Skip to main content
Erschienen in: Diabetologia 6/2008

01.06.2008 | Article

Beta cell chromogranin B is partially segregated in distinct granules and can be released separately from insulin in response to stimulation

verfasst von: T. Giordano, C. Brigatti, P. Podini, E. Bonifacio, J. Meldolesi, M. L. Malosio

Erschienen in: Diabetologia | Ausgabe 6/2008

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

We investigated, in three beta cell lines (INS-1E, RIN-5AH, betaTC3) and in human and rodent primary beta cells, the storage and release of chromogranin B, a secretory protein expressed in beta cells and postulated to play an autocrine role. We asked whether chromogranin B is stored together with and discharged in constant ratio to insulin upon various stimuli.

Methods

The intracellular distribution of insulin and chromogranin B was revealed by immunofluorescence followed by three-dimensional image reconstruction and by immunoelectron microscopy; their stimulated discharge was measured by ELISA and immunoblot analysis of homogenates and incubation media.

Results

Insulin and chromogranin B, co-localised in the Golgi complex/trans-Golgi network, appeared largely segregated from each other in the secretory granule compartment. In INS-1E cells, the percentage of granules positive only for insulin or chromogranin B and of those positive for both was 66, 7 and 27%, respectively. In resting cells, both insulin and chromogranin B were concentrated in the granule cores; upon stimulation, chromogranin B (but not insulin) was largely redistributed to the core periphery and the surrounding halo. Strong stimulation with a secretagogue mixture induced parallel release of insulin and chromogranin B, whereas with 3-isobutyl-1-methylxantine and forskolin ± high glucose release of chromogranin B predominated. Weak, Ca2+-dependent stimulation with ionomycin or carbachol induced exclusive release of chromogranin B, suggesting a higher Ca2+ sensitivity of the specific granules.

Conclusions/interpretation

The unexpected complexity of the beta cell granule population in terms of heterogeneity, molecular plasticity and the differential discharge, could play an important role in physiological control of insulin release and possibly also in beta cell pathology.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bassetti M, Huttner WB, Zanini A, Rosa P (1990) Co-localization of secretogranins/chromogranins with thyrotropin and luteinizing hormone in secretory granules of cow anterior pituitary. J Histochem Cytochem 38:1353–1363PubMed Bassetti M, Huttner WB, Zanini A, Rosa P (1990) Co-localization of secretogranins/chromogranins with thyrotropin and luteinizing hormone in secretory granules of cow anterior pituitary. J Histochem Cytochem 38:1353–1363PubMed
2.
Zurück zum Zitat Steiner HJ, Schmid KW, Fischer-Colbrie R, Sperk G, Winkler H (1989) Co-localization of chromogranin A and B, secretogranin II and neuropeptide Y in chromaffin granules of rat adrenal medulla studied by electron microscopic immunocytochemistry. Histochemistry 91:473–477PubMedCrossRef Steiner HJ, Schmid KW, Fischer-Colbrie R, Sperk G, Winkler H (1989) Co-localization of chromogranin A and B, secretogranin II and neuropeptide Y in chromaffin granules of rat adrenal medulla studied by electron microscopic immunocytochemistry. Histochemistry 91:473–477PubMedCrossRef
3.
Zurück zum Zitat Fisher JM, Sossin W, Newcomb R, Scheller RH (1988) Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell 54:813–822PubMedCrossRef Fisher JM, Sossin W, Newcomb R, Scheller RH (1988) Multiple neuropeptides derived from a common precursor are differentially packaged and transported. Cell 54:813–822PubMedCrossRef
4.
Zurück zum Zitat Kreiner T, Sossin W, Scheller RH (1986) Localization of Aplysia neurosecretory peptides to multiple populations of dense core vesicles. J Cell Biol 102:769–782PubMedCrossRef Kreiner T, Sossin W, Scheller RH (1986) Localization of Aplysia neurosecretory peptides to multiple populations of dense core vesicles. J Cell Biol 102:769–782PubMedCrossRef
5.
Zurück zum Zitat Hashimoto S, Fumagalli G, Zanini A, Meldolesi J (1987) Sorting of three secretory proteins to distinct secretory granules in acidophilic cells of cow anterior pituitary. J Cell Biol 105:1579–1586PubMedCrossRef Hashimoto S, Fumagalli G, Zanini A, Meldolesi J (1987) Sorting of three secretory proteins to distinct secretory granules in acidophilic cells of cow anterior pituitary. J Cell Biol 105:1579–1586PubMedCrossRef
6.
Zurück zum Zitat Landry M, Vila-Porcile E, Hokfelt T, Calas A (2003) Differential routing of coexisting neuropeptides in vasopressin neurons. Eur J Neurosci 17:579–589CrossRef Landry M, Vila-Porcile E, Hokfelt T, Calas A (2003) Differential routing of coexisting neuropeptides in vasopressin neurons. Eur J Neurosci 17:579–589CrossRef
7.
Zurück zum Zitat Lukinius A, Wilander E, Eriksson B, Oberg K (1992) A chromogranin peptide is co-stored with insulin in the human pancreatic islet B cell granules. Histochem J 24:679–684PubMedCrossRef Lukinius A, Wilander E, Eriksson B, Oberg K (1992) A chromogranin peptide is co-stored with insulin in the human pancreatic islet B cell granules. Histochem J 24:679–684PubMedCrossRef
8.
Zurück zum Zitat Hutton JC, Peshavaria M, Johnston CF, Ravazzola M, Orci L (1988) Immunolocalization of betagranin: a chromogranin A-related protein of the pancreatic B cell. Endocrinology 122:1014–1020PubMedCrossRef Hutton JC, Peshavaria M, Johnston CF, Ravazzola M, Orci L (1988) Immunolocalization of betagranin: a chromogranin A-related protein of the pancreatic B cell. Endocrinology 122:1014–1020PubMedCrossRef
9.
Zurück zum Zitat Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348:1134–1149PubMedCrossRef Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348:1134–1149PubMedCrossRef
10.
Zurück zum Zitat Bargsten G (2004) Cytological and immunocytochemical characterization of the insulin secreting insulinoma cell line RINm5F. Arch Histol Cytol 67:79–94PubMedCrossRef Bargsten G (2004) Cytological and immunocytochemical characterization of the insulin secreting insulinoma cell line RINm5F. Arch Histol Cytol 67:79–94PubMedCrossRef
11.
Zurück zum Zitat Day R, Gorr SU (2002) Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor? Trends Endocrinol Metab 14:10–13 Day R, Gorr SU (2002) Secretory granule biogenesis and chromogranin A: master gene, on/off switch or assembly factor? Trends Endocrinol Metab 14:10–13
12.
Zurück zum Zitat Natori S, Huttner WB (1996) Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci U S A 93:4431–4436PubMedCrossRef Natori S, Huttner WB (1996) Chromogranin B (secretogranin I) promotes sorting to the regulated secretory pathway of processing intermediates derived from a peptide hormone precursor. Proc Natl Acad Sci U S A 93:4431–4436PubMedCrossRef
13.
Zurück zum Zitat Glombik MM, Kromer A, Salm T, Huttner WB, Gerdes HH (1999) The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J 18:1059–1070PubMedCrossRef Glombik MM, Kromer A, Salm T, Huttner WB, Gerdes HH (1999) The disulfide-bonded loop of chromogranin B mediates membrane binding and directs sorting from the trans-Golgi network to secretory granules. EMBO J 18:1059–1070PubMedCrossRef
14.
Zurück zum Zitat Hosaka M, Watanabe T, Sakai Y, Kato T, Takeuchi T (2005) Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules. J Cell Sci 118:4785–4795PubMedCrossRef Hosaka M, Watanabe T, Sakai Y, Kato T, Takeuchi T (2005) Interaction between secretogranin III and carboxypeptidase E facilitates prohormone sorting within secretory granules. J Cell Sci 118:4785–4795PubMedCrossRef
15.
Zurück zum Zitat Yoo SH (2000) Coupling of the IP3 receptor/Ca2+ channel with Ca2+ storage proteins chromogranins A and B in secretory granules. Trends Neurosci 23:424–428PubMedCrossRef Yoo SH (2000) Coupling of the IP3 receptor/Ca2+ channel with Ca2+ storage proteins chromogranins A and B in secretory granules. Trends Neurosci 23:424–428PubMedCrossRef
16.
Zurück zum Zitat Gonzalez-Yanes C, Sanchez-Margalet V (2002) Pancreastatin, a chromogranin A-derived peptide, activates protein synthesis signaling cascade in rat adipocytes. Biochem Biophys Res Commun 299:525–531PubMedCrossRef Gonzalez-Yanes C, Sanchez-Margalet V (2002) Pancreastatin, a chromogranin A-derived peptide, activates protein synthesis signaling cascade in rat adipocytes. Biochem Biophys Res Commun 299:525–531PubMedCrossRef
17.
Zurück zum Zitat Tatemoto K, Efendic S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324:476–478PubMedCrossRef Tatemoto K, Efendic S, Mutt V, Makk G, Feistner GJ, Barchas JD (1986) Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature 324:476–478PubMedCrossRef
18.
Zurück zum Zitat Galindo E, Rill A, Bader MF, Aunis D (1991) Chromostatin, a 20-amino acid peptide derived from chromogranin A, inhibits chromaffin cell secretion. Proc Natl Acad Sci U S A 88:1426–1430PubMedCrossRef Galindo E, Rill A, Bader MF, Aunis D (1991) Chromostatin, a 20-amino acid peptide derived from chromogranin A, inhibits chromaffin cell secretion. Proc Natl Acad Sci U S A 88:1426–1430PubMedCrossRef
19.
Zurück zum Zitat Schmid GM, Meda P, Caille D et al (2007) Inhibition of insulin secretion by betagranin, an N-terminal chromogranin A fragment. J Biol Chem 282:12717–12724PubMedCrossRef Schmid GM, Meda P, Caille D et al (2007) Inhibition of insulin secretion by betagranin, an N-terminal chromogranin A fragment. J Biol Chem 282:12717–12724PubMedCrossRef
20.
Zurück zum Zitat Karlsson E, Stridsberg M, Sandler S (2000) Chromogranin-B regulation of IAPP and insulin secretion. Regul Pept 87:33–39PubMedCrossRef Karlsson E, Stridsberg M, Sandler S (2000) Chromogranin-B regulation of IAPP and insulin secretion. Regul Pept 87:33–39PubMedCrossRef
21.
Zurück zum Zitat Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P (2004) Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145:667–678PubMedCrossRef Merglen A, Theander S, Rubi B, Chaffard G, Wollheim CB, Maechler P (2004) Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology 145:667–678PubMedCrossRef
22.
Zurück zum Zitat Bhathena SJ, Oie HK, Gazdar AF, Voyles NR, Wilkins SD, Recant L (1982) Insulin, glucagon, and somatostatin receptors on cultured cells and clones from rat islet cell tumor. Diabetes 31:521–531PubMedCrossRef Bhathena SJ, Oie HK, Gazdar AF, Voyles NR, Wilkins SD, Recant L (1982) Insulin, glucagon, and somatostatin receptors on cultured cells and clones from rat islet cell tumor. Diabetes 31:521–531PubMedCrossRef
23.
Zurück zum Zitat Efrat S, Linde S, Kofod H et al (1988) Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A 85:9037–9041PubMedCrossRef Efrat S, Linde S, Kofod H et al (1988) Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci U S A 85:9037–9041PubMedCrossRef
24.
Zurück zum Zitat Melzi R, Battaglia M, Draghici E, Bonifacio E, Piemonti L (2007) Relevance of hyperglycemia on the timing of functional loss of allogeneic islet transplants: implication for mouse model. Transplantation 83:167–173PubMedCrossRef Melzi R, Battaglia M, Draghici E, Bonifacio E, Piemonti L (2007) Relevance of hyperglycemia on the timing of functional loss of allogeneic islet transplants: implication for mouse model. Transplantation 83:167–173PubMedCrossRef
25.
Zurück zum Zitat Bergert H, Knoch KP, Meisterfeld R et al (2005) Effect of oxygenated perfluorocarbons on isolated rat pancreatic islets in culture. Cell Transplant 14:441–448PubMedCrossRef Bergert H, Knoch KP, Meisterfeld R et al (2005) Effect of oxygenated perfluorocarbons on isolated rat pancreatic islets in culture. Cell Transplant 14:441–448PubMedCrossRef
26.
Zurück zum Zitat Calegari F, Coco S, Taverna E et al (1999) A regulated secretory pathway in cultured hippocampal astrocytes. J Biol Chem 274:22539–22547PubMedCrossRef Calegari F, Coco S, Taverna E et al (1999) A regulated secretory pathway in cultured hippocampal astrocytes. J Biol Chem 274:22539–22547PubMedCrossRef
27.
Zurück zum Zitat Kroesen S, Marksteiner J, Leitner B, Hogue-Angeletti R, Fischer-Colbrie R, Winkler H (1996) Rat brain: distribution of immunoreactivity of PE-11, a peptide derived from chromogranin B. Eur J Neurosci 8:2679–2689PubMedCrossRef Kroesen S, Marksteiner J, Leitner B, Hogue-Angeletti R, Fischer-Colbrie R, Winkler H (1996) Rat brain: distribution of immunoreactivity of PE-11, a peptide derived from chromogranin B. Eur J Neurosci 8:2679–2689PubMedCrossRef
28.
Zurück zum Zitat Borgonovo B, Cocucci E, Racchetti G, Podini P, Bachi A, Meldolesi J (2002) Regulated exocytosis: a novel, widely expressed system. Nat Cell Biol 4:955–962PubMedCrossRef Borgonovo B, Cocucci E, Racchetti G, Podini P, Bachi A, Meldolesi J (2002) Regulated exocytosis: a novel, widely expressed system. Nat Cell Biol 4:955–962PubMedCrossRef
29.
Zurück zum Zitat Ort T, Voronov S, Guo J et al (2001) Dephosphorylation of beta2-syntrophin and Ca2 + /mu-calpain-mediated cleavage of ICA512 upon stimulation of insulin secretion. EMBO J 20:4013–4023PubMedCrossRef Ort T, Voronov S, Guo J et al (2001) Dephosphorylation of beta2-syntrophin and Ca2 + /mu-calpain-mediated cleavage of ICA512 upon stimulation of insulin secretion. EMBO J 20:4013–4023PubMedCrossRef
30.
Zurück zum Zitat Piquer S, Valera L, Lampasona V et al (2006) Monoclonal antibody 76F distinguishes IA-2 from IA-2beta and overlaps an autoantibody epitope. J Autoimmun 26:215–222PubMedCrossRef Piquer S, Valera L, Lampasona V et al (2006) Monoclonal antibody 76F distinguishes IA-2 from IA-2beta and overlaps an autoantibody epitope. J Autoimmun 26:215–222PubMedCrossRef
31.
Zurück zum Zitat Malosio ML, Giordano T, Laslop A, Meldolesi J (2004) Dense-core granules: a specific hallmark of the neuronal/neurosecretory cell phenotype. J Cell Sci 117:743–749PubMedCrossRef Malosio ML, Giordano T, Laslop A, Meldolesi J (2004) Dense-core granules: a specific hallmark of the neuronal/neurosecretory cell phenotype. J Cell Sci 117:743–749PubMedCrossRef
32.
Zurück zum Zitat Rossner M, Yamada KM (2004) What’s in a picture? The temptation of image manipulation. J Cell Biol 166:11–15PubMedCrossRef Rossner M, Yamada KM (2004) What’s in a picture? The temptation of image manipulation. J Cell Biol 166:11–15PubMedCrossRef
33.
Zurück zum Zitat Villa A, Podini P, Panzeri MC, Soling HD, Volpe P, Meldolesi J (1993) The endoplasmic-sarcoplasmic reticulum of smooth muscle: immunocytochemistry of vas deferens fibers reveals specialized subcompartments differently equipped for the control of Ca2+ homeostasis. J Cell Biol 121:1041–1051PubMedCrossRef Villa A, Podini P, Panzeri MC, Soling HD, Volpe P, Meldolesi J (1993) The endoplasmic-sarcoplasmic reticulum of smooth muscle: immunocytochemistry of vas deferens fibers reveals specialized subcompartments differently equipped for the control of Ca2+ homeostasis. J Cell Biol 121:1041–1051PubMedCrossRef
34.
Zurück zum Zitat Molinete M, Lilla V, Jain R et al (2000) Trafficking of non-regulated secretory proteins in insulin secreting (INS-1) cells. Diabetologia 43:1157–1164PubMedCrossRef Molinete M, Lilla V, Jain R et al (2000) Trafficking of non-regulated secretory proteins in insulin secreting (INS-1) cells. Diabetologia 43:1157–1164PubMedCrossRef
35.
Zurück zum Zitat Becker CM, Hoch W, Betz H (1989) Sensitive immunoassay shows selective association of peripheral and integral membrane proteins of the inhibitory glycine receptor complex. J Neurochem 53:124–131PubMedCrossRef Becker CM, Hoch W, Betz H (1989) Sensitive immunoassay shows selective association of peripheral and integral membrane proteins of the inhibitory glycine receptor complex. J Neurochem 53:124–131PubMedCrossRef
36.
Zurück zum Zitat Zacchetti D, Clementi E, Fasolato C et al (1991) Intracellular Ca2 + pools in PC12 cells. A unique, rapidly exchanging pool is sensitive to both inositol 1,4,5-trisphosphate and caffeine-ryanodine. J Biol Chem 266:20152–20158PubMed Zacchetti D, Clementi E, Fasolato C et al (1991) Intracellular Ca2 + pools in PC12 cells. A unique, rapidly exchanging pool is sensitive to both inositol 1,4,5-trisphosphate and caffeine-ryanodine. J Biol Chem 266:20152–20158PubMed
37.
Zurück zum Zitat Traub LM, Kornfeld S (1997) The trans-Golgi network: a late secretory sorting station. Curr Opin Cell Biol 9:527–533PubMedCrossRef Traub LM, Kornfeld S (1997) The trans-Golgi network: a late secretory sorting station. Curr Opin Cell Biol 9:527–533PubMedCrossRef
38.
Zurück zum Zitat Barg S (2003) Mechanisms of exocytosis in insulin-secreting B cells and glucagon-secreting A-cells. Pharmacol Toxicol 92:3–13PubMedCrossRef Barg S (2003) Mechanisms of exocytosis in insulin-secreting B cells and glucagon-secreting A-cells. Pharmacol Toxicol 92:3–13PubMedCrossRef
39.
Zurück zum Zitat Fisher JM, Scheller RH (1988) Prohormone processing and the secretory pathway. J Biol Chem 263:16515–16518PubMed Fisher JM, Scheller RH (1988) Prohormone processing and the secretory pathway. J Biol Chem 263:16515–16518PubMed
40.
Zurück zum Zitat Sossin WS, Sweet-Cordero A, Scheller RH (1990) Dale’s hypothesis revisited: different neuropeptides derived from a common prohormone are targeted to different processes. Proc Natl Acad Sci U S A 87:4845–4848PubMedCrossRef Sossin WS, Sweet-Cordero A, Scheller RH (1990) Dale’s hypothesis revisited: different neuropeptides derived from a common prohormone are targeted to different processes. Proc Natl Acad Sci U S A 87:4845–4848PubMedCrossRef
41.
Zurück zum Zitat Lukinius A, Stridsberg M, Wilander E (2003) Cellular expression and specific intragranular localization of chromogranin A, chromogranin B, and synaptophysin during ontogeny of pancreatic islet cells: an ultrastructural study. Pancreas 27:38–46PubMedCrossRef Lukinius A, Stridsberg M, Wilander E (2003) Cellular expression and specific intragranular localization of chromogranin A, chromogranin B, and synaptophysin during ontogeny of pancreatic islet cells: an ultrastructural study. Pancreas 27:38–46PubMedCrossRef
42.
Zurück zum Zitat Lukinius A, Korsgren O, Grimelius L, Wilander E (1997) Expression of islet amyloid polypeptide in fetal and adult porcine and human pancreatic islet cells. Endocrinology 138:5319–5325PubMed Lukinius A, Korsgren O, Grimelius L, Wilander E (1997) Expression of islet amyloid polypeptide in fetal and adult porcine and human pancreatic islet cells. Endocrinology 138:5319–5325PubMed
43.
Zurück zum Zitat Wierup N, Bjorkqvist M, Kuhar MJ, Mulder H, Sundler F (2006) CART regulates islet hormone secretion and is expressed in the beta-cells of type 2 diabetic rats. Diabetes 55:305–311PubMedCrossRef Wierup N, Bjorkqvist M, Kuhar MJ, Mulder H, Sundler F (2006) CART regulates islet hormone secretion and is expressed in the beta-cells of type 2 diabetic rats. Diabetes 55:305–311PubMedCrossRef
44.
Zurück zum Zitat Xu W, Gao Z, Wu J, Wolf BA (2005) Interferon-gamma-induced regulation of the pancreatic derived cytokine FAM3B in islets and insulin-secreting betaTC3 cells. Mol Cell Endocrinol 240:74–81PubMedCrossRef Xu W, Gao Z, Wu J, Wolf BA (2005) Interferon-gamma-induced regulation of the pancreatic derived cytokine FAM3B in islets and insulin-secreting betaTC3 cells. Mol Cell Endocrinol 240:74–81PubMedCrossRef
45.
Zurück zum Zitat Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66:S102–S109PubMedCrossRef Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66:S102–S109PubMedCrossRef
46.
Zurück zum Zitat Mitchell KJ, Lai FA, Rutter GA (2003) Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6). J Biol Chem 278:11057–11064PubMedCrossRef Mitchell KJ, Lai FA, Rutter GA (2003) Ryanodine receptor type I and nicotinic acid adenine dinucleotide phosphate receptors mediate Ca2+ release from insulin-containing vesicles in living pancreatic beta-cells (MIN6). J Biol Chem 278:11057–11064PubMedCrossRef
47.
Zurück zum Zitat Mitchell KJ, Pinton P, Varadi A et al (2001) Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41–51PubMedCrossRef Mitchell KJ, Pinton P, Varadi A et al (2001) Dense core secretory vesicles revealed as a dynamic Ca(2+) store in neuroendocrine cells with a vesicle-associated membrane protein aequorin chimaera. J Cell Biol 155:41–51PubMedCrossRef
48.
Zurück zum Zitat Sombers LA, Hanchar HJ, Colliver TL et al (2004) The effects of vesicular volume on secretion through the fusion pore in exocytotic release from PC12 cells. J Neurosci 24:303–309PubMedCrossRef Sombers LA, Hanchar HJ, Colliver TL et al (2004) The effects of vesicular volume on secretion through the fusion pore in exocytotic release from PC12 cells. J Neurosci 24:303–309PubMedCrossRef
49.
Zurück zum Zitat Sombers LA, Maxson MM, Ewing AG (2005) Loaded dopamine is preferentially stored in the halo portion of PC12 cell dense core vesicles. J Neurochem 93:1122–1131PubMedCrossRef Sombers LA, Maxson MM, Ewing AG (2005) Loaded dopamine is preferentially stored in the halo portion of PC12 cell dense core vesicles. J Neurochem 93:1122–1131PubMedCrossRef
50.
Zurück zum Zitat Michael DJ, Ritzel RA, Haataja L, Chow RH (2006) Pancreatic β-cells secrete insulin in fast- and slow-release forms. Diabetes 55:600–607PubMedCrossRef Michael DJ, Ritzel RA, Haataja L, Chow RH (2006) Pancreatic β-cells secrete insulin in fast- and slow-release forms. Diabetes 55:600–607PubMedCrossRef
51.
Zurück zum Zitat Yang SN, Wenna ND, Yu J et al (2007) Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules. Cell Metab 6:217–228PubMedCrossRef Yang SN, Wenna ND, Yu J et al (2007) Glucose recruits K(ATP) channels via non-insulin-containing dense-core granules. Cell Metab 6:217–228PubMedCrossRef
Metadaten
Titel
Beta cell chromogranin B is partially segregated in distinct granules and can be released separately from insulin in response to stimulation
verfasst von
T. Giordano
C. Brigatti
P. Podini
E. Bonifacio
J. Meldolesi
M. L. Malosio
Publikationsdatum
01.06.2008
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 6/2008
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-008-0980-5

Weitere Artikel der Ausgabe 6/2008

Diabetologia 6/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.