Skip to main content
Erschienen in: BMC Medical Genetics 1/2019

Open Access 01.12.2019 | Research article

Association of hypoxia-inducible factor-1α (HIF1α) 1790G/A gene polymorphism with renal cell carcinoma and prostate cancer susceptibility: a meta-analysis

verfasst von: Hong-Yan Li, Tianbiao Zhou, Wenshan Lin, Shujun Lin, Hongzhen Zhong

Erschienen in: BMC Medical Genetics | Ausgabe 1/2019

Abstract

Background

This meta-analysis was performed to evaluate the relationship between hypoxia-inducible factor-1α (HIF1α) 1790G/A gene polymorphism and the susceptibility to renal cell carcinoma (RCC) and prostate cancer (PCa).

Methods

Association investigations were identified and included from the Embase, Cochrane Library and PubMed databases on March 1, 2018, and eligible investigations were analyzed by meta-analysis. Odds ratios (OR) were used to express the dichotomous data, and the 95% confidence intervals (CI) were also calculated.

Results

In this meta-analysis, we found that the AA genotype of HIF1α 1790G/A was positively associated with the risk of RCC in overall populations, Caucasians, but not for Asians. G allele and GG genotype were not associated with the susceptibility of RCC in overall populations, Caucasians, and Asians. The G allele was negatively associated with PCa susceptibility in overall populations, Asians, but not for Caucasians. GG genotype was negatively associated with PCa susceptibility in Asians, but not for overall populations and Caucasians. HIF1α 1790G/A AA genotype was not associated with PCa susceptibility in overall populations of Caucasians or Asians.

Conclusion

AA genotype of HIF1α 1790G/A was positively associated with RCC risk in overall populations and Caucasians. Furthermore, the G allele was negatively associated with prostate cancer susceptibility in overall populations, Asians, and GG genotype was negatively associated with PCa susceptibility in Asians.
Hinweise
Hong-Yan Li, Tianbiao Zhou, Wenshan Lin and Shujun Lin are joint First Authors.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CI
confidence intervals
HIF1α
hypoxia-inducible factor-1α
OR
Odds ratios
PCa
prostate cancer
RCC
renal cell carcinoma

Background

Renal cell carcinoma (RCC) is one of the most commonly occurring types of tumors in the urogenital system and accounts for ~ 85% of all kidney tumors [14]. RCC is not sensitive to conventional chemotherapy and radiotherapy, and its prognosis remains poor [1]. Prostate cancer (PCa) is a complex disease, and is the fifth leading cause of cancer death in men worldwide [5]. The screening projection for PCa is still unclear and recent large clinical trials have failed to exert notable reduction in the prostate-specific mortality and the all-cause mortality [6]. The current evidence shows that RCC and PCa are Von Hippel-Lindau tumor suppressor (VHL)-related cancers [710]. VHL protein is an E3 ubiquitin ligase that targets hypoxia inducible factor 1α (HIF1α) to the proteasome for degradation [11]. The current literature indicates that genetic factors are significant contributors to cancers risk [1215].
Hypoxia inducible factor 1α (HIF1α) is the central regulator of the cellular response to low oxygen, and the activity of HIF1α is down-regulated in various human pathologies [16, 17]. During hypoxia, reduced oxygen availability can inhibit these HIF hydroxylase enzymes, and lead to HIF1α protein accumulation, which may translocate to the cell nucleus, bind to the HIF1β, and induce the transcription of some HIF target genes [18]. HIF1α regulates tumor cell proliferation, invasion, migration, and resistance to radiotherapy [16, 19]. Consequently, given the importance of HIF signaling in disease, there is considerable interest in developing strategies to modulate HIF1α activity and to induce down-stream signaling events. HIF1α 1790G/A (rs11549467) gene polymorphism is one of the most important gene polymorphism for certain cancers, such as PCa, and RCC. However, the available evidence is inadequate due to inconsistencies between studies and an overall lack of data. This meta-analysis was performed to investigate whether the HIF1α 1790G/A (rs11549467) gene polymorphism is associated with RCC, PCa susceptibility.

Methods

Search strategy

Retrieval of the relevant published reports were conducted in the electronic databases of Embase, Cochrane Library and PubMed on March 1, 2018, and eligible original articles were recruited into this meta-analysis. The key phrases for retrieval consisted of (“hypoxia-inducible factor OR hypoxia-inducible factor-1α” OR “HIF1α”) and (“renal cell carcinoma” OR “renal carcinoma” OR “renal cancer” OR “RCC” OR “prostatic carcinoma” OR “prostatic cancer” OR “prostate cancer” OR “prostate carcinoma”).

Inclusion and exclusion criteria

Inclusion criteria: (1) an endpoint of RCC, PCa; (2) two comparison groups (case vs. control); (3) the presence of detailed data for the genotype distribution.
Exclusion criteria: (1) case reports, review articles and editorials; (2) preliminary results not on HIF1α 1790G/A gene polymorphism or RCC, PCa susceptibility; (3) investigations of the role HIF1α gene expression in disease.

Data extraction and synthesis

The following information from each eligible study was independently extracted by two investigators: first author’s surname, year of publication and the number of cases and controls for HIF1α 1790G/A genotypes. Frequencies of genotypes for HIF1α 1790G/A were calculated for each case group and control group, from the corresponding genotype distributions. The results were compared, and disagreement was resolved by discussion. Consistency of data extracted by the 2 researchers was evaluated and disagreements were resolved by discussion.

Statistical analysis

All statistical analyses were performed using Cochrane Review Manager Version 5 (Cochrane Library, UK). The pooled statistic was determined using the fixed effects model (Mantel-Haenszel method), and a random effects model (DerSimonian-Laird method) was conducted when the P-value from the heterogeneity test was less than 0.1. Odds ratios (OR) were used to express the dichotomous data, and 95% confidence intervals (CI) were also calculated. A P < 0.05 was required for the pooled OR to be statistically significant. I2 was used to assess the heterogeneity among the included studies.

Results

Study characteristics for association of the HIF1α 1790G/A gene polymorphism with RCC susceptibility

Four studies [2023] were recruited into our investigation of the relationship between the HIF1α 1790G/A gene polymorphism and RCC susceptibility (Table 1). Data of interest was extracted by the first author’s surname, year of publication and the number of cases and controls for the HIF1α 1790G/A genotype (Table 1). The 4 included investigations contained 1139 case series and 1364 controls.
Table 1
Characteristics of studies evaluating the effects of hypoxia-inducible factor-1α (HIF1α) 1790G/A gene polymorphism on renal cancer and prostate cancer risk
Cancer Types
Author, Year
Country
Ethnicity
Case
Control
+
Total
+
Total
Renal cancer
Clifford 2001
UK
Caucasian
18
27
45
31
17
48
Ollerenshaw 2004
UK
Caucasian
89
84
173
117
94
211
Morris 2009
Poland
Caucasian
63
63
126
255
250
505
Qin 2012
China
Asian
50
50
100
108
92
200
Prostate cancer
Chau 2005
USA
Mix
424
487
911
555
677
1232
Orr-Urtreger 2007
Israel
Caucasian
51
47
98
167
157
324
Li 2007
USA
Mix
303
321
624
433
454
887
Li 2012
China
Asian
46
30
76
86
96
182

Study characteristics for association of the HIF1α 1790G/A gene polymorphism with PCa susceptibility

Four studies [2427] were recruited into our meta-analysis to explore the relationship between the HIF1α 1790G/A gene polymorphism and PCa risk (Table 1). Those four investigations contained 2124 case series and 2476 controls.

Association of the HIF1α 1790G/A gene polymorphism with RCC susceptibility

In this meta-analysis, we found that the AA genotype of HIF1α 1790G/A was positively associated with RCC risk in overall populations (OR = 3.09, 95% CI: 1.38–6.92, P = 0.006; Fig. 1 and Table 2) and Caucasians, but not for Asians. G allele and GG genotype were not associated with RCC risk in overall populations (G: OR = 0.65, 95% CI: 0.26–1.67, P = 0.38; GG: OR = 0.63, 95% CI: 0.20–2.03, P = 0.44; Fig. 1 and Table 2), Caucasians, or Asians.
Table 2
Meta-analysis of the association of hypoxia-inducible factor-1α (HIF1α) 1790G/A gene polymorphism with renal cancer and prostate cancer
Cancer Type
Group and subgroups
Studies Number
Q test
P-value
Model selected
OR (95%CI)
P
Renal cancer
G vs A
Overall
4
<0.00001
Random
0.65 (0.26,1.67)
0.38
Caucasian
3
0.0004
Random
0.61 (0.16,2.30)
0.46
Asian
1
Fixed
0.86 (0.55,1.33)
0.49
AA vs AG + GG
Overall
4
0.76
Fixed
3.09 (1.38,6.92)
0.006
Caucasian
3
0.76
Fixed
3.09 (1.38,6.92)
0.006
Asian
1
Fixed
GG vs AG + AA
Overall
4
<0.00001
Random
0.63 (0.20,2.03)
0.44
Caucasian
3
<0.00001
Random
0.59 (0.11,3.31)
0.55
Asian
1
Fixed
0.85 (0.55,1.33)
0.48
Prostate cancer
G vs A
Overall
4
0.49
Fixed
0.68 (0.47,0.99)
0.04
Caucasian
1
Fixed
0.67 (0.09,4.74)
0.68
Asian
1
Fixed
0.58 (0.36,0.91)
0.02
AA vs AG + GG
Overall
4
Fixed
3.25 (0.13,79.90)
0.47
Caucasian
1
Fixed
Asian
1
Fixed
3.25 (0.13,79.90)
0.47
GG vs AG + AA
Overall
4
0.50
Fixed
0.69 (0.47,1.00)
0.05
Caucasian
1
Fixed
0.66 (0.09,4.76)
0.68
Asian
1
Fixed
0.58 (0.36,0.92)
0.02

Association of the HIF1α 1790G/A gene polymorphism with PCa susceptibility

The G allele was negatively associated with PCa susceptibility in overall populations and Asians, but not for Caucasians (Overall populations: G: OR = 0.68, 95% CI: 0.47–0.99, P = 0.04; Fig. 2 and Table 2). GG genotype was negatively associated with PCa susceptibility in Asians, but not for overall populations or Caucasians (Overall populations: G: OR = 0.69, 95% CI: 0.47–1.00, P = 0.05; Fig. 2 and Table 2). However, HIF1α 1790G/A AA genotype was not associated with PCa susceptibility in overall populations of Caucasians or Asians (Overall populations: OR = 3.25, 95% CI: 0.13–79.90, P = 0.47; Fig. 2 and Table 2).

Discussion

In this in-depth meta-analysis, the results indicate that the AA genotype of HIF1α 1790G/A is positively associated with the risk of RCC in overall populations and Caucasians, but not for Asians. The G allele and GG genotype are not associated with the susceptibility of RCC in overall populations, Caucasians, and Asians. The G allele is negatively associated with PCa susceptibility in overall populations and Asians, but not for Caucasians. The GG genotype is negatively associated with PCa susceptibility in Asians, but not for overall populations or Caucasians. However, the HIF1α 1790G/A AA genotype is not associated with PCa susceptibility in overall populations, Caucasians or Asians.
Previous, related meta-analyses have been conducted. Li et al. [28] reported that for the 1790G/A polymorphism, the G allele was significantly associated with a higher risk of urinary cancers in Asians. Anam et al. [29] conducted a meta-analysis using the genome wide association method including 19 case-control studies with a total sample size 10,654, and reported that the HIF1α 1790 G/A gene polymorphism significantly increased the risk of cancer in both Asian and Caucasian populations. Zhou et al. [30] performed a meta-analysis of 28 case-control studies of the relationship between the HIF1α G1790A gene polymorphism and the risk of cancer, and reported that the G with A of HIF-1α G1790A gene polymorphism is a notable risk factor of cancer, especially for RCC, lung cancer, pancreatic cancer, and head and neck cancer. These meta-analyses did not assess the relationship between the HIF1α 1790G/A gene polymorphism and RCC and PCa susceptibility by races. Our results indicate that AA genotype of HIF1α 1790G/A was positively associated with RCC risk in overall populations and Caucasians. Furthermore, the G allele was negatively associated with PCa susceptibility in overall populations and Asians, and the GG genotype was negatively associated with PCa susceptibility in Asians. However, the sample sizes were small and these results need to be treated with caution.
Considering our results and the available literature, we suspected that the G allele and GG genotype were negatively associated with PCa susceptibility, and that the AA genotype was a risk factor to induce the onset of RCC. The hypothesis was as follows: Under both normoxic conditions and hypoxia, the HIF-1α G1790A gene polymorphism would be associated with increased transcription activities and enhanced angiogenesis compared to the wild type [31, 32]. The cause of the enhance transactivation capacity could be the alteration of stability of variant proteins or the enhanced recruitment of transcriptional co-factors such as SRC-1 and CBP/p300 that interact with HIF-1α [33]. HIF-1α G1790A gene polymorphism has been detected within the oxygen-dependent degradation/pVHL binding domain in exon 12 of the HIF-1α gene, which induces increased transcription activity compared to wild type [31]. In addition, regulatory region mutations may interfere with different post-translational modifications of HIF-1α and result in enhanced protein stability [34, 35]. HIF-1α G1790A has been associated with enhanced tumor-produced HIF-1α and cancer progression [36]. BHLHE41 is a specific transcriptional target of HIF-1α, and the HIF-1α G1790A polymorphism creates a HIF-binding site to mediate the upregulation of BHLHE41 [37]. However, there was rare study to detect the functional roles of the G, GG, and AA genotypes in the transcription and other related activities of HIF-1α. In this study, we found that the negative association of G allele with susceptibility of prostate cancer in Asians. We suspected that G allele of HIF-1α G1790A might be associated with low levels of HIF-1α and might be negative association of G allele with prostate cancer risk. However, more studies should be performed to confirm it.
There were some limitations in our meta-analysis, as the study sample sizes were low, and we did not explore sources of variability between studies such as adjusting variables, age distribution, and sources of controls. These results should be treated with caution.

Conclusion

The present results support the hypothesis that the AA genotype of HIF1α 1790G/A is positively associated with RCC risk in overall populations and Caucasians. Furthermore, the G allele is negatively associated with PCa susceptibility in overall populations and Asians, and the GG genotype is negatively associated with PCa susceptibility in Asians. However, additional investigations are required to confirm these relationships.

Acknowledgements

Not applicable.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Zhang XL, Xu G, Zhou Y, Yan JJ. MicroRNA-183 promotes the proliferation and metastasis of renal cell carcinoma through targeting Dickkopf-related protein 3. Oncol Lett. 2018;15(4):6003–8.PubMedPubMedCentral Zhang XL, Xu G, Zhou Y, Yan JJ. MicroRNA-183 promotes the proliferation and metastasis of renal cell carcinoma through targeting Dickkopf-related protein 3. Oncol Lett. 2018;15(4):6003–8.PubMedPubMedCentral
2.
Zurück zum Zitat Ying G, Wu R, Xia M, Fei X, He QE, Zha C, Wu F. Identification of eight key miRNAs associated with renal cell carcinoma: a meta-analysis. Oncol Lett. 2018;16(5):5847–55.PubMedPubMedCentral Ying G, Wu R, Xia M, Fei X, He QE, Zha C, Wu F. Identification of eight key miRNAs associated with renal cell carcinoma: a meta-analysis. Oncol Lett. 2018;16(5):5847–55.PubMedPubMedCentral
3.
Zurück zum Zitat Li X, Qin Z, Xue J, Zhang J, Zheng Y, Xu W, Xu T, Zou Q. Genetic variants in macrophage colony-stimulating factor are associated with risk of renal cell carcinoma in a Chinese population. Int J Biol Markers. 2018;33(3):321–8.PubMedCrossRef Li X, Qin Z, Xue J, Zhang J, Zheng Y, Xu W, Xu T, Zou Q. Genetic variants in macrophage colony-stimulating factor are associated with risk of renal cell carcinoma in a Chinese population. Int J Biol Markers. 2018;33(3):321–8.PubMedCrossRef
4.
Zurück zum Zitat Zhong Z, Li H, Zhong H, Zhou T, Xie W, Lin Z. A systematic review and meta-analyses of the relationship between glutathione S-transferase gene polymorphisms and renal cell carcinoma susceptibility. BMC medical genetics. 2018;19(1):98.PubMedPubMedCentralCrossRef Zhong Z, Li H, Zhong H, Zhou T, Xie W, Lin Z. A systematic review and meta-analyses of the relationship between glutathione S-transferase gene polymorphisms and renal cell carcinoma susceptibility. BMC medical genetics. 2018;19(1):98.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Zhan F, Shen J, Wang R, Wang L, Dai Y, Zhang Y, Huang X. Role of exosomal small RNA in prostate cancer metastasis. Cancer Manag Res. 2018;10:4029–38.PubMedPubMedCentralCrossRef Zhan F, Shen J, Wang R, Wang L, Dai Y, Zhang Y, Huang X. Role of exosomal small RNA in prostate cancer metastasis. Cancer Manag Res. 2018;10:4029–38.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Shahyad S, Saadat SH, Hosseini-Zijoud SM. The clinical efficacy of prostate Cancer screening in worldwide and Iran: narrative review. World J Oncol. 2018;9(1):5–12.PubMedPubMedCentralCrossRef Shahyad S, Saadat SH, Hosseini-Zijoud SM. The clinical efficacy of prostate Cancer screening in worldwide and Iran: narrative review. World J Oncol. 2018;9(1):5–12.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Hong B, Zhang Z, Zhou J, Ma K, Zhang J, Cai L, Zhang N, Gong K. Distinctive clinicopathological features of Von Hippel-Lindau-associated hereditary renal cell carcinoma: a single-institution study. Oncol Lett. 2019;17(5):4600–6.PubMedPubMedCentral Hong B, Zhang Z, Zhou J, Ma K, Zhang J, Cai L, Zhang N, Gong K. Distinctive clinicopathological features of Von Hippel-Lindau-associated hereditary renal cell carcinoma: a single-institution study. Oncol Lett. 2019;17(5):4600–6.PubMedPubMedCentral
8.
Zurück zum Zitat Tedesco L, Elguero B, Pacin DG, Senin S, Pollak C, Garcia Marchinena PA, Jurado AM, Isola M, Labanca MJ. Palazzo M et al: von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME. Cell Death Dis. 2019;10(4):266.PubMedPubMedCentralCrossRef Tedesco L, Elguero B, Pacin DG, Senin S, Pollak C, Garcia Marchinena PA, Jurado AM, Isola M, Labanca MJ. Palazzo M et al: von Hippel-Lindau mutants in renal cell carcinoma are regulated by increased expression of RSUME. Cell Death Dis. 2019;10(4):266.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Chen J, Wu Y, Shao P, Cao Q, Qin C, Li P, Ding Q, Zhu J, Wang M, Zhang Z, et al. Association between VHL single nucleotide polymorphism (rs779805) and the susceptibility to prostate cancer in Chinese. DNA Cell Biol. 2012;31(5):790–6.PubMedCrossRef Chen J, Wu Y, Shao P, Cao Q, Qin C, Li P, Ding Q, Zhu J, Wang M, Zhang Z, et al. Association between VHL single nucleotide polymorphism (rs779805) and the susceptibility to prostate cancer in Chinese. DNA Cell Biol. 2012;31(5):790–6.PubMedCrossRef
10.
Zurück zum Zitat Chetram M, Bethea D, Odero-Marah V, Don-Salu-Hewage A, Jones K, Hinton C. ROS-mediated activation of AKT induces apoptosis via pVHL in prostate cancer cells. Mol Cell Biochem. 2013;376(1–2):63–71.PubMedPubMedCentralCrossRef Chetram M, Bethea D, Odero-Marah V, Don-Salu-Hewage A, Jones K, Hinton C. ROS-mediated activation of AKT induces apoptosis via pVHL in prostate cancer cells. Mol Cell Biochem. 2013;376(1–2):63–71.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Mangiavini L, Merceron C, Araldi E, Khatri R, Gerard-O'Riley R, Wilson TL, Sandusky G, Abadie J, Lyons KM, Giaccia AJ, et al. Fibrosis and hypoxia-inducible factor-1alpha-dependent tumors of the soft tissue on loss of von Hippel-Lindau in mesenchymal progenitors. Am J Pathol. 2015;185(11):3090–101.PubMedPubMedCentralCrossRef Mangiavini L, Merceron C, Araldi E, Khatri R, Gerard-O'Riley R, Wilson TL, Sandusky G, Abadie J, Lyons KM, Giaccia AJ, et al. Fibrosis and hypoxia-inducible factor-1alpha-dependent tumors of the soft tissue on loss of von Hippel-Lindau in mesenchymal progenitors. Am J Pathol. 2015;185(11):3090–101.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Anwar SL, Haryono SJ, Aryandono T, Datasena IG. Screening of BRCA1/2 mutations using direct sequencing in Indonesian familial breast Cancer cases. Asian Pac J Cancer Prev. 2016;17(4):1987–91.PubMedCrossRef Anwar SL, Haryono SJ, Aryandono T, Datasena IG. Screening of BRCA1/2 mutations using direct sequencing in Indonesian familial breast Cancer cases. Asian Pac J Cancer Prev. 2016;17(4):1987–91.PubMedCrossRef
13.
Zurück zum Zitat Anwar SL, Wulaningsih W, Watkins J. Profile of the breast cancer susceptibility marker rs4245739 identifies a role for miRNAs. Cancer Biol Med. 2017;14(4):387–95.PubMedPubMedCentralCrossRef Anwar SL, Wulaningsih W, Watkins J. Profile of the breast cancer susceptibility marker rs4245739 identifies a role for miRNAs. Cancer Biol Med. 2017;14(4):387–95.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Lung HL, Cheung AK, Ko JM, Cheng Y, Stanbridge EJ, Lung ML. Deciphering the molecular genetic basis of NPC through functional approaches. Semin Cancer Biol. 2012;22(2):87–95.PubMedCrossRef Lung HL, Cheung AK, Ko JM, Cheng Y, Stanbridge EJ, Lung ML. Deciphering the molecular genetic basis of NPC through functional approaches. Semin Cancer Biol. 2012;22(2):87–95.PubMedCrossRef
15.
Zurück zum Zitat Tong Y, Qu Y, Li S, Zhao F, Wang Y, Mu D. Cumulative evidence for relationships between multiple variants of HNF1B and the risk of prostate and endometrial cancers. BMC Med Genet. 2018;19(1):128.PubMedPubMedCentralCrossRef Tong Y, Qu Y, Li S, Zhao F, Wang Y, Mu D. Cumulative evidence for relationships between multiple variants of HNF1B and the risk of prostate and endometrial cancers. BMC Med Genet. 2018;19(1):128.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Ouyang Y, Li H, Bu J, Li X, Chen Z, Xiao T. Hypoxia-inducible factor-1 expression predicts osteosarcoma patients' survival: a meta-analysis. Int J Biol Markers. 2016;31(3):e229–34.PubMedCrossRef Ouyang Y, Li H, Bu J, Li X, Chen Z, Xiao T. Hypoxia-inducible factor-1 expression predicts osteosarcoma patients' survival: a meta-analysis. Int J Biol Markers. 2016;31(3):e229–34.PubMedCrossRef
18.
Zurück zum Zitat Dodd MS, Sousa Fialho MDL, Montes Aparicio CN, Kerr M, Timm KN, Griffin JL, Luiken J, Glatz JFC, Tyler DJ, Heather LC. Fatty acids prevent hypoxia-inducible factor-1alpha signaling through decreased succinate in diabetes. JACC Basic Transl Sci. 2018;3(4):485–98.PubMedPubMedCentralCrossRef Dodd MS, Sousa Fialho MDL, Montes Aparicio CN, Kerr M, Timm KN, Griffin JL, Luiken J, Glatz JFC, Tyler DJ, Heather LC. Fatty acids prevent hypoxia-inducible factor-1alpha signaling through decreased succinate in diabetes. JACC Basic Transl Sci. 2018;3(4):485–98.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Xie W, Liu L, He H, Yang K. Prognostic value of hypoxia-inducible factor-1 alpha in nasopharyngeal carcinoma: a meta-analysis. Int J Biol Markers. 2018;1724600818778756. Xie W, Liu L, He H, Yang K. Prognostic value of hypoxia-inducible factor-1 alpha in nasopharyngeal carcinoma: a meta-analysis. Int J Biol Markers. 2018;1724600818778756.
20.
Zurück zum Zitat Clifford SC, Astuti D, Hooper L, Maxwell PH, Ratcliffe PJ, Maher ER. The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma. Oncogene. 2001;20(36):5067–74.PubMedCrossRef Clifford SC, Astuti D, Hooper L, Maxwell PH, Ratcliffe PJ, Maher ER. The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin B and C, Rbx1 and HIF-1alpha in renal cell carcinoma. Oncogene. 2001;20(36):5067–74.PubMedCrossRef
21.
Zurück zum Zitat Ollerenshaw M, Page T, Hammonds J, Demaine A. Polymorphisms in the hypoxia inducible factor-1alpha gene (HIF1A) are associated with the renal cell carcinoma phenotype. Cancer Genet Cytogenet. 2004;153(2):122–6.PubMedCrossRef Ollerenshaw M, Page T, Hammonds J, Demaine A. Polymorphisms in the hypoxia inducible factor-1alpha gene (HIF1A) are associated with the renal cell carcinoma phenotype. Cancer Genet Cytogenet. 2004;153(2):122–6.PubMedCrossRef
22.
Zurück zum Zitat Morris MR, Hughes DJ, Tian YM, Ricketts CJ, Lau KW, Gentle D, Shuib S, Serrano-Fernandez P, Lubinski J, Wiesener MS, et al. Mutation analysis of hypoxia-inducible factors HIF1A and HIF2A in renal cell carcinoma. Anticancer Res. 2009;29(11):4337–43.PubMed Morris MR, Hughes DJ, Tian YM, Ricketts CJ, Lau KW, Gentle D, Shuib S, Serrano-Fernandez P, Lubinski J, Wiesener MS, et al. Mutation analysis of hypoxia-inducible factors HIF1A and HIF2A in renal cell carcinoma. Anticancer Res. 2009;29(11):4337–43.PubMed
23.
Zurück zum Zitat Qin C, Cao Q, Ju X, Wang M, Meng X, Zhu J, Yan F, Li P, Ding Q, Chen J, et al. The polymorphisms in the VHL and HIF1A genes are associated with the prognosis but not the development of renal cell carcinoma. Ann Oncol. 2012;23(4):981–9.PubMedCrossRef Qin C, Cao Q, Ju X, Wang M, Meng X, Zhu J, Yan F, Li P, Ding Q, Chen J, et al. The polymorphisms in the VHL and HIF1A genes are associated with the prognosis but not the development of renal cell carcinoma. Ann Oncol. 2012;23(4):981–9.PubMedCrossRef
24.
Zurück zum Zitat Zhang ZW, Newcomb P, Hollowood A, Feakins R, Moorghen M, Storey A, Farthing MJ, Alderson D, Holly J. Age-associated increase of codon 72 arginine p53 frequency in gastric cardia and non-cardia adenocarcinoma. Clin Cancer Res. 2003;9(6):2151–6.PubMed Zhang ZW, Newcomb P, Hollowood A, Feakins R, Moorghen M, Storey A, Farthing MJ, Alderson D, Holly J. Age-associated increase of codon 72 arginine p53 frequency in gastric cardia and non-cardia adenocarcinoma. Clin Cancer Res. 2003;9(6):2151–6.PubMed
25.
Zurück zum Zitat Orr-Urtreger A, Bar-Shira A, Matzkin H, Mabjeesh NJ. The homozygous P582S mutation in the oxygen-dependent degradation domain of HIF-1 alpha is associated with increased risk for prostate cancer. Prostate. 2007;67(1):8–13.PubMedCrossRef Orr-Urtreger A, Bar-Shira A, Matzkin H, Mabjeesh NJ. The homozygous P582S mutation in the oxygen-dependent degradation domain of HIF-1 alpha is associated with increased risk for prostate cancer. Prostate. 2007;67(1):8–13.PubMedCrossRef
26.
Zurück zum Zitat Li H, Bubley GJ, Balk SP, Gaziano JM, Pollak M, Stampfer MJ, Ma J. Hypoxia-inducible factor-1alpha (HIF-1alpha) gene polymorphisms, circulating insulin-like growth factor binding protein (IGFBP)-3 levels and prostate cancer. Prostate. 2007;67(12):1354–61.PubMedCrossRef Li H, Bubley GJ, Balk SP, Gaziano JM, Pollak M, Stampfer MJ, Ma J. Hypoxia-inducible factor-1alpha (HIF-1alpha) gene polymorphisms, circulating insulin-like growth factor binding protein (IGFBP)-3 levels and prostate cancer. Prostate. 2007;67(12):1354–61.PubMedCrossRef
27.
Zurück zum Zitat Li P, Cao Q, Shao PF, Cai HZ, Zhou H, Chen JW, Qin C, Zhang ZD, Ju XB, Yin CJ. Genetic polymorphisms in HIF1A are associated with prostate cancer risk in a Chinese population. Asian J Androl. 2012;14(6):864–9.PubMedPubMedCentralCrossRef Li P, Cao Q, Shao PF, Cai HZ, Zhou H, Chen JW, Qin C, Zhang ZD, Ju XB, Yin CJ. Genetic polymorphisms in HIF1A are associated with prostate cancer risk in a Chinese population. Asian J Androl. 2012;14(6):864–9.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Li D, Liu J, Zhang W, Ren J, Yan L, Liu H, Xu Z. Association between HIF1A P582S and A588T polymorphisms and the risk of urinary cancers: a meta-analysis. PLoS One. 2013;8(5):e63445.PubMedPubMedCentralCrossRef Li D, Liu J, Zhang W, Ren J, Yan L, Liu H, Xu Z. Association between HIF1A P582S and A588T polymorphisms and the risk of urinary cancers: a meta-analysis. PLoS One. 2013;8(5):e63445.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Anam MT, Ishika A, Hossain MB. Jesmin: a meta-analysis of hypoxia inducible factor 1-alpha (HIF1A) gene polymorphisms: association with cancers. Biomarker Re. 2015;3:29.CrossRef Anam MT, Ishika A, Hossain MB. Jesmin: a meta-analysis of hypoxia inducible factor 1-alpha (HIF1A) gene polymorphisms: association with cancers. Biomarker Re. 2015;3:29.CrossRef
30.
Zurück zum Zitat Zhou Y, Lin L, Wang Y, Jin X, Zhao X, Liu D, Hu T, Jiang L, Dan H, Zeng X, et al. The association between hypoxia-inducible factor-1 alpha gene G1790A polymorphism and cancer risk: a meta-analysis of 28 case-control studies. Cancer Cell Int. 2014;14:37.PubMedPubMedCentralCrossRef Zhou Y, Lin L, Wang Y, Jin X, Zhao X, Liu D, Hu T, Jiang L, Dan H, Zeng X, et al. The association between hypoxia-inducible factor-1 alpha gene G1790A polymorphism and cancer risk: a meta-analysis of 28 case-control studies. Cancer Cell Int. 2014;14:37.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Tanimoto K, Yoshiga K, Eguchi H, Kaneyasu M, Ukon K, Kumazaki T, Oue N, Yasui W, Imai K, Nakachi K, et al. Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis. 2003;24(11):1779–83.PubMedCrossRef Tanimoto K, Yoshiga K, Eguchi H, Kaneyasu M, Ukon K, Kumazaki T, Oue N, Yasui W, Imai K, Nakachi K, et al. Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis. 2003;24(11):1779–83.PubMedCrossRef
32.
Zurück zum Zitat Smaldone MC, Maranchie JK. Clinical implications of hypoxia inducible factor in renal cell carcinoma. Urol Oncol. 2009;27(3):238–45.PubMedCrossRef Smaldone MC, Maranchie JK. Clinical implications of hypoxia inducible factor in renal cell carcinoma. Urol Oncol. 2009;27(3):238–45.PubMedCrossRef
33.
Zurück zum Zitat Carrero P, Okamoto K, Coumailleau P, O'Brien S, Tanaka H, Poellinger L. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol. 2000;20(1):402–15.PubMedPubMedCentralCrossRef Carrero P, Okamoto K, Coumailleau P, O'Brien S, Tanaka H, Poellinger L. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol. 2000;20(1):402–15.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Chau CH, Permenter MG, Steinberg SM, Retter AS, Dahut WL, Price DK, Figg WD. Polymorphism in the hypoxia-inducible factor 1alpha gene may confer susceptibility to androgen-independent prostate cancer. Cancer Biol Ther. 2005;4(11):1222–5.PubMedCrossRef Chau CH, Permenter MG, Steinberg SM, Retter AS, Dahut WL, Price DK, Figg WD. Polymorphism in the hypoxia-inducible factor 1alpha gene may confer susceptibility to androgen-independent prostate cancer. Cancer Biol Ther. 2005;4(11):1222–5.PubMedCrossRef
35.
Zurück zum Zitat Sharma S, Kapahi R, Sambyal V, Guleria K, Manjari M, Sudan M, Uppal MS, Singh NR. No association of hypoxia inducible factor-1alpha gene polymorphisms with breast cancer in north-west Indians. Asian Pac J Cancer Prev. 2014;15(22):9973–8.PubMedCrossRef Sharma S, Kapahi R, Sambyal V, Guleria K, Manjari M, Sudan M, Uppal MS, Singh NR. No association of hypoxia inducible factor-1alpha gene polymorphisms with breast cancer in north-west Indians. Asian Pac J Cancer Prev. 2014;15(22):9973–8.PubMedCrossRef
36.
Zurück zum Zitat Wang X, Liu Y, Ren H, Yuan Z, Li S, Sheng J, Zhao T, Chen Y, Liu F, Wang F, et al. Polymorphisms in the hypoxia-inducible factor-1alpha gene confer susceptibility to pancreatic cancer. Cancer Biol Ther. 2011;12(5):383–7.PubMedCrossRef Wang X, Liu Y, Ren H, Yuan Z, Li S, Sheng J, Zhao T, Chen Y, Liu F, Wang F, et al. Polymorphisms in the hypoxia-inducible factor-1alpha gene confer susceptibility to pancreatic cancer. Cancer Biol Ther. 2011;12(5):383–7.PubMedCrossRef
37.
Zurück zum Zitat Grampp S, Schmid V, Salama R, Lauer V, Kranz F, Platt JL, Smythies J, Choudhry H, Goppelt-Struebe M, Ratcliffe PJ, et al. Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genet. 2017;13(7):e1006872.PubMedPubMedCentralCrossRef Grampp S, Schmid V, Salama R, Lauer V, Kranz F, Platt JL, Smythies J, Choudhry H, Goppelt-Struebe M, Ratcliffe PJ, et al. Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genet. 2017;13(7):e1006872.PubMedPubMedCentralCrossRef
Metadaten
Titel
Association of hypoxia-inducible factor-1α (HIF1α) 1790G/A gene polymorphism with renal cell carcinoma and prostate cancer susceptibility: a meta-analysis
verfasst von
Hong-Yan Li
Tianbiao Zhou
Wenshan Lin
Shujun Lin
Hongzhen Zhong
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Medical Genetics / Ausgabe 1/2019
Elektronische ISSN: 1471-2350
DOI
https://doi.org/10.1186/s12881-019-0874-z

Weitere Artikel der Ausgabe 1/2019

BMC Medical Genetics 1/2019 Zur Ausgabe