Skip to main content
Erschienen in: Cardiovascular Diabetology 1/2023

Open Access 01.12.2023 | Research

Association of complication of type 2 diabetes mellitus with hemodynamics and exercise capacity in patients with heart failure with preserved ejection fraction: a case–control study in individuals aged 65–80 years

verfasst von: Yousuke Sugita, Katsuhiko Ito, Yui Yoshioka, Satoshi Sakai

Erschienen in: Cardiovascular Diabetology | Ausgabe 1/2023

Abstract

Background

Type 2 diabetes mellitus (T2DM) is a frequently observed complication in patients with heart failure with preserved ejection fraction (HFpEF). Although a characteristic finding in such patients is a decrease in objective exercise capacity represented by peak oxygen uptake (peakVO2), exercise capacity and its predictors in HFpEF with T2DM remain not clearly understood. This case–control study aimed to investigate the association between exercise capacity and hemodynamics indicators and T2DM comorbidity in patients with HFpEF aged 65–80 years.

Methods

Ninety-nine stable outpatients with HFpEF and 50 age-and-sex-matched controls were enrolled. Patients with HFpEF were classified as HFpEF with T2DM (n = 51, median age, 76 years) or without T2DM (n = 48, median age, 76 years). The peakVO2 and ventilatory equivalent versus carbon dioxide output slope (VE vs VCO2 slope) were measured by cardiopulmonary exercise testing. The peak heart rate (HR) and peak stroke volume index (SI) were measured using impedance cardiography, and the estimated arteriovenous oxygen difference (peak a-vO2 diff) was calculated with Fick's equation. The obtained data were compared among the three groups using analysis of covariance adjusted for the β-blocker medication, presence or absence of sarcopenia, and hemoglobin levels in order to determine the T2DM effects on exercise capacity and hemodynamics in patients with HFpEF.

Results

In HFpEF with T2DM compared with HFpEF without T2DM and the controls, the prevalence of sarcopenia, chronotropic incompetence, and anemia were significantly higher (p < 0.001). The peakVO2 (Controls 23.5 vs. without T2DM 15.1 vs. with T2DM 11.6 mL/min/kg), peak HR (Controls 164 vs. without T2DM 132 vs. with T2DM 120 bpm/min), peak a-vO2 (Controls 13.1 vs without T2DM 10.6 vs with T2DM 8.9 mL/100 mL), and VE vs VCO2 slope (Controls 33.2 vs without T2DM 35.0 vs with T2DM 38.2) were significantly worsened in patients with HFpEF with T2DM (median, p < 0.001). There was no significant difference in peak SI among the three groups.

Conclusions

Our results suggested that comorbid T2DM in patients with HFpEF may reduce exercise capacity, HR response, peripheral oxygen extraction, and ventilation efficiency. These results may help identify cardiovascular phenotypes of HFpEF complicated with T2DM and intervention targets for improving exercise intolerance.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12933-023-01835-2.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AF
Atrial fibrillation
BMI
Body mass index
BSA
Body surface area
CI
Cardiac output index
peak CI
Peak cardiac output index
CPET
Cardiopulmonary exercise testing
HF
Heart failure
HFpEF
HF with preserved ejection fraction
HOMA-IR
Homeostasis model assessment of insulin resistance
SV
Stroke volume
LVEF
Left ventricular ejection fraction
VO2
Oxygen uptake
peakVO2
Peak oxygen uptake
AT
Anaerobic threshold
VE vs VCO2  slope
Ventilatory equivalent versus carbon dioxide output slope
HRR
Heart rate recovery
HR
Heart rate
CO
Cardiac output
a-vO2 diff
Arteriovenous oxygen difference
LV
Left ventricular
LVH
LV hypertrophy
LA
Left atrial
LAV
LA volume
WHO
World Health Organization
BNP
Brain natriuretic peptide
RWT
Relative wall thickness
GLS
Global longitudinal strain
SI
Stroke volume index
OMI
Old myocardial infarction
NYHA
New York Heart Association

Background

Heart failure (HF) cases have been increasing worldwide, and the number of patients with HF is estimated to be 26 million [13]. In addition, type 2 diabetes mellitus (T2DM) is a global epidemic, with a continuous rise in the number of patients yearly [4]. Among patients with HF, HF with preserved ejection fraction (HFpEF) accounts for approximately 50% [5]. One-third of patients with HFpEF have DM-related complications [6], which are associated with high hospitalization rates and poor life prognosis [7, 8]. Therefore, elucidating the cardiovascular phenotype of patients with HFpEF with T2DM may help identify intervention targets.
Exercise intolerance, such as decreased peak oxygen uptake (peakVO2) objectively measured by cardiopulmonary exercise testing, is a common clinical symptom of HFpEF and T2DM [9, 10]. In addition, patients with HFpEF with DM have significantly reduced exercise capacity compared to those with HFpEF without DM [11], and exercise intolerance in patients with DM is one of the vital determinants of life prognosis [12]. However, the underlying cause of exercise intolerance in patients with HFpEF with DM remains unclear. A previous study [13] reported that patients with T2DM had left ventricular [LV] structural and functional abnormalities from the asymptomatic stage, and as the number of LV defects increased, the peakVO2 decreased. The results of this study suggested that a decreased central hemodynamic response may be associated with peakVO2 in patients with T2DM, but the daily physical activity or peripheral oxygen extraction capacity was not measured. In Fick's formula, oxygen uptake is determined by central factors, such as cardiac output (CO), and peripheral oxygen extraction capacity, such as arteriovenous oxygen difference (a-vO2 diff). The causes of exercise intolerance in patients with HFpEF are thought to be both central factors due to decreased CO [14] and peripheral factors due to decreased arteriovenous oxygen difference [9]. However, the causes of patients with HFpEF with DM, including hemodynamics during submaximal exercise and peripheral tissues, such as sarcopenia, have not been comprehensively investigated.
Therefore, we hypothesized that patients with HFpEF with T2DM had a lower exercise capacity and reduced central hemodynamics response during submaximal exercise compared to those with HFpEF without T2DM and age- and sex-matched control. This case–control study aimed to investigate the association between hemodynamic response and exercise capacity and complication with T2DM in patients with HFpEF aged 65–80 years.

Methods

Study design and participants

Ninety-nine patients with HFpEF and 50 age-and sex-matched controls were prospectively enrolled from April 2016 till March 2020. All patients were outpatients with stable symptoms and classified into two groups according to the presence or absence of T2DM. In addition to patients with HFpEF, we recruited a control group of 50 individuals without cardiovascular disease and interventions. The final analysis included 50 individuals in the control group, 48 in the HFpEF-without-T2DM group, and 51 in the HFpEF-with-T2DM group. Details of the study protocol and diagnostic criteria for HFpEF and T2DM [1518] are described in Additional file 1. All patients with HFpEF had New York Heart Association (NYHA) functional classification II or III.
All participants provided written informed consent. This study was conducted in accordance with the tenets of the Declaration of Helsinki, and the study protocol was approved by the Institutional Review Board of Tsukuba University of Technology in Tsukuba City, Japan (Approval Number: 202108).

Anthropometric parameters, biochemical analysis, and blood pressure

The body mass index (BMI) and body surface area (BSA) were calculated by measuring height and weight (Additional file 1). Overweight and obesity were determined from the calculated BMI based on the World Health Organization (WHO) criteria for obesity [19]. The BSA was calculated using Dubois et al.'s formula (Additional file 1) [20].
Blood was drawn from study participants after 12 h of fasting and before ingesting medications. After collecting 10 mL of blood, the brain natriuretic peptide (BNP), triglyceride, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, hemoglobin A1c, hemoglobin, fasting plasma glucose, plasma glucose, and insulin levels were measured (Additional file 1).
We also calculated the homeostasis model assessment of insulin resistance [21] and the estimated glomerular filtration rate [22] (Additional file 1). Anemia was defined as a hemoglobin level of < 13 g/dL in men and < 12 g/dL in women (WHO criteria) [23].
Systolic and diastolic blood pressures were measured from the arms of seated participants after a 20 min rest using an automatic blood pressure monitor (HEM-7220, Omron Healthcare Co., Ltd. Kyoto, Japan). Hypertension and dyslipidemia were diagnosed according to the Japanese diagnostic criteria (Additional file 1) [24].

Echocardiography

Structural and functional abnormalities of the LV and left atrium (LA) were assessed using echocardiography (ACUSON SC2000; 4V1c, and 4Z1c probes; Siemens Japan K.K. Tokyo, Japan) with individuals in the left decubitus position. The LV posterior wall thickness at end-diastole, interventricular septal thickness at end-diastole, LV end-diastolic diameter, LV end-systolic diameter, LV diameter, and LV wall thickness were recorded in M-mode. The LV end-diastolic and end-systolic volumes were measured using the biplane-modified Simpson method. The relative wall thickness (RWT) and LV myocardial weight were calculated using Devereux's formula [25]. Formulas for the calculation of LVEF and stroke volume (SV) are shown in Additional file 1.
LV inflow parameters were obtained using pulse-wave tissue doppler in the apical four-chamber view. The peak early flow velocity, late diastolic flow velocity, ratio of peak early and late diastolic flow velocities, and early diastolic flow wave deceleration time were assessed. Pulsed-wave tissue doppler was conducted to obtain the peak early diastolic tissue velocity at the septal and lateral aspects of the mitral annulus. The mitral inflow early diastolic velocity ratio to the average velocity from the septal and lateral sides of the mitral annulus was calculated to estimate the LV filling pressure. The pulmonary artery systolic pressure was estimated according to the methods presented in Additional file 1 [26]. In addition, a detailed evaluation of mitral regurgitation (MR) and its severity was also presented in Additional file 1 [27, 28].
Based on the report of Lang et al. [29], LV hypertrophy (LVH) was defined as an LV mass index > 115 g/m2 for men and > 95 g/m2 for women. LV concentric remodeling was defined as LVH (−) and an RWT > 0.42; LV eccentric hypertrophy was defined as LVH ( +) and an RWT < 0.42; and LV concentric hypertrophy was defined as LVH ( +) and an RWT > 0.42.
The LA volume (LAV) was measured in three different sequences of the cardiac cycle. The maximum LAV was measured just before the mitral valve opened, and the pre-A LAV (before atrial contraction) was determined at the onset of atrial contraction (P-wave peak electrocardiogram), while the minimum LAV was measured when the mitral valve was closed. All volumes were determined according to the biplane method in four and two-chamber views. The LA emptying fraction, the comprehensive reservoir function of LA, was calculated using the formula shown in Additional file 1. The LAV index was calculated using the methods and formulas shown in Additional file 1 [30].

Speckle-tracking imaging

LV myocardial deformation was assessed using the two-dimensional speckle-tracking technique in three apical views at a temporal resolution of 60–90 frames/s (Additional file 1). The LV global longitudinal strain (LV-GLS) represented LV shortening in the longitudinal plane [31]. Furthermore, LA speckle-tracking imaging, longitudinal strain, and strain rate curves were generated for each of the six atrial segments obtained from apical four-chamber and two-chamber views. The peak LA strain (LA-GLS) was calculated by averaging each value observed in all six LA segments analyzed [32].

Measurement of the epicardial adipose tissue thickness

For epicardial adipose tissue thickness measurements, all participants underwent echocardiography, as proposed by Iacobellis et al. (Additional file 1) [33].

Measurement of exercise capacity and hemodynamic response

Exercise capacity was measured using cardiopulmonary exercise testing (CPET) with a symptomatic limit using an ergometer (232C-XL; Combi Co., Ltd., Tokyo, Japan). The peakVO2 [34], work rate at peak exercise (peak watt), anaerobic threshold (ATVO2) [35], and work rate at AT exercise (AT watt) were measured according to the methods in Additional file 1. The ventilatory equivalent versus carbon dioxide output slope (VE vs VCO2 slope) was measured by selecting a range from the point at which VE began to increase during ramp loading to the respiratory compensation point. Heart rate recovery (HRR) and oxygen pulse were calculated using the methods presented in Additional file 1.
The hemodynamic response from sitting to peak exercise was measured using a noninvasive transthoracic bioimpedance device (PhysioFlow PF-05 Lab1; Manatec Biomedical, Paris, France) during CPET. The measurement items in PhysioFlow were SV and HR. The stroke volume index (SI), cardiac output index (CI), and arteriovenous oxygen difference (a-vO2 diff) values were calculated using the methods in Additional file 1. Chronotropic incompetence and an abnormal HRR value were determined using the methods shown in Additional file 1 [36, 37].

Measurement of physical activity

Daily physical activity was estimated from the magnitude and frequency of the acceleration signal detected at 32 Hz using a pedometer with a multiple memory accelerometer (Lifecorder; SUZUKEN CO., LTD. Nagoya, Japan). We assumed a step count value of  > 20,000 steps/day and < 500 steps/day were not routine step count values [38]. Detailed measurement methods are described in Additional file 1.

Diagnosis of sarcopenia

Sarcopenia was defined according to the Asian Working Group for Sarcopenia 2019 [39]: a skeletal muscle mass index of < 7.0 kg/m2 for men and < 5.7 kg/m2 for women; a grip strength of  < 28 kg for men and < 18 kg for women; or a five-time chair-stand test time ≥ 12 s. The skeletal muscle mass index, grip strength, and five-time chair-stand test were measured as described in Additional file 1.

Statistical analysis

Normally distributed data are expressed as means ± standard deviations, whereas non-normally distributed data are expressed as medians, and nominal data are expressed as percentages. SPSS version 29 (IBM Japan, Ltd. Tokyo, Japan) was used for all the statistical analyses. The significance level was set to P < 0.05 using a two-tailed test. For data analysis, we tested the normality using the Shapiro–Wilk test. One-way analysis of variance and the Tukey post hoc test was conducted for normally distributed variables, and the Kruskal–Wallis test with Bonferroni correction was conducted for non-normally distributed variables. The χ2 test with Bonferroni correction was carried out for nominal-scale data. One-way analysis of variance, χ2 test, and Kruskal–Wallis test were used to compare the differences in all data between the three groups. All groups were compared for exercise capacity, work rate, and hemodynamics using analysis of covariance adjusted for the β-blocker medication, presence or absence of sarcopenia and hemoglobin levels. Furthermore, to examine the effects of T2DM complication on the exercise capacity of patients with HFpEF, stepwise method multiple linear regression analysis was performed to investigate the independent association between peakVO2 and T2DM in Japanese patients with HFpEF. A multiple linear regression analysis with peakVO2 as the dependent variable was performed, while the independent variables included age [40], sex [41], BMI [42], daily physical activity [43], presence of AF [44], presence of sarcopenia [45], presence of anemia [46], epicardial adipose tissue thickness [47], medication of β-blocker [48], and presence of T2DM. These independent variables have been reported to be associated with exercise capacity in patients with HFpEF.

Results

Selection of study participants

Among all 149 study participants, 6% were obese, 58.4% were overweight, 9.4% were current smokers, 55% had dyslipidemia, and 52.3% had hypertension. The study participants included 50 controls (2% with obesity, 62% with overweight, 58% with dyslipidemia, and 22% with hypertension), 48 had HFpEF without T2DM (14.6% with obesity, 47.9% being overweight, 52.1% with dyslipidemia, 62.5% with hypertension, old myocardial infarction (OMI) with 17%, AF with 65%, NYHA functional classification III with 42%), and 51 had HFpEF with T2DM (2% with obesity, 64.7% being overweight, 54.9% with dyslipidemia, and 72.5% with hypertension, OMI with 35%, AF with 55%, NYHA functional classification III with 55%). The median duration of diabetes in the HFpEF-with-T2DM group was 9.3 years (Table 1).
Table 1
Clinical characteristics of all the groups
Characteristics
Control (n = 50)
HFpEF without T2DM (n = 48)
HFpEF with T2DM (n = 51)
P-value
HFA-PEFF score
 
5 (IQR, 5–6)*
5 (IQR, 5–6)*
 < 0.001
H2FPEF score
 
6 (IQR, 4–7)*
6 (IQR, 4–7)*
 < 0.001
NYHA functional classification
 Class II
0
58
45
0.188
 Class III
0
42
55
0.188
Comorbidities
 Old myocardial infarction (%)
0
19
35
0.065
 Atrial fibrillation (%)
0
65
55
0.443
 Anemia (%)
6
13*
24*, †
0.038
 Hypertension (%)
22
63*
73*
 < 0.001
 Dyslipidemia (%)
58
52
55
0.841
 Obesity (%)
2
15*
2
0.011
 Overweight (%)
62
48
65
0.195
 Sarcopenia (%)
4
4
20*, †
0.009
 Diabetic duration (years)
0
0
9.3 (IQR, 8.8–9.7)*, †
 < 0.001
 Age (years)
75 (IQR, 72–78)
74 (IQR, 70–78)
74 (IQR, 72–77)
0.804
 Male (%)
50
48
49
0.979
Anthropometric parameters
 Height (cm)
163 (IQR, 159–169)
163 (IQR, 154–171)
162 (IQR, 155–169)
0.515
 Weight (kg)
70 (IQR, 66–72)
69 (IQR, 63–74)
66 (IQR, 62–73)
0.380
 Body mass index (kg/m2)
26.1 ± 1.9
26.3 ± 3.0
25.9 ± 2.1
0.738
 Body surface area (m2)
1.75 ± 0.11
1.75 ± 0.15
1.72 ± 0.14
0.442
 Waist circumference (cm)
103 (IQR, 99–105)
116 (IQR, 113–125)*
116 (IQR, 112–123)*
 < 0.001
Physical activity
 Steps (steps/days)
7603 (IQR, 6,602–8,430)
4695 (IQR, 3,774–5,276)*
4977 (IQR, 4,648–5,911)*
 < 0.001
 Movement related to calorie consumption (kcal/days)
294 (IQR, 253–338)
180 (IQR, 149–209)*
201 (IQR, 165–230)*
 < 0.001
Components of sarcopenia
 Appendicular skeletal muscle index (kg/m2)
7.3 ± 0.9
7.1 ± 0.8
6.9 ± 0.9*
0.038
 Hand grip (kg)
26.4 (IQR, 20.5–29.5)
22.4 (IQR, 19.7–28.8)
21.7 (IQR, 19.9–25.1)*
0.007
 Sit to stand-5 (s)
7.2 (IQR, 6.8–7.9)
8.9 (IQR, 8.2–9.5)*
8.8 (IQR, 8.3–10.2)*
 < 0.001
Preference and medication
 Smoker (%)
24
27
24
0.907
 Angiotensin-converting-enzyme inhibitor (%)
0
60*
69*
 < 0.001
Angiotensin II Receptor Blocker (%)
4
46*
59*
 < 0.001
 β blocker (%)
0
60*
65*
 < 0.001
 Calcium-channel blocker (%)
0
38*
57*
 < 0.001
 Diuretic (%)
0
6
4
0.220
 Statin (%)
34
98*
84*
 < 0.001
 Fibrate (%)
10
0
4
0.062
 Ezetimibe (%)
22
40*
76*
 < 0.001
 Biguanide (%)
0
0
78*, †
 < 0.001
 Sulphonylurea (%)
0
0
69*, †
 < 0.001
 α-glucosidase inhibitor (%)
0
0
20*, †
 < 0.001
 Sodium glucose cotransporter-2 inhibitor (%)
0
0
25*, †
 < 0.001
 Dipeptidyl peptidase-4 inhibitor (%)
0
0
22*, †
 < 0.001
Biochemical analysis and blood pressure
 Total Cholesterol (mg/dL)
224 (IQR, 211–232)
226 (IQR, 215–232)
220 (IQR, 213–229)
0.741
 Low–density lipoprotein cholesterol (mg/dL)
124 (IQR, 117–131)
142 (IQR, 134–151)*
140 (IQR, 133–144)*
 < 0.001
 High–density lipoprotein cholesterol (mg/dL)
58 (IQR, 54–62)
51 (IQR, 43–55)*
51 (IQR, 44–56)*
 < 0.001
 Triglyceride (mg/dL)
130 (IQR, 117–142)
152 (IQR, 141–168)*
152 (IQR, 142–171)*
 < 0.001
 Hemoglobin A1c (%)
5.6 (IQR, 5.4–5.7)
5.2 (IQR, 4.9–5.4)*
9.7 (IQR, 9.1–10.2)*, †
 < 0.001
 Fasting plasma glucose (mg/dL)
118 (IQR, 102–122)
98 (IQR, 93–105)*
159 (IQR, 149–168)*, †
 < 0.001
 HOMA-IR (%)
1.7 (IQR, 1.6–2.1)
1.3 (IQR, 1.1–1.5)*
3.5 (IQR, 3.0–3.8)*, †
 < 0.001
 eGFR at cystatin C (mL/min/1.73m2)
71 (IQR, 70–78)
58 (IQR, 55–63)*
50 (IQR, 47–54)*, †
 < 0.001
 Brain natriuretic peptide (pg/mL)
18 (IQR, 17–21)
173 (IQR, 148–209) *
202 (IQR, 173–219)*
 < 0.001
 Hemoglobin (g/dL)
14.0 (IQR, 13.4–14.4)
13.3 (IQR, 12.8–13.8)*
12.4 (IQR, 12.1–13.1)*, †
 < 0.001
 Systolic Blood Pressure (mmHg)
126 (IQR, 122–128)
142 (IQR, 124–148)*
142 (IQR, 128–148)*
 < 0.001
 Diastolic Blood Pressure (mmHg)
72 (IQR, 66–75)
68 (IQR, 66–75)
66 (IQR, 63–72)
0.067
Normal distribution data are expressed as means ± standard deviations, non-normal distribution data are expressed as medians, and nominal variables are expressed as percentages.
HFpEF heart failure with preserved ejection fraction, IQR interquartile range, NYHA New York Heart Association, HOMA-IR homeostasis model assessment of insulin resistance, eGFR estimated glomerular filtration rate
*P < 0.05 vs the Control group
P < 0.05 vs the HFpEF-without-T2DM group

Clinical characteristics among the three groups

Age, sex, BMI, BSA, percentage of overweight, dyslipidemia carriers, and current smoker were not significantly different between the three groups. Daily physical activity, sit-to-stand-five, medications, and lipid metabolism indicators were significantly worse in patients with HFpEF compared with the control group. Glucose metabolism indicators, such as hemoglobin A1c and fasting plasma glucose test, glomerular filtration rate for renal function, and the prevalence of anemia and sarcopenia were significantly worse in the HFpEF-with-T2DM group than in the HFpEF-without-T2DM group. The BNP tended to be higher in the HFpEF-with-T2DM group; however, there was no significant difference between the with- or without-T2DM groups (Table 1).

Echocardiography data among the three groups

There were no significant differences between the three groups in LV end-diastolic diameter and LV end-diastolic volume. The epicardial adipose tissue was thicker in the HFpEF group than in the control group and was thicker in the HFpEF-with-T2DM group than in the HFpEF-without-T2DM group. LV structural and functional parameters, LV inflow parameters, and LV-GLS were significantly worse in the HFpEF group than in the control group, but there was no significant difference between the HFpEF-with-T2DM group and the HFpEF without T2DM group. The median LVEF for all groups was > 60%. Furthermore, there was no significant difference in the LA volume index in the HFpEF with or without T2DM groups, but LA emptying fraction and LA-GLS were significantly worsened in the HFpEF-with-T2DM group (Table 2).
Table 2
Echocardiography data of all the groups
Characteristics
Control (n = 50)
HFpEF without T2DM (n = 48)
HFpEF with T2DM (n = 51)
P-value
Epicardial adipose tissue thickness (mm)
5.1 (IQR, 4.3–6.8)
7.9 (IQR, 7.4–8.3)*
8.8 (IQR, 8.6–8.9)*, †
 < 0.001
Interventricular septal thickness at end diastole (mm)
7.5 (IQR, 6.6–8.2)
10.2 (IQR, 9.3–10.6)*
9.8 (IQR, 9.3–10.8)*
 < 0.001
Posterior wall thickness at end diastole (mm)
7.6 (IQR, 6.6–8.3)
10.2 (IQR, 9.4–10.6)*
9.9 (IQR, 9.3–10.7)*
 < 0.001
Left ventricular end-diastolic diameter (mm)
46.5 ± 1.8
45.8 ± 2.5
46.1 ± 2.6
0.304
Left ventricular end-systolic diameter (mm)
27.0 (IQR, 26.1–28.3)
29.5 (IQR, 28.0–31.4)*
28.5 (IQR, 26.9–30.6)*
 < 0.001
Left ventricular end-diastolic volume index (mL/m2)
57.4 ± 5.9
55.5 ± 7.5
57.4 ± 8.4
0.321
Left ventricular end-systolic volume index (mL/m2)
15.4 (IQR, 13.7–17.9)
19.6 (IQR, 16.6–22.5)*
18.5 (IQR, 16.2–22.2)*
 < 0.001
Left ventricular ejection fraction (%)
74 (IQR, 67–77)
64 (IQR, 59–69)*
66 (IQR, 62–72)*
 < 0.001
Left atrial ejection fraction (%)
58 (IQR, 57–61)
48 (IQR, 45–52)*
44 (IQR, 42–48)*, †
 < 0.001
SI (mL/m2)
41.3 ± 6.3
35.7 ± 6.6*
38.4 ± 7.8
 < 0.001
CI (L/min/m2)
2.9 ± 0.5
2.5 ± 0.5*
2.6 ± 0.6*
 < 0.001
Left ventricular mass index (g/m2)
79 (IQR, 70–90)
116 (IQR, 104–125)*
119 (IQR, 102–130)*
 < 0.001
Left atrial volume index (mL/m2)
29 (IQR, 28–30)
36 (IQR, 35–40)*
35 (IQR, 33–38)*
 < 0.001
Relative wall thickness
0.32 (IQR, 0.29–0.36)
0.44 (IQR, 0.42–0.47)*
0.43 (IQR, 0.41–0.47)*
 < 0.001
E (cm/s)
89.4 (IQR, 80.1–91.4)
57.6 (IQR, 51.9–62.8)*
59.8 (IQR, 53.1–66.4)*
 < 0.001
A (cm/sec)
83.9 (IQR, 80.0–89.2)
77.9 (IQR, 70.0–82.0)*
79.2 (IQR, 69.6–88.2)*
 < 0.001
E/A
1.02 (IQR, 1.00–1.06)
0.79 (IQR, 0.71–0.86)*
0.81 (IQR, 0.70–0.93)*
 < 0.001
DcT (cm/s)
195 (IQR, 186–218)
238 (IQR, 224–268)*
229 (IQR, 218–249)*
 < 0.001
Lateral e′ (cm/s)
10.9 (IQR, 10.7–11.2)
5.2 (IQR, 3.9–6.2)*
5.4 (IQR, 4.3–6.1)*
 < 0.001
Medial e′ (cm/s)
8.7 (IQR, 6.7–10.0)
2.8 (IQR, 2.4–3.6)*
2.8 (IQR, 2.5–3.7)*
 < 0.001
Mean e′ (cm/s)
9.7 (IQR, 8.7–10.4)
3.9 (IQR, 3.2–4.9)*
4.1 (IQR, 3.4–5.0)*
 < 0.001
E/e′ (cm/s)
9.0 (IQR, 8.3–9.6)
14.6 (IQR, 13.2–16.6)*
14.7 (IQR, 13.7–16.0)*
 < 0.001
Peak tricuspid regurgitation velocity (m/s)
2.2 (IQR, 2.1–2.3)
2.9 (IQR, 2.6–3.1)*
2.9 (IQR, 2.8–3.0)*
 < 0.001
Left ventricular global longitudinal strain (%)
−22.0 (IQR, −18.9– −23.2)
−15.0 (IQR, −16.4– −14.3)*
−14.9 (IQR, −16.1– −13.9)*
 < 0.001
Left atrial global longitudinal strain (%)
35.0 (IQR, 32.8–38.8)
31.9 (IQR, 30.5–33.8)*
27.6 (IQR, 25.5–30.5)*, †
 < 0.001
Mitral regurgitation
 Mitral regurgitation volume (mL)
30.6 (IQR, 12.3–31.4)
30.5 (IQR, 16.4–31.3)
0.807
 Effective regurgitant orifice area (cm2)
0.23 (IQR, 0.10–0.24)
0.22 (IQR, 0.14–0.27)
0.272
 Mild (%)
21
25
0.583
 Moderate (%)
25
29
0.622
 Estimated pulmonary artery systolic pressure (mmHg)
29.3 (IQR, 27.4–32.6)
43.1 (IQR, 40.4–48.4)*
42.0 (IQR, 37.5–48.2)*
 < 0.001
 Presence of concentric remodeling (%)
0
77*
75*
 < 0.001
 Presence of eccentric hypertrophy (%)
0
73*
82*
 < 0.001
 Presence of concentric hypertrophy (%)
0
50*
57*
 < 0.001
Normal distribution data are expressed as means ± standard deviations, non-normal distribution data are expressed as medians, and nominal variables are expressed as percentages.
HFpEF heart failure with preserved ejection fraction, IQR interquartile range, SI stroke volume index, CI cardiac output index, E peak early flow velocity, A Late diastolic flow velocity, E/A ratio of peak early and late diastolic flow velocities, DcT deceleration time, e′ peak early diastolic tissue velocity, E/e' ratio of the mitral inflow early diastolic velocity to the mean e′ velocity from the septal and lateral sides of the mitral annulus
*P < 0.05 vs the Control group
P < 0.05 vs the HFpEF-without-T2DM group

CPET and hemodynamic data

Regarding CPET data, the median peak respiratory exchange ratios were > 1.10 in all groups, and a no-load shortage was observed. The highest peakVO2 value, peak watt, ATVO2, and AT watt were observed in the control group, followed by the HFpEF-without-T2DM group and the HFpEF-with-T2DM group (Fig. 1, Additional file 4). The highest CI, HR, and a-vO2 diff values were also observed in the control group, followed by the HFpEF-without-T2DM and HFpEF-with-T2DM groups. However, the peak SI was not significantly different among the three groups (Fig. 2, Additional file 5). The highest prevalence of chronotropic incompetence and the abnormality of HRR were observed in the HFpEF-with-T2DM group, followed by the HFpEF-without-T2DM group, and the control group (Additional file 2). The highest VE vs VCO2 slope, an index of ventilation efficiency during exercise, was observed in the HFpEF-with-T2DM group, followed by the HFpEF-without-T2DM group and the control group (Fig. 2, Additional file 5).

Associations between T2DM and peakVO 2 in patients with HFpEF

In the multiple linear regression analysis with the peakVO2 as the dependent variable, age, sex, BMI, presence of AF, and T2DM (β = −0.551, 95% confidence interval = −5.597– −3.200, P < 0.001) were found to be the independent factors associated with the peakVO2 (R2 = 0.476) (Table 3).
Table 3
Multiple linear regression analysis with peak oxygen uptake as the dependent variable
Independent variables
Peak oxygen uptake
 
R2
Standard error
Standardized β
95% confidence interval
Variance Inflation Factor
P-value
 
0.476
      
Age
 
0.069
−0.203
−0.322
−0.048
1.008
0.008
Sex
 
0.610
−0.185
−2.686
−0.265
1.034
0.017
Body mass index
 
0.120
−0.214
−0.574
−0.098
1.033
0.006
Treatment with β-blocker
       
Steps (daily physical activity)
       
Presence of atrial fibrillation
 
0.611
−0.304
−3.673
−1.247
1.008
 < 0.0001
Presence of sarcopenia
       
Hemoglobin level
       
Epicardial adipose tissue thickness
       
Presence of Type 2 diabetes mellitus
 
0.604
−0.551
−5.597
−3.200
1.013
 < 0.0001
Multiple linear regression analysis was performed using the stepwise method; the dependent variables were peak oxygen uptake. We selected as independent variables known parameters that were found to be significantly associated with peak oxygen uptake in patients with HFpEF [4048]. To confirm multicollinearity between the independent variables, a correlation coefficient of  ≥ 0.8 or a variance inflation factor of  ≥ 5.0 was looked for, but neither was confirmed. In addition, on performing the Shapiro–Wilk test on residuals, the significance probability was 0.112, thus, confirming their normal distribution

Discussion

This study had four major findings involving patients with HFpEF and T2DM diagnosed according to stringent criteria. First, patients with HFpEF had a higher prevalence of anemia and sarcopenia and significantly worsened BNP and renal function than age-, sex-, and BMI-matched control groups, and the coexistence of T2DM further significantly deteriorated these indices. Second, the HFpEF-with-T2DM group had the worst LA function among the three groups. Third, patients with HFpEF had lower objective exercise capacity than the control group, and the coexistence of T2DM further significantly deteriorated exercise intolerance. Furthermore, although there was no significant difference in the peak SI among the three groups, the peak CI, HR, and a-vO2 diff values were significantly lower, and VE vs VCO2 slope was significantly higher in patients with HFpEF, and coexistence of T2DM further deteriorated the hemodynamic response during exercise. Finally, T2DM comorbidity was independently associated with peakVO2 in patients with HFpEF, even after multivariate adjustment. These results suggest the possibility of identifying characteristic pathophysiology that contributes to reduced exercise capacity in patients with HFpEF with T2DM and intervention pathways for its improvement.

Clinical characteristics in patients with HFpEF with T2DM

Our results showed that the estimated glomerular filtration rate and the prevalence of anemia were significantly worse in the HFpEF-with-T2DM group. A finding supported in a similar study by Lindman et al. [11]. However, although there was no significant difference in BMI among the three groups, the prevalence of obesity increased significantly in the HFpEF-without-T2DM group; this contradicts our hypothesis and the Lindman et al. report. Although the reason for this is unclear, it is known that East Asians, such as the Japanese, develop T2DM even when their BMI is < 25 kg/m2 [49]; this is often associated with skeletal muscle dysfunction and sarcopenia, involving major organs that consume glucose [50]. This report partially supports our data showing a significant increase in the prevalence of sarcopenia in the HFpEF-with-T2DM group. Although our study is the first to clarify the prevalence of sarcopenia according to the presence or absence of T2DM in East Asian patients with HFpEF, owing to the relatively small number of samples, further large-scale multicenter studies are needed in the future.

LV and LA structural and functional data in patients with HFpEF with T2DM

From the results of our study, LV structure and function tended to partially worsen in the HFpEF-with-T2DM group, such as LV filling pressure, but there was no significant difference between the with or without T2DM groups. This result is consistent with the report by Lindman et al. [11]. The current study suggests that the comorbidity of T2DM in patients with HFpEF is unlikely to significantly affect LV structure and functions. This issue needs further investigation in a large multicenter study with an increased sample size. Furthermore, as reported by Wehner et al. [51], HF with LVEF ≥ 65% observed in most of our study participants is an HF phenotype of concern for life prognosis. In this large cohort study of 203,135 individuals, the group with LVEF 60–65% had the lowest mortality, while those with LVEF < or > 60–65% had a higher risk of death. Furthermore, even after adjusting for multiple confounders, the LVEF ≥ 70% group was associated with higher mortality in inpatient and outpatient settings. Wehner et al. defined heart failure with LVEF ≥ 65% as heart failure with supra-normal LVEF [51]. In this study, we found a U-shaped relationship between mortality and LVEF, suggesting that it may be inappropriate. The increased mortality in the LVEF ≥ 65% group has been shown to persist even after adjusting for other complications that may increase LVEF, such as MR, LV hypertrophy, and anemia. In our study results (as shown in the Additional file 3), the peakVO2, which is one of the life prognostic factors in patients with HF, showed the maximum value in the range of LVEF 60.1–65.0. However, those with higher LVEF showed a significantly lower value. This result suggests that it may partially explain the higher mortality in the population with LVEF ≥ 65%. As our study was a cross-sectional study, we were unable to explain the mechanism of this phenomenon. However, further studies are needed to elucidate the precise pathophysiology and characteristics of this phenotype with high non-cardiovascular mortality. In contrast, LA structure and function worsened significantly in the HFpEF-with-T2DM group. There is one report on LA function and life prognosis in patients with HFpEF with T2DM, but the median age of the study participants was approximately 60 years, which is significantly younger than that for patients with HFpEF. Thus, the results cannot be generalized [52]. To the best of our knowledge, our study is the first to compare the LA structure and function in the presence or absence of T2DM in patients with HFpEF with a median age of 74 years. Worse LA function is independently associated with exercise intolerance in patients with T2DM and a significantly higher risk of heart failure-related hospitalization in patients with HFpEF [53, 54]. Therefore, the results on LA structure and function obtained in this study suggest that it may be a factor in explaining the worse clinical outcome of patients with HFpEF with T2DM [11].

Exercise capacity and hemodynamics in patients with HFpEF with T2DM

The peakVO2 objectively evaluated by CPET in patients with HFpEF is one of the indicators closely related to life prognosis [55]. Patients with HFpEF had lower peakVO2 than age-matched controls, and HFpEF with T2DM has been reported to further reduce peakVO2 [9, 11]. However, the determinants of exercise intolerance in patients with HFpEF with T2DM have not been investigated. Our study extended this knowledge by evaluating hemodynamics during submaximal exercise in HFpEF with T2DM.
The peak SI, one of the hemodynamic indices, showed no significant difference among the three groups; this is consistent with the findings of Haykowsky et al. and Bhella et al. in age-matched patients with HFpEF [56, 57]. However, a study by Borlaug et al. reported that the peak SV was significantly decreased in the HFpEF group, which is paradoxical to our findings [58]. The definitive reason for this is unclear, but we performed CPET in an upright position, whereas Borlaug et al. reported that the posture during CPET was supine [58]. Differences in posture affect preload during exercise. Exercise in the supine position increased preload compared to at rest, which corresponds to the flat portion of the Frank–Starling relationship. In the study by Borlaug et al., there was little change in his SV index at rest and during maximal exercise (SI at rest = 40 mL/m2, peak exercise: SI = 47 mL/m2). In our study, the SV index did not increase with AT intensity or higher but increased appropriately with resting sitting position to peak exercise.
Although there was no significant difference in the peak SI, central and peripheral factors, such as peak CI, HR, and a-vO2 diff values, decreased in the HFpEF-with-T2DM group; this may be related to the prevalence of chronotropic incompetence, abnormality of HRR, and presence of sarcopenia. Although there was no significant difference in resting HR among the three groups, the HR response flattened out with increasing exercise load in the HFpEF group, especially in the HFpEF-with-T2DM group. SV reached a plateau at 40–50% of maximal exercise, after which an increase in HR led to a rise in CO [59]. A higher prevalence of chronotropic incompetence was present in the HFpEF-with-T2DM group [11]. This report partially supports our findings. However, although HR response is one of the factors of exercise intolerance, it cannot be concluded as a determinant of exercise intolerance as this study is a case–control study.
Furthermore, in the HFpEF-with-T2DM group, approximately 30% of patients terminated their CPET because of decreased pedal velocity and the prevalence of sarcopenia. Therefore, even if the peak respiratory exchange ratio exceeds 1.1, early termination of exercise due to muscle weakness in the lower extremities cannot be ignored. Therefore, further investigation considering these confounding factors is required.
Peak a-vO2 diff was significantly lower in the HFpEF-with-T2DM group. Our results showed that exercise intolerance in HFpEF with T2DM is closely associated with a reduced oxygen extraction capacity of peripheral tissues. Decreased peak a-vO2 diff has been implicated as a significant cause of exercise intolerance in patients with HFpEF and T2DM [55, 60]. These reports support some of our findings. In particular, sarcopenia, one of the non-cardiac factors, appears to be closely associated with exercise intolerance in patients with HFpEF [45]. Nesti et al. reported hemoglobin as a predictor of the a-vO2 diff [10]. In our study, the HFpEF-with-T2DM group also showed a significant increase in the prevalence of anemia. Multiple reports and our results suggest that extracardiac factors may be closely related to exercise intolerance in a cohort characterized by HFpEF with T2DM. However, it should be noted that in our study, the a-vO2 diff was measured as an estimate calculated using the Fick equation. Furthermore, the prevalence of sarcopenia was significantly increased in the HFpEF-with-T2DM group, but the differences in its constituent factors (e.g., appendicular skeletal muscle index, hand grip, and the five-time chair-stand test as a physical function) were slight. Therefore, it cannot be concluded that peripheral factors, such as peak a-vO2 diff, are determinants of exercise capacity in patients with HFpEF with T2DM and should be left to the influential hypothesis stage.
VE vs VCO2 slope, an index of ventilation efficiency during exercise, was higher in the HFpEF-with-T2DM group than in the HFpEF-without-T2DM group. When a pulmonary disease is excluded, as in our study, VE vs VCO2 slope is an indicator of pulmonary artery blood flow and ventilation/perfusion imbalance, and high values in patients with HFpEF have been reported to be associated with survival prognosis [60]. To the best of our knowledge, this is the first report on the ventilatory function of HFpEF with T2DM during exercise. Cardiac autonomic neuropathy may exacerbate the ventilatory response to exercise in patients with diabetes by excessively increasing the respiratory rate and alveolar ventilation [61]. In our study, as shown in Additional file 2, 84% of the patients in the HFpEF-with-T2DM group had abnormalities of HRR and cardiac autonomic neuropathy. Therefore, it cannot be denied that the presence of ventilatory/perfusion imbalance and cardiac autonomic neuropathy was associated with insufficient CO in the HFpEF-with-T2DM group caused an increase in VE vs VCO2 slope.

T2DM as an independent factor of exercise intolerance in patients with HFpEF

Multiple regression analysis showed that T2DM was independently associated with peakVO2 in patients with HFpEF. T2DM has been reported as a predictor of peakVO2 regardless of LVEF [62]. Our study has clinical significance as we enrolled patients with HFpEF aged 65–80 years, who are likely to be encountered clinically, and presented results after adjusting for multiple confounding factors, such as sarcopenia and daily physical activity. Although the underlying cause of exercise intolerance in HFpEF is multifactorial, our results suggest that T2DM may adversely affect multiple predictors.
Furthermore, exercise intolerance in HFpEF with T2DM may be associated with chronotropic incompetence, decreased ventilation efficiency during exercise as central factors, and decreased a-vO2 diff as peripheral factors. Additionally, cardiac autonomic neuropathy, anemia, and sarcopenia may also have an effect. Therefore, as a suggestion for future interventions in cases of HFpEF with T2DM with poor prognosis, sodium-glucose cotransporter two inhibitors may improve glycemic control and anemia [63]. It has also been suggested that cardiac rehabilitation, as a non-pharmacological intervention, may improve cardiac autonomic neuropathy and sarcopenia. Further studies are needed to determine whether these interventions improve exercise intolerance and prognosis.

Limitations

In this study, selection bias cannot be completely ruled out because it was a single-center study. Moreover, this study included only Japanese individuals, who differ from Caucasians in race and physique. A total of 48% of patients with HFpEF were classified as NYHA class III, but only 5% received diuretics at the time of our investigation. The BNP levels and peak tricuspid regurgitation velocity of patients with HFpEF in our study possibly indicated that many of those with NYHA class III may have experienced fluid retention, and that they were not receiving adequate medication at the initial visit. As noted in the guidelines, in patients with HF who have fluid retention, diuretics are recommended to relieve congestion, improve symptoms, and prevent worsening HF [64, 65]. Therefore, the impact of this on exercise capacity cannot be denied. Impedance cardiography, a noninvasive method for assessing CO, has been reported to be highly correlated with the direct Fick method in healthy individuals. However, SV may be overestimated when patients with HF are included as participants [66]. Therefore, errors may have occurred during measurement in participants with the same HF symptoms. Nevertheless, our study participants had a more preserved LVEF than the Kemps et al. study [66]; patients with dilated cardiomyopathy were excluded as their clinical characteristics were significantly different. A stress test that combines CPET and echocardiography shows a clinically acceptable measurement accuracy, consistent with Fick's CO value measured directly during exercise.
Further, various types of information can be obtained during exercise (e.g., LV-GLS, E/e', LVEF); this may provide a compatible alternative to the invasive direct Fick method [67]. The a-vO2 diff was also calculated from Fick's formula, and we cannot conclude that the decline in a-vO2 is a determinant of peakVO2 due to the methodological limitations of this study. Finally, we did not collect biomarker data other than the BNP levels. Obtaining biomarkers other than BNP, especially biomarkers of vasodilatation and fibrosis, such as endothelin and galectin, may provide suggestions for LA pathological changes and a-vO2 diff and knowledge that will help us better understand the mechanisms.

Conclusions

The results of this case–control study based on patients with HFpEF diagnosed by the stringent criteria showed that T2DM was independently associated with peakVO2 in patients with HFpEF. Furthermore, HFpEF combined with T2DM may lead to additive decreases in exercise capacity, HR response, peripheral oxygen extraction, and ventilation efficiency. Our results suggest that patients with HFpEF with T2DM have a characteristic pathophysiology, such as cardiac autonomic neuropathy, anemia, and sarcopenia, and these factors may be related to peakVO2 determinants. Multiple factors cause exercise intolerance in patients with HFpEF with T2DM, but our findings may help identify intervention targets. Further investigation is needed through clinical trials based on large-scale pharmacological and non-pharmacological diabetes care interventions in this unique cohort population.

Acknowledgements

The authors thank the individuals who participated in this study and Hitomi Tsubota, and Shigeki Sakurai a medical staff member.

Declarations

This research related to human use complies with all relevant national regulations, institutional policies, and the tenets of the Declaration of Helsinki. In addition, it has been approved by the authors' institutional review board (Institutional Review Board of Tsukuba University of Technology in Tsukuba City, Japan (Approval Number: 202108)).
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Literatur
1.
Zurück zum Zitat Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63:1123–33.PubMedCrossRef Ambrosy AP, Fonarow GC, Butler J, Chioncel O, Greene SJ, Vaduganathan M, et al. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63:1123–33.PubMedCrossRef
2.
Zurück zum Zitat Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D’Agostino RB, Kannel WB, et al. Lifetime risk for developing congestive heart failure: the framingham heart study. Circulation. 2002;106:3068–72.PubMedCrossRef Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D’Agostino RB, Kannel WB, et al. Lifetime risk for developing congestive heart failure: the framingham heart study. Circulation. 2002;106:3068–72.PubMedCrossRef
3.
Zurück zum Zitat Shimokawa H, Miura M, Nochioka K, Sakata Y. Heart failure as a general pandemic in Asia. Eur J Heart Fail. 2015;17:884–92.PubMedCrossRef Shimokawa H, Miura M, Nochioka K, Sakata Y. Heart failure as a general pandemic in Asia. Eur J Heart Fail. 2015;17:884–92.PubMedCrossRef
4.
Zurück zum Zitat Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387:1513–30.CrossRef Zhou B, Lu Y, Hajifathalian K, Bentham J, Di Cesare M, Danaei G, et al. Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet. 2016;387:1513–30.CrossRef
5.
Zurück zum Zitat Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.PubMedCrossRef Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.PubMedCrossRef
6.
Zurück zum Zitat Maurer MS, Burkhoff D, Fried LP, Gottdiener J, King DL, Kitzman DW. Ventricular structure and function in hypertensive participants with heart failure and a normal ejection fraction: the cardiovascular health study. J Am Coll Cardiol. 2007;49:972–81.PubMedCrossRef Maurer MS, Burkhoff D, Fried LP, Gottdiener J, King DL, Kitzman DW. Ventricular structure and function in hypertensive participants with heart failure and a normal ejection fraction: the cardiovascular health study. J Am Coll Cardiol. 2007;49:972–81.PubMedCrossRef
7.
Zurück zum Zitat Klapholz M, Maurer M, Lowe AM, Messineo F, Meisner JS, Mitchell J, et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York heart failure registry. J Am Coll Cardiol. 2004;43:1432–8.PubMedCrossRef Klapholz M, Maurer M, Lowe AM, Messineo F, Meisner JS, Mitchell J, et al. Hospitalization for heart failure in the presence of a normal left ventricular ejection fraction: results of the New York heart failure registry. J Am Coll Cardiol. 2004;43:1432–8.PubMedCrossRef
8.
Zurück zum Zitat Tribouilloy C, Rusinaru D, Mahjoub H, Tartière JM, Kesri-Tartière L, Godard S, et al. Prognostic impact of diabetes mellitus in patients with heart failure and preserved ejection fraction: a prospective five-year study. Heart. 2008;94:1450–5.PubMedCrossRef Tribouilloy C, Rusinaru D, Mahjoub H, Tartière JM, Kesri-Tartière L, Godard S, et al. Prognostic impact of diabetes mellitus in patients with heart failure and preserved ejection fraction: a prospective five-year study. Heart. 2008;94:1450–5.PubMedCrossRef
9.
Zurück zum Zitat Dhakal BP, Malhotra R, Murphy RM, Pappagianopoulos PP, Baggish AL, Weiner RB, et al. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: the role of abnormal peripheral oxygen extraction. Circ Heart Fail. 2015;8:286–94.PubMedCrossRef Dhakal BP, Malhotra R, Murphy RM, Pappagianopoulos PP, Baggish AL, Weiner RB, et al. Mechanisms of exercise intolerance in heart failure with preserved ejection fraction: the role of abnormal peripheral oxygen extraction. Circ Heart Fail. 2015;8:286–94.PubMedCrossRef
10.
Zurück zum Zitat Nesti L, Pugliese NR, Sciuto P, De Biase N, Mazzola M, Fabiani I, et al. Mechanisms of reduced peak oxygen consumption in subjects with uncomplicated type 2 diabetes. Cardiovasc Diabetol. 2021;20:124.PubMedPubMedCentralCrossRef Nesti L, Pugliese NR, Sciuto P, De Biase N, Mazzola M, Fabiani I, et al. Mechanisms of reduced peak oxygen consumption in subjects with uncomplicated type 2 diabetes. Cardiovasc Diabetol. 2021;20:124.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Lindman BR, Dávila-Román VG, Mann DL, McNulty S, Semigran MJ, Lewis GD, et al. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol. 2014;64:541–9.PubMedPubMedCentralCrossRef Lindman BR, Dávila-Román VG, Mann DL, McNulty S, Semigran MJ, Lewis GD, et al. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol. 2014;64:541–9.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132:605–11.PubMedCrossRef Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132:605–11.PubMedCrossRef
13.
Zurück zum Zitat Sugita Y, Ito K, Sakurai S, Sakai S, Kuno S. Epicardial adipose tissue is tightly associated with exercise intolerance in patients with type 2 diabetes mellitus with asymptomatic left ventricular structural and functional abnormalities. J Diabetes Complicat. 2020;34: 107552.CrossRef Sugita Y, Ito K, Sakurai S, Sakai S, Kuno S. Epicardial adipose tissue is tightly associated with exercise intolerance in patients with type 2 diabetes mellitus with asymptomatic left ventricular structural and functional abnormalities. J Diabetes Complicat. 2020;34: 107552.CrossRef
14.
Zurück zum Zitat Abudiab MM, Redfield MM, Melenovsky V, Olson TP, Kass DA, Johnson BD, et al. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013;15:776–85.PubMedPubMedCentralCrossRef Abudiab MM, Redfield MM, Melenovsky V, Olson TP, Kass DA, Johnson BD, et al. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur J Heart Fail. 2013;15:776–85.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of Left ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. 2016;29:277–314.PubMedCrossRef Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of Left ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr. 2016;29:277–314.PubMedCrossRef
16.
Zurück zum Zitat Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 2022;145:e876–94.PubMed Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: executive summary: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. 2022;145:e876–94.PubMed
17.
Zurück zum Zitat Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the heart failure association (HFA) of the European society of cardiology (ESC). Eur Heart J. 2019;40:3297–317.PubMedCrossRef Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the heart failure association (HFA) of the European society of cardiology (ESC). Eur Heart J. 2019;40:3297–317.PubMedCrossRef
18.
Zurück zum Zitat Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig. 2010;1:212–28.PubMedPubMedCentralCrossRef Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig. 2010;1:212–28.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:1–253. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:1–253.
20.
Zurück zum Zitat Du Bois D, Du Bois EF, Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known 1916. Nutrition. 1989;5:303–11.PubMed Du Bois D, Du Bois EF, Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known 1916. Nutrition. 1989;5:303–11.PubMed
21.
Zurück zum Zitat Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.PubMedCrossRef
22.
Zurück zum Zitat Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S, Kikuchi K, et al. GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis. 2013;61:197–203.PubMedCrossRef Horio M, Imai E, Yasuda Y, Watanabe T, Matsuo S, Kikuchi K, et al. GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis. 2013;61:197–203.PubMedCrossRef
23.
Zurück zum Zitat World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. No. WHO/NMH/NHD/MNM/11.1. Geneva: World Health Organization; 2011. World Health Organization. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. No. WHO/NMH/NHD/MNM/11.1. Geneva: World Health Organization; 2011.
24.
Zurück zum Zitat Matsuzawa Y. Metabolic syndrome–definition and diagnostic criteria in Japan. J Atheroscler Thromb. 2005;12:301.PubMedCrossRef Matsuzawa Y. Metabolic syndrome–definition and diagnostic criteria in Japan. J Atheroscler Thromb. 2005;12:301.PubMedCrossRef
25.
Zurück zum Zitat Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anat Valid Method Circ. 1977;55:613–8. Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anat Valid Method Circ. 1977;55:613–8.
26.
Zurück zum Zitat Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American society of echocardiography endorsed by the European association of echocardiography, a registered branch of the European society of cardiology, and the Canadian society of echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.PubMedCrossRef Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American society of echocardiography endorsed by the European association of echocardiography, a registered branch of the European society of cardiology, and the Canadian society of echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.PubMedCrossRef
27.
Zurück zum Zitat Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA, et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2013;14:611–44.PubMedCrossRef Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA, et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2013;14:611–44.PubMedCrossRef
28.
Zurück zum Zitat Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American society of echocardiography developed in collaboration with the society for cardiovascular magnetic resonance. J Am Soc Echocardiogr. 2017;30:303–71.PubMedCrossRef Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American society of echocardiography developed in collaboration with the society for cardiovascular magnetic resonance. J Am Soc Echocardiogr. 2017;30:303–71.PubMedCrossRef
29.
Zurück zum Zitat Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European society of cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.PubMedCrossRef Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the European association of echocardiography, a branch of the European society of cardiology. J Am Soc Echocardiogr. 2005;18:1440–63.PubMedCrossRef
30.
Zurück zum Zitat To AC, Flamm SD, Marwick TH, Klein AL. Clinical utility of multimodality LA imaging: assessment of size, function, and structure. JACC Cardiovasc Imaging. 2011;4:788–98.PubMedCrossRef To AC, Flamm SD, Marwick TH, Klein AL. Clinical utility of multimodality LA imaging: assessment of size, function, and structure. JACC Cardiovasc Imaging. 2011;4:788–98.PubMedCrossRef
31.
Zurück zum Zitat Kosmala W, Wong C, Kuliczkowska J, Leano R, Przewlocka-Kosmala M, Marwick TH. Use of body weight and insulin resistance to select obese patients for echocardiographic assessment of subclinical left ventricular dysfunction. Am J Cardiol. 2008;101:1334–40.PubMedCrossRef Kosmala W, Wong C, Kuliczkowska J, Leano R, Przewlocka-Kosmala M, Marwick TH. Use of body weight and insulin resistance to select obese patients for echocardiographic assessment of subclinical left ventricular dysfunction. Am J Cardiol. 2008;101:1334–40.PubMedCrossRef
32.
Zurück zum Zitat Morris DA, Takeuchi M, Krisper M, Köhncke C, Bekfani T, Carstensen T, et al. Normal values and clinical relevance of left atrial myocardial function analysed by speckle-tracking echocardiography: multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16:364–72.PubMedCrossRef Morris DA, Takeuchi M, Krisper M, Köhncke C, Bekfani T, Carstensen T, et al. Normal values and clinical relevance of left atrial myocardial function analysed by speckle-tracking echocardiography: multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16:364–72.PubMedCrossRef
33.
Zurück zum Zitat Iacobellis G, Sharma AM. Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome. Curr Pharm Des. 2007;13:2180–4.PubMedCrossRef Iacobellis G, Sharma AM. Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome. Curr Pharm Des. 2007;13:2180–4.PubMedCrossRef
34.
Zurück zum Zitat Tanaka K, Takeshima N, Kato T, Niihata S, Ueda K. Critical determinants of endurance performance in middle-aged and elderly endurance runners with heterogeneous training habits. Eur J Appl Physiol Occup Physiol. 1990;59:443–9.PubMedCrossRef Tanaka K, Takeshima N, Kato T, Niihata S, Ueda K. Critical determinants of endurance performance in middle-aged and elderly endurance runners with heterogeneous training habits. Eur J Appl Physiol Occup Physiol. 1990;59:443–9.PubMedCrossRef
35.
Zurück zum Zitat Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1985;1986(60):2020–7. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1985;1986(60):2020–7.
36.
Zurück zum Zitat Laforgia P, Bandera F, Alfonzetti E, Guazzi M. Exercise chronotropic incompetence phenotypes the level of cardiovascular risk and exercise gas exchange impairment in the general population. an analysis of the Euro-ex prevention trial. Eur J Prev Cardiol. 2020;27:526–35.PubMedCrossRef Laforgia P, Bandera F, Alfonzetti E, Guazzi M. Exercise chronotropic incompetence phenotypes the level of cardiovascular risk and exercise gas exchange impairment in the general population. an analysis of the Euro-ex prevention trial. Eur J Prev Cardiol. 2020;27:526–35.PubMedCrossRef
37.
Zurück zum Zitat Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 1999;341:1351–7.PubMedCrossRef Cole CR, Blackstone EH, Pashkow FJ, Snader CE, Lauer MS. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 1999;341:1351–7.PubMedCrossRef
38.
Zurück zum Zitat Newton RL, Han H, Johnson WD, Hickson DA, Church TS, Taylor HA, et al. Steps/day and metabolic syndrome in African American adults: the jackson heart study. Prev Med. 2013;57:855–9.PubMedPubMedCentralCrossRef Newton RL, Han H, Johnson WD, Hickson DA, Church TS, Taylor HA, et al. Steps/day and metabolic syndrome in African American adults: the jackson heart study. Prev Med. 2013;57:855–9.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia. J Am Med Dir Assoc. 2014;15:95–101.PubMedCrossRef Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian working group for sarcopenia. J Am Med Dir Assoc. 2014;15:95–101.PubMedCrossRef
40.
Zurück zum Zitat Haykowsky MJ, Nicklas BJ, Brubaker PH, Hundley WG, Brinkley TE, Upadhya B, et al. Regional adipose distribution and its relationship to exercise intolerance in older obese patients who have heart failure with preserved ejection fraction. JACC Heart Fail. 2018;6:640–9.PubMedPubMedCentralCrossRef Haykowsky MJ, Nicklas BJ, Brubaker PH, Hundley WG, Brinkley TE, Upadhya B, et al. Regional adipose distribution and its relationship to exercise intolerance in older obese patients who have heart failure with preserved ejection fraction. JACC Heart Fail. 2018;6:640–9.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Mauricio R, Patel KV, Agusala V, Singh K, Lewis A, Ayers C, et al. Sex differences in cardiac function, biomarkers and exercise performance in heart failure with preserved ejection fraction: findings from the RELAX trial. Eur J Heart Fail. 2019;21:1476–9.PubMedCrossRef Mauricio R, Patel KV, Agusala V, Singh K, Lewis A, Ayers C, et al. Sex differences in cardiac function, biomarkers and exercise performance in heart failure with preserved ejection fraction: findings from the RELAX trial. Eur J Heart Fail. 2019;21:1476–9.PubMedCrossRef
42.
Zurück zum Zitat Carbone S, Canada JM, Buckley LF, Trankle CR, Dixon DL, Buzzetti R, et al. Obesity contributes to exercise intolerance in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2016;68:2487–8.PubMedPubMedCentralCrossRef Carbone S, Canada JM, Buckley LF, Trankle CR, Dixon DL, Buzzetti R, et al. Obesity contributes to exercise intolerance in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2016;68:2487–8.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Pandey A, Kitzman DW, Brubaker P, Haykowsky MJ, Morgan T, Becton JT, et al. Response to endurance exercise training in older adults with heart failure with preserved or reduced ejection fraction. J Am Geriatr Soc. 2017;65:1698–704.PubMedPubMedCentralCrossRef Pandey A, Kitzman DW, Brubaker P, Haykowsky MJ, Morgan T, Becton JT, et al. Response to endurance exercise training in older adults with heart failure with preserved or reduced ejection fraction. J Am Geriatr Soc. 2017;65:1698–704.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Zakeri R, Borlaug BA, McNulty SE, Mohammed SF, Lewis GD, Semigran MJ, et al. Impact of atrial fibrillation on exercise capacity in heart failure with preserved ejection fraction: a RELAX trial ancillary study. Circ Heart Fail. 2014;7:123–30.PubMedCrossRef Zakeri R, Borlaug BA, McNulty SE, Mohammed SF, Lewis GD, Semigran MJ, et al. Impact of atrial fibrillation on exercise capacity in heart failure with preserved ejection fraction: a RELAX trial ancillary study. Circ Heart Fail. 2014;7:123–30.PubMedCrossRef
45.
Zurück zum Zitat Bekfani T, Pellicori P, Morris DA, Ebner N, Valentova M, Steinbeck L, et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int J Cardiol. 2016;222:41–6.PubMedCrossRef Bekfani T, Pellicori P, Morris DA, Ebner N, Valentova M, Steinbeck L, et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int J Cardiol. 2016;222:41–6.PubMedCrossRef
46.
Zurück zum Zitat Parcha V, Patel N, Kalra R, Bhargava A, Prabhu SD, Arora G, et al. Clinical, demographic, and imaging correlates of anemia in heart failure with preserved ejection fraction (from the RELAX Trial). Am J Cardiol. 2020;125:1870–8.PubMedPubMedCentralCrossRef Parcha V, Patel N, Kalra R, Bhargava A, Prabhu SD, Arora G, et al. Clinical, demographic, and imaging correlates of anemia in heart failure with preserved ejection fraction (from the RELAX Trial). Am J Cardiol. 2020;125:1870–8.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Pugliese NR, Paneni F, Mazzola M, De Biase N, Del Punta L, Gargani L, et al. Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail. 2021;23:1858–71.PubMedCrossRef Pugliese NR, Paneni F, Mazzola M, De Biase N, Del Punta L, Gargani L, et al. Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail. 2021;23:1858–71.PubMedCrossRef
48.
Zurück zum Zitat Palau P, Seller J, Domínguez E, Sastre C, Ramón JM, de La Espriella R, et al. Effect of β-blocker withdrawal on functional capacity in heart failure and preserved ejection fraction. J Am Coll Cardiol. 2021;78:2042–56.PubMedCrossRef Palau P, Seller J, Domínguez E, Sastre C, Ramón JM, de La Espriella R, et al. Effect of β-blocker withdrawal on functional capacity in heart failure and preserved ejection fraction. J Am Coll Cardiol. 2021;78:2042–56.PubMedCrossRef
49.
Zurück zum Zitat Sone H, Ito H, Ohashi Y, Akanuma Y, Yamada N. Obesity and type 2 diabetes in Japanese patients. Lancet. 2003;361:85.PubMedCrossRef Sone H, Ito H, Ohashi Y, Akanuma Y, Yamada N. Obesity and type 2 diabetes in Japanese patients. Lancet. 2003;361:85.PubMedCrossRef
50.
Zurück zum Zitat DeFronzo RA, Lilly lecture,. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM Diabetes. 1987;1988(37):667–87. DeFronzo RA, Lilly lecture,. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM Diabetes. 1987;1988(37):667–87.
51.
Zurück zum Zitat Wehner GJ, Jing L, Haggerty CM, Suever JD, Leader JB, Hartzel DN, et al. Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk lie. Eur Heart J. 2020;41:1249–57.PubMedCrossRef Wehner GJ, Jing L, Haggerty CM, Suever JD, Leader JB, Hartzel DN, et al. Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk lie. Eur Heart J. 2020;41:1249–57.PubMedCrossRef
52.
Zurück zum Zitat Zhu S, Lin Y, Zhang Y, Wang G, Qian M, Gao L, et al. Prognostic relevance of left atrial function and stiffness in heart failure with preserved ejection fraction patients with and without diabetes mellitus. Front Cardiovasc Med. 2022;9: 947639.PubMedPubMedCentralCrossRef Zhu S, Lin Y, Zhang Y, Wang G, Qian M, Gao L, et al. Prognostic relevance of left atrial function and stiffness in heart failure with preserved ejection fraction patients with and without diabetes mellitus. Front Cardiovasc Med. 2022;9: 947639.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Vukomanovic V, Suzic-Lazic J, Celic V, Cuspidi C, Grassi G, Galderisi M, et al. Is there association between left atrial function and functional capacity in patients with uncomplicated type 2 diabetes. Int J Cardiovasc Imaging. 2020;36:15–22.PubMedCrossRef Vukomanovic V, Suzic-Lazic J, Celic V, Cuspidi C, Grassi G, Galderisi M, et al. Is there association between left atrial function and functional capacity in patients with uncomplicated type 2 diabetes. Int J Cardiovasc Imaging. 2020;36:15–22.PubMedCrossRef
54.
Zurück zum Zitat Santos AB, Roca GQ, Claggett B, Sweitzer NK, Shah SJ, Anand IS, et al. Prognostic relevance of left atrial dysfunction in heart failure with preserved ejection fraction. Circ Heart Fail. 2016;9: e002763.PubMedPubMedCentralCrossRef Santos AB, Roca GQ, Claggett B, Sweitzer NK, Shah SJ, Anand IS, et al. Prognostic relevance of left atrial dysfunction in heart failure with preserved ejection fraction. Circ Heart Fail. 2016;9: e002763.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Nadruz W, West E, Sengeløv M, Santos M, Groarke JD, Forman DE, et al. Prognostic value of cardiopulmonary exercise testing in heart failure with reduced, midrange, and preserved ejection fraction. J Am Heart Assoc. 2017;6:e006000.PubMedPubMedCentralCrossRef Nadruz W, West E, Sengeløv M, Santos M, Groarke JD, Forman DE, et al. Prognostic value of cardiopulmonary exercise testing in heart failure with reduced, midrange, and preserved ejection fraction. J Am Heart Assoc. 2017;6:e006000.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 2011;58:265–74.PubMedPubMedCentralCrossRef Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol. 2011;58:265–74.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:1296–304.PubMedPubMedCentralCrossRef Bhella PS, Prasad A, Heinicke K, Hastings JL, Arbab-Zadeh A, Adams-Huet B, et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur J Heart Fail. 2011;13:1296–304.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.PubMedPubMedCentralCrossRef Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Astrand PO, Cuddy TE, Saltin B, Stenberg J. Cardiac output during submaximal and maximal work. J Appl Physiol. 1964;19:268–74.PubMedCrossRef Astrand PO, Cuddy TE, Saltin B, Stenberg J. Cardiac output during submaximal and maximal work. J Appl Physiol. 1964;19:268–74.PubMedCrossRef
60.
Zurück zum Zitat Klaassen SHC, Liu LCY, Hummel YM, Damman K, van der Meer P, Voors AA, et al. Clinical and hemodynamic correlates and prognostic value of VE/VCO2 slope in patients with heart failure with preserved ejection fraction and pulmonary hypertension. J Card Fail. 2017;23:777–82.PubMedCrossRef Klaassen SHC, Liu LCY, Hummel YM, Damman K, van der Meer P, Voors AA, et al. Clinical and hemodynamic correlates and prognostic value of VE/VCO2 slope in patients with heart failure with preserved ejection fraction and pulmonary hypertension. J Card Fail. 2017;23:777–82.PubMedCrossRef
61.
Zurück zum Zitat Tantucci C, Bottini P, Dottorini ML, Puxeddu E, Casucci G, Scionti L, et al. Ventilatory response to exercise in diabetic subjects with autonomic neuropathy. J Appl Physiol. 1985;1996(81):1978–86. Tantucci C, Bottini P, Dottorini ML, Puxeddu E, Casucci G, Scionti L, et al. Ventilatory response to exercise in diabetic subjects with autonomic neuropathy. J Appl Physiol. 1985;1996(81):1978–86.
62.
Zurück zum Zitat Abe T, Yokota T, Fukushima A, Kakutani N, Katayama T, Shirakawa R, et al. Type 2 diabetes is an independent predictor of lowered peak aerobic capacity in heart failure patients with non-reduced or reduced left ventricular ejection fraction. Cardiovasc Diabetol. 2020;19:142.PubMedPubMedCentralCrossRef Abe T, Yokota T, Fukushima A, Kakutani N, Katayama T, Shirakawa R, et al. Type 2 diabetes is an independent predictor of lowered peak aerobic capacity in heart failure patients with non-reduced or reduced left ventricular ejection fraction. Cardiovasc Diabetol. 2020;19:142.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.PubMedCrossRef Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.PubMedCrossRef
64.
Zurück zum Zitat Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure. J Card Fail. 2022;28:e1–167.CrossRef Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure. J Card Fail. 2022;28:e1–167.CrossRef
65.
Zurück zum Zitat Tsutsui H, Ide T, Ito H, Kihara Y, Kinugawa K, Kinugawa S, et al. JCS/JHFS 2021 Guideline focused update on diagnosis and treatment of acute and chronic heart failure. J Card Fail. 2021;27:1404–44.PubMedCrossRef Tsutsui H, Ide T, Ito H, Kihara Y, Kinugawa K, Kinugawa S, et al. JCS/JHFS 2021 Guideline focused update on diagnosis and treatment of acute and chronic heart failure. J Card Fail. 2021;27:1404–44.PubMedCrossRef
66.
Zurück zum Zitat Kemps HM, Thijssen EJ, Schep G, Sleutjes BT, De Vries WR, Hoogeveen AR, et al. Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients. J Appl Physiol. 1985;2008(105):1822–9. Kemps HM, Thijssen EJ, Schep G, Sleutjes BT, De Vries WR, Hoogeveen AR, et al. Evaluation of two methods for continuous cardiac output assessment during exercise in chronic heart failure patients. J Appl Physiol. 1985;2008(105):1822–9.
67.
Zurück zum Zitat Pugliese NR, Fabiani I, Santini C, Rovai I, Pedrinelli R, Natali A, et al. Value of combined cardiopulmonary and echocardiography stress test to characterize the haemodynamic and metabolic responses of patients with heart failure and mid-range ejection fraction. Eur Heart J Cardiovasc Imaging. 2019;20:828–36.PubMedCrossRef Pugliese NR, Fabiani I, Santini C, Rovai I, Pedrinelli R, Natali A, et al. Value of combined cardiopulmonary and echocardiography stress test to characterize the haemodynamic and metabolic responses of patients with heart failure and mid-range ejection fraction. Eur Heart J Cardiovasc Imaging. 2019;20:828–36.PubMedCrossRef
Metadaten
Titel
Association of complication of type 2 diabetes mellitus with hemodynamics and exercise capacity in patients with heart failure with preserved ejection fraction: a case–control study in individuals aged 65–80 years
verfasst von
Yousuke Sugita
Katsuhiko Ito
Yui Yoshioka
Satoshi Sakai
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Cardiovascular Diabetology / Ausgabe 1/2023
Elektronische ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-023-01835-2

Weitere Artikel der Ausgabe 1/2023

Cardiovascular Diabetology 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.