived neurotrophic factor gene and a severe form of bipolar disorder, but no interaction with the serotonin transporter gene. Bipolar Disord. 2008, 10: 580-587. 10.1111/j.1399-5618.2008.00603.x.CrossRefPubMed
52.
Zurück zum Zitat Ye CY, Xu YQ, Hu H, Yu SY, Wang DX, Shi SX, Wang LW: An association study of brain-derived neurotrophic factor gene polymorphism in bipolar disorders. Zhonghua Yi Xue Za Zhi. 2009, 89: 1897-1901.PubMed Ye CY, Xu YQ, Hu H, Yu SY, Wang DX, Shi SX, Wang LW: An association study of brain-derived neurotrophic factor gene polymorphism in bipolar disorders. Zhonghua Yi Xue Za Zhi. 2009, 89: 1897-1901.PubMed
53.
Zurück zum Zitat Hosang GM, Uher R, Keers R, Cohen-Woods S, Craig I, Korszun A, Perry J, Tozzi F, Muglia P, McGuffin P, Farmer AE: Stressful life events and the brain-derived neurotrophic factor gene in bipolar disorder. J Affect Disord. 2010, 125: 345-349. 10.1016/j.jad.2010.01.071.CrossRefPubMed Hosang GM, Uher R, Keers R, Cohen-Woods S, Craig I, Korszun A, Perry J, Tozzi F, Muglia P, McGuffin P, Farmer AE: Stressful life events and the brain-derived neurotrophic factor gene in bipolar disorder. J Affect Disord. 2010, 125: 345-349. 10.1016/j.jad.2010.01.071.CrossRefPubMed
54.
Zurück zum Zitat Xu J, Liu Y, Wang P, Li S, Wang Y, Li J, Zhou D, Chen Z, Zhao T, Wang T, Xu H, Yang Y, Feng G, He L, Yu L: Positive association between the brain-derived neurotrophic factor (BDNF) gene and bipolar disorder in the Han Chinese population. Am J Med Genet B Neuropsychiatr Genet. 2010, 153B: 275-279. 10.1002/ajmg.b.31096.CrossRefPubMed Xu J, Liu Y, Wang P, Li S, Wang Y, Li J, Zhou D, Chen Z, Zhao T, Wang T, Xu H, Yang Y, Feng G, He L, Yu L: Positive association between the brain-derived neurotrophic factor (BDNF) gene and bipolar disorder in the Han Chinese population. Am J Med Genet B Neuropsychiatr Genet. 2010, 153B: 275-279. 10.1002/ajmg.b.31096.CrossRefPubMed
55.
Zurück zum Zitat Min HJ, Cho HS, Kim SJ, Seok JH, Lee E, Jon DI: Association of the brain-derived neurotrophic factor gene and clinical features of bipolar disorder in Korea. Clin Psychopharmacol Neurosci. 2012, 10: 163-167. 10.9758/cpn.2012.10.3.163.CrossRefPubMedPubMedCentral Min HJ, Cho HS, Kim SJ, Seok JH, Lee E, Jon DI: Association of the brain-derived neurotrophic factor gene and clinical features of bipolar disorder in Korea. Clin Psychopharmacol Neurosci. 2012, 10: 163-167. 10.9758/cpn.2012.10.3.163.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Wang Z, Li Z, Chen J, Huang J, Yuan C, Hong W, Yu S, Fang Y: Association of BDNF gene polymorphism with bipolar disorders in Han Chinese population. Genes Brain Behav. 2012, 11: 524-528. 10.1111/j.1601-183X.2012.00797.x.CrossRefPubMed Wang Z, Li Z, Chen J, Huang J, Yuan C, Hong W, Yu S, Fang Y: Association of BDNF gene polymorphism with bipolar disorders in Han Chinese population. Genes Brain Behav. 2012, 11: 524-528. 10.1111/j.1601-183X.2012.00797.x.CrossRefPubMed
57.
Zurück zum Zitat Pae CU, Chiesa A, Porcelli S, Han C, Patkar AA, Lee SJ, Park MH, Serretti A, De Ronchi D: Influence of BDNF variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Neuropsychobiology. 2012, 65: 1-11. 10.1159/000327605.CrossRefPubMed Pae CU, Chiesa A, Porcelli S, Han C, Patkar AA, Lee SJ, Park MH, Serretti A, De Ronchi D: Influence of BDNF variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Neuropsychobiology. 2012, 65: 1-11. 10.1159/000327605.CrossRefPubMed
58.
Zurück zum Zitat Petryshen TL, Sabeti PC, Aldinger KA, Fry B, Fan JB, Schaffner SF, Waggoner SG, Tahl AR, Sklar P: Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol Psychiatry. 2010, 15: 810-815. 10.1038/mp.2009.24.CrossRefPubMed Petryshen TL, Sabeti PC, Aldinger KA, Fry B, Fan JB, Schaffner SF, Waggoner SG, Tahl AR, Sklar P: Population genetic study of the brain-derived neurotrophic factor (BDNF) gene. Mol Psychiatry. 2010, 15: 810-815. 10.1038/mp.2009.24.CrossRefPubMed
59.
Zurück zum Zitat Müller DJ, de Luca V, Sicard T, King N, Strauss J, Kennedy JL: Brain-derived neurotrophic factor (BDNF) gene and rapid-cycling bipolar disorder: family-based association study. Br J Psychiatry. 2006, 189: 317-323. 10.1192/bjp.bp.105.010587.CrossRefPubMed Müller DJ, de Luca V, Sicard T, King N, Strauss J, Kennedy JL: Brain-derived neurotrophic factor (BDNF) gene and rapid-cycling bipolar disorder: family-based association study. Br J Psychiatry. 2006, 189: 317-323. 10.1192/bjp.bp.105.010587.CrossRefPubMed
60.
Zurück zum Zitat Liu L, Foroud T, Xuei X, Berrettini W, Byerley W, Coryell W, El-Mallakh R, Gershon ES, Kelsoe JR, Lawson WB, MacKinnon DF, McInnis M, McMahon FJ, Murphy DL, Rice J, Scheftner W, Zandi PP, Lohoff FW, Niculescu AB, Meyer ET, Edenberg HJ, Nurnberger JI: Evidence of association between brain-derived neurotrophic factor gene and bipolar disorder. Psychiatr Genet. 2008, 18: 267-274. 10.1097/YPG.0b013e3283060f59.CrossRefPubMedPubMedCentral Liu L, Foroud T, Xuei X, Berrettini W, Byerley W, Coryell W, El-Mallakh R, Gershon ES, Kelsoe JR, Lawson WB, MacKinnon DF, McInnis M, McMahon FJ, Murphy DL, Rice J, Scheftner W, Zandi PP, Lohoff FW, Niculescu AB, Meyer ET, Edenberg HJ, Nurnberger JI: Evidence of association between brain-derived neurotrophic factor gene and bipolar disorder. Psychiatr Genet. 2008, 18: 267-274. 10.1097/YPG.0b013e3283060f59.CrossRefPubMedPubMedCentral
Metadaten
Titel
Association between brain-derived neurotrophic factor genetic polymorphism Val66Met and susceptibility to bipolar disorder: a meta-analysis
verfasst von
Zuowei Wang
Zezhi Li
Keming Gao
Yiru Fang
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Psychiatry / Ausgabe 1/2014
Elektronische ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-014-0366-9

Weitere Artikel der Ausgabe 1/2014

BMC Psychiatry 1/2014 Zur Ausgabe