Skip to main content
Erschienen in: Medical Oncology 3/2022

01.03.2022 | Original Paper

Bioinformatics analysis of recurrent deletion regions in neuroblastoma

verfasst von: Hasan Onur Caglar

Erschienen in: Medical Oncology | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Neuroblastoma (NB) is the most common extra-cranial solid tumor in childhood. Very few genes in recurrent deletion regions have been identified as tumor suppressors for NB, and interactions among proteins encoded by genes in these regions have been overlooked. This study aims to identify possible tumor suppressor genes located within regions commonly deleted in NB tumors and to show possible interaction network of proteins encoded by genes in these regions by bioinformatics analysis. The genes localized in the recurrent deletion regions were identified using the Ensembl BioMart web-tool. GSE1824 microarray dataset was analyzed to determine downregulated differently expressed genes (dDEGs) selected from deletion regions using Orange Canvas software. The DAVID v6.8 tool and Reactome database were used to perform gene ontology and pathway enrichment analysis, respectively. The protein–protein interaction (PPI) network and sub-module analysis were conducted by STRING database and Cytoscape plugin MCODE software, respectively. Copy number variation status and mutations of hub genes were examined in TARGET neuroblastoma dataset using UCSC Xena platform. Biological processes of genes were specific to chromosomes. The 219 genes selected from these regions were found to be downregulated. A PPI network was constructed for dDEGs. Copy number losses and mutations were observed for hub genes. Hub genes identified in the current study may act as tumor suppressors in NB tumorigenesis. Disruption of protein–protein interaction network consisting of proteins encoded by genes on various recurrent deletion regions may give rise to NB by interrupting gene regulatory network orchestrating neural crest formation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, et al. Molecular targeting therapies for neuroblastoma: progress and challenges. Med Res Rev. 2021;41(2):961–1021.PubMedCrossRef Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, et al. Molecular targeting therapies for neuroblastoma: progress and challenges. Med Res Rev. 2021;41(2):961–1021.PubMedCrossRef
2.
Zurück zum Zitat Bilke S, Chen QR, Wei JS, Khan J. Whole chromosome alterations predict survival in high-risk neuroblastoma without MYCN amplification. Clin Cancer Res. 2008;14(17):5540–7.PubMedPubMedCentralCrossRef Bilke S, Chen QR, Wei JS, Khan J. Whole chromosome alterations predict survival in high-risk neuroblastoma without MYCN amplification. Clin Cancer Res. 2008;14(17):5540–7.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Caren H, Kryh H, Nethander M, Sjoberg RM, Trager C, Nilsson S, et al. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci USA. 2010;107(9):4323–8.PubMedPubMedCentralCrossRef Caren H, Kryh H, Nethander M, Sjoberg RM, Trager C, Nilsson S, et al. High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset. Proc Natl Acad Sci USA. 2010;107(9):4323–8.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol. 2018;48(3):214–41.PubMedCrossRef Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol. 2018;48(3):214–41.PubMedCrossRef
6.
Zurück zum Zitat Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078.PubMedCrossRef Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, et al. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078.PubMedCrossRef
7.
Zurück zum Zitat Sauka-Spengler T, Bronner-Fraser M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol. 2008;9(7):557–68.PubMedCrossRef Sauka-Spengler T, Bronner-Fraser M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol. 2008;9(7):557–68.PubMedCrossRef
8.
Zurück zum Zitat Ji Y, Hao H, Reynolds K, McMahon M, Zhou CJ. Wnt signaling in neural crest ontogenesis and oncogenesis. Cells. 2019;8(10):1173.PubMedCentralCrossRef Ji Y, Hao H, Reynolds K, McMahon M, Zhou CJ. Wnt signaling in neural crest ontogenesis and oncogenesis. Cells. 2019;8(10):1173.PubMedCentralCrossRef
9.
Zurück zum Zitat Tribulo C, Aybar MJ, Nguyen VH, Mullins MC, Mayor R. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development. 2003;130(26):6441–52.PubMedCrossRef Tribulo C, Aybar MJ, Nguyen VH, Mullins MC, Mayor R. Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development. 2003;130(26):6441–52.PubMedCrossRef
10.
Zurück zum Zitat Monsoro-Burq AH, Wang E, Harland R. Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev Cell. 2005;8(2):167–78.PubMedCrossRef Monsoro-Burq AH, Wang E, Harland R. Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev Cell. 2005;8(2):167–78.PubMedCrossRef
11.
Zurück zum Zitat Basch ML, Bronner-Fraser M, Garcia-Castro MI. Specification of the neural crest occurs during gastrulation and requires Pax7. Nature. 2006;441(7090):218–22.PubMedCrossRef Basch ML, Bronner-Fraser M, Garcia-Castro MI. Specification of the neural crest occurs during gastrulation and requires Pax7. Nature. 2006;441(7090):218–22.PubMedCrossRef
12.
Zurück zum Zitat Thompson PM, Seifried BA, Kyemba SK, Jensen SJ, Guo C, Maris JM, et al. Loss of heterozygosity for chromosome 14q in neuroblastoma. Med Pediatr Oncol. 2001;36(1):28–31.PubMedCrossRef Thompson PM, Seifried BA, Kyemba SK, Jensen SJ, Guo C, Maris JM, et al. Loss of heterozygosity for chromosome 14q in neuroblastoma. Med Pediatr Oncol. 2001;36(1):28–31.PubMedCrossRef
13.
Zurück zum Zitat Suzuki T, Yokota J, Mugishima H, Okabe I, Ookuni M, Sugimura T, et al. Frequent loss of heterozygosity on chromosome 14q in neuroblastoma. Cancer Res. 1989;49(5):1095–8.PubMed Suzuki T, Yokota J, Mugishima H, Okabe I, Ookuni M, Sugimura T, et al. Frequent loss of heterozygosity on chromosome 14q in neuroblastoma. Cancer Res. 1989;49(5):1095–8.PubMed
14.
Zurück zum Zitat Brodeur GM, Sekhon G, Goldstein MN. Chromosomal aberrations in human neuroblastomas. Cancer. 1977;40(5):2256–63.PubMedCrossRef Brodeur GM, Sekhon G, Goldstein MN. Chromosomal aberrations in human neuroblastomas. Cancer. 1977;40(5):2256–63.PubMedCrossRef
15.
Zurück zum Zitat Caron H, van Sluis P, Buschman R, Pereira do Tanque R, Maes P, Beks L, et al. Allelic loss of the short arm of chromosome 4 in neuroblastoma suggests a novel tumour suppressor gene locus. Hum Genet. 1996;97(6):834–7.PubMedCrossRef Caron H, van Sluis P, Buschman R, Pereira do Tanque R, Maes P, Beks L, et al. Allelic loss of the short arm of chromosome 4 in neuroblastoma suggests a novel tumour suppressor gene locus. Hum Genet. 1996;97(6):834–7.PubMedCrossRef
17.
Zurück zum Zitat Tang H, Sun X, Reinberg D, Ebright RH. Protein-protein interactions in eukaryotic transcription initiation: structure of the preinitiation complex. Proc Natl Acad Sci USA. 1996;93(3):1119–24.PubMedPubMedCentralCrossRef Tang H, Sun X, Reinberg D, Ebright RH. Protein-protein interactions in eukaryotic transcription initiation: structure of the preinitiation complex. Proc Natl Acad Sci USA. 1996;93(3):1119–24.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, et al. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther. 2020;5(1):213.PubMedPubMedCentralCrossRef Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, et al. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther. 2020;5(1):213.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford). 2011;2011:bar30.CrossRef Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database (Oxford). 2011;2011:bar30.CrossRef
20.
Zurück zum Zitat da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.CrossRef da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.CrossRef
21.
Zurück zum Zitat Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G, et al. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res. 2004;64(22):8213–21.PubMedCrossRef Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G, et al. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res. 2004;64(22):8213–21.PubMedCrossRef
22.
Zurück zum Zitat Demšar J, Curk T, Erjavec A, Gorup C, Hočevar T, Milutinovič M, et al. Orange: data mining toolbox in Python. J Mach Learn Res. 2013;14:2349–53. Demšar J, Curk T, Erjavec A, Gorup C, Hočevar T, Milutinovič M, et al. Orange: data mining toolbox in Python. J Mach Learn Res. 2013;14:2349–53.
23.
Zurück zum Zitat Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The reactome pathway Knowledgebase. Nucleic Acids Res. 2016;44(D1):D481-487.PubMedCrossRef Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The reactome pathway Knowledgebase. Nucleic Acids Res. 2016;44(D1):D481-487.PubMedCrossRef
24.
Zurück zum Zitat Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.PubMedCrossRef
25.
Zurück zum Zitat Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.PubMedPubMedCentralCrossRef
26.
28.
Zurück zum Zitat Goldman MJ, Craft B, Hastie M, Repecka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8.PubMedPubMedCentralCrossRef Goldman MJ, Craft B, Hastie M, Repecka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38(6):675–8.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Giwa A, Fatai A, Gamieldien J, Christoffels A, Bendou H. Identification of novel prognostic markers of survival time in high-risk neuroblastoma using gene expression profiles. Oncotarget. 2020;11(46):4293–305.PubMedPubMedCentralCrossRef Giwa A, Fatai A, Gamieldien J, Christoffels A, Bendou H. Identification of novel prognostic markers of survival time in high-risk neuroblastoma using gene expression profiles. Oncotarget. 2020;11(46):4293–305.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.PubMedCrossRef Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.PubMedCrossRef
31.
Zurück zum Zitat Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet. 2013;45(3):279–84.PubMedPubMedCentralCrossRef Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet. 2013;45(3):279–84.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 2012;483(7391):589–93.PubMedCrossRef Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 2012;483(7391):589–93.PubMedCrossRef
33.
Zurück zum Zitat Peifer M, Hertwig F, Roels F, Dreidax D, Gartlgruber M, Menon R, et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature. 2015;526(7575):700–4.PubMedPubMedCentralCrossRef Peifer M, Hertwig F, Roels F, Dreidax D, Gartlgruber M, Menon R, et al. Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature. 2015;526(7575):700–4.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Ambros PF, Ambros IM, Strehl S, Bauer S, Luegmayr A, Kovar H, et al. Regression and progression in neuroblastoma. Does genetics predict tumour behaviour. Eur J Cancer. 1995;31A(4):510–5.PubMedCrossRef Ambros PF, Ambros IM, Strehl S, Bauer S, Luegmayr A, Kovar H, et al. Regression and progression in neuroblastoma. Does genetics predict tumour behaviour. Eur J Cancer. 1995;31A(4):510–5.PubMedCrossRef
35.
Zurück zum Zitat Janoueix-Lerosey I, Novikov E, Monteiro M, Gruel N, Schleiermacher G, Loriod B, et al. Gene expression profiling of 1p35-36 genes in neuroblastoma. Oncogene. 2004;23(35):5912–22.PubMedCrossRef Janoueix-Lerosey I, Novikov E, Monteiro M, Gruel N, Schleiermacher G, Loriod B, et al. Gene expression profiling of 1p35-36 genes in neuroblastoma. Oncogene. 2004;23(35):5912–22.PubMedCrossRef
36.
Zurück zum Zitat Siemers NO, Holloway JL, Chang H, Chasalow SD, Ross-MacDonald PB, Voliva CF, et al. Genome-wide association analysis identifies genetic correlates of immune infiltrates in solid tumors. PLoS ONE. 2017;12(7):e0179726.PubMedPubMedCentralCrossRef Siemers NO, Holloway JL, Chang H, Chasalow SD, Ross-MacDonald PB, Voliva CF, et al. Genome-wide association analysis identifies genetic correlates of immune infiltrates in solid tumors. PLoS ONE. 2017;12(7):e0179726.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Melaiu O, Chierici M, Lucarini V, Jurman G, Conti LA, De Vito R, et al. Cellular and gene signatures of tumor-infiltrating dendritic cells and natural-killer cells predict prognosis of neuroblastoma. Nat Commun. 2020;11(1):5992.PubMedPubMedCentralCrossRef Melaiu O, Chierici M, Lucarini V, Jurman G, Conti LA, De Vito R, et al. Cellular and gene signatures of tumor-infiltrating dendritic cells and natural-killer cells predict prognosis of neuroblastoma. Nat Commun. 2020;11(1):5992.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Szemes M, Melegh Z, Bellamy J, Greenhough A, Kollareddy M, Catchpoole D, et al. A Wnt-BMP4 signaling axis induces MSX and NOTCH proteins and promotes growth suppression and differentiation in neuroblastoma. Cells. 2020; 9 Szemes M, Melegh Z, Bellamy J, Greenhough A, Kollareddy M, Catchpoole D, et al. A Wnt-BMP4 signaling axis induces MSX and NOTCH proteins and promotes growth suppression and differentiation in neuroblastoma. Cells. 2020; 9
39.
Zurück zum Zitat Szemes M, Greenhough A, Melegh Z, Malik S, Yuksel A, Catchpoole D, et al. Wnt signalling drives context-dependent differentiation or proliferation in neuroblastoma. Neoplasia. 2018;20(4):335–50.PubMedPubMedCentralCrossRef Szemes M, Greenhough A, Melegh Z, Malik S, Yuksel A, Catchpoole D, et al. Wnt signalling drives context-dependent differentiation or proliferation in neuroblastoma. Neoplasia. 2018;20(4):335–50.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Macaluso M, Paggi MG, Giordano A. Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene. 2003;22(42):6472–8.PubMedCrossRef Macaluso M, Paggi MG, Giordano A. Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene. 2003;22(42):6472–8.PubMedCrossRef
41.
Zurück zum Zitat Marshall B, Isidro G, Martins AG, Boavida MG. Loss of heterozygosity at chromosome 9p21 in primary neuroblastomas: evidence for two deleted regions. Cancer Genet Cytogenet. 1997;96(2):134–9.PubMedCrossRef Marshall B, Isidro G, Martins AG, Boavida MG. Loss of heterozygosity at chromosome 9p21 in primary neuroblastomas: evidence for two deleted regions. Cancer Genet Cytogenet. 1997;96(2):134–9.PubMedCrossRef
42.
Zurück zum Zitat Villamon E, Berbegall AP, Piqueras M, Tadeo I, Castel V, Djos A, et al. Genetic instability and intratumoral heterogeneity in neuroblastoma with MYCN amplification plus 11q deletion. PLoS ONE. 2013;8(1):e53740.PubMedPubMedCentralCrossRef Villamon E, Berbegall AP, Piqueras M, Tadeo I, Castel V, Djos A, et al. Genetic instability and intratumoral heterogeneity in neuroblastoma with MYCN amplification plus 11q deletion. PLoS ONE. 2013;8(1):e53740.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Takita J, Hayashi Y, Kohno T, Yamaguchi N, Hanada R, Yamamoto K, et al. Deletion map of chromosome 9 and p16 (CDKN2A) gene alterations in neuroblastoma. Cancer Res. 1997;57(5):907–12.PubMed Takita J, Hayashi Y, Kohno T, Yamaguchi N, Hanada R, Yamamoto K, et al. Deletion map of chromosome 9 and p16 (CDKN2A) gene alterations in neuroblastoma. Cancer Res. 1997;57(5):907–12.PubMed
44.
Zurück zum Zitat Rabbani MA, Ribaudo M, Guo JT, Barik S. Identification of interferon-stimulated gene proteins that inhibit human parainfluenza virus type 3. J Virol. 2016;90(24):11145–56.PubMedPubMedCentralCrossRef Rabbani MA, Ribaudo M, Guo JT, Barik S. Identification of interferon-stimulated gene proteins that inhibit human parainfluenza virus type 3. J Virol. 2016;90(24):11145–56.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Chen B, Jin S, Bai B, Li Z, Ni C, Liu Y. Knockdown of interferon-stimulated gene 15 affects the sensitivity of hepatocellular carcinoma cells to norcantharidin. Exp Ther Med. 2019;18(5):3751–8.PubMedPubMedCentral Chen B, Jin S, Bai B, Li Z, Ni C, Liu Y. Knockdown of interferon-stimulated gene 15 affects the sensitivity of hepatocellular carcinoma cells to norcantharidin. Exp Ther Med. 2019;18(5):3751–8.PubMedPubMedCentral
46.
Zurück zum Zitat Huang WC, Tung SL, Chen YL, Chen PM, Chu PY. IFI44L is a novel tumor suppressor in human hepatocellular carcinoma affecting cancer stemness, metastasis, and drug resistance via regulating met/Src signaling pathway. BMC Cancer. 2018;18(1):609.PubMedPubMedCentralCrossRef Huang WC, Tung SL, Chen YL, Chen PM, Chu PY. IFI44L is a novel tumor suppressor in human hepatocellular carcinoma affecting cancer stemness, metastasis, and drug resistance via regulating met/Src signaling pathway. BMC Cancer. 2018;18(1):609.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Britzen-Laurent N, Lipnik K, Ocker M, Naschberger E, Schellerer VS, Croner RS, et al. GBP-1 acts as a tumor suppressor in colorectal cancer cells. Carcinogenesis. 2013;34(1):153–62.PubMedCrossRef Britzen-Laurent N, Lipnik K, Ocker M, Naschberger E, Schellerer VS, Croner RS, et al. GBP-1 acts as a tumor suppressor in colorectal cancer cells. Carcinogenesis. 2013;34(1):153–62.PubMedCrossRef
48.
Zurück zum Zitat Xu XX, Wan H, Nie L, Shao T, Xiang LX, Shao JZ. RIG-I: a multifunctional protein beyond a pattern recognition receptor. Protein Cell. 2018;9(3):246–53.PubMedCrossRef Xu XX, Wan H, Nie L, Shao T, Xiang LX, Shao JZ. RIG-I: a multifunctional protein beyond a pattern recognition receptor. Protein Cell. 2018;9(3):246–53.PubMedCrossRef
49.
Zurück zum Zitat Potenza N, Papa U, Russo A. Differential expression of Dicer and Argonaute genes during the differentiation of human neuroblastoma cells. Cell Biol Int. 2009;33(7):734–8.PubMedCrossRef Potenza N, Papa U, Russo A. Differential expression of Dicer and Argonaute genes during the differentiation of human neuroblastoma cells. Cell Biol Int. 2009;33(7):734–8.PubMedCrossRef
50.
Zurück zum Zitat Brodeur GM, Green AA, Hayes FA, Williams KJ, Williams DL, Tsiatis AA. Cytogenetic features of human neuroblastomas and cell lines. Cancer Res. 1981;41:4678–86.PubMed Brodeur GM, Green AA, Hayes FA, Williams KJ, Williams DL, Tsiatis AA. Cytogenetic features of human neuroblastomas and cell lines. Cancer Res. 1981;41:4678–86.PubMed
51.
Zurück zum Zitat Gilbert F. Solid tumors of children: chromosome abnormalities and the development of cancer. J Cell Physiol Suppl. 1984;3:165–70.PubMedCrossRef Gilbert F. Solid tumors of children: chromosome abnormalities and the development of cancer. J Cell Physiol Suppl. 1984;3:165–70.PubMedCrossRef
52.
Zurück zum Zitat Gilbert F, Feder M, Balaban G, Brangman D, Lurie DK, Podolsky R, et al. Human neuroblastomas and abnormalities of chromosomes 1 and 17. Cancer Res. 1984;44(11):5444–9.PubMed Gilbert F, Feder M, Balaban G, Brangman D, Lurie DK, Podolsky R, et al. Human neuroblastomas and abnormalities of chromosomes 1 and 17. Cancer Res. 1984;44(11):5444–9.PubMed
53.
54.
Zurück zum Zitat Fong CT, Dracopoli NC, White PS, Merrill PT, Griffith RC, Housman DE, et al. Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with N-myc amplification. Proc Natl Acad Sci USA. 1989;86(10):3753–7.PubMedPubMedCentralCrossRef Fong CT, Dracopoli NC, White PS, Merrill PT, Griffith RC, Housman DE, et al. Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with N-myc amplification. Proc Natl Acad Sci USA. 1989;86(10):3753–7.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Martinsson T, Weith A, Cziepluch C, Schwab M. Chromosome 1 deletions in human neuroblastomas: generation and fine mapping of microclones from the distal 1p region. Genes Chromosom Cancer. 1989;1(1):67–78.PubMedCrossRef Martinsson T, Weith A, Cziepluch C, Schwab M. Chromosome 1 deletions in human neuroblastomas: generation and fine mapping of microclones from the distal 1p region. Genes Chromosom Cancer. 1989;1(1):67–78.PubMedCrossRef
56.
Zurück zum Zitat Mora J, Cheung NK, Kushner BH, LaQuaglia MP, Kramer K, Fazzari M, et al. Clinical categories of neuroblastoma are associated with different patterns of loss of heterozygosity on chromosome arm 1p. J Mol Diagn. 2000;2(1):37–46.PubMedPubMedCentralCrossRef Mora J, Cheung NK, Kushner BH, LaQuaglia MP, Kramer K, Fazzari M, et al. Clinical categories of neuroblastoma are associated with different patterns of loss of heterozygosity on chromosome arm 1p. J Mol Diagn. 2000;2(1):37–46.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Fong CT, White PS, Peterson K, Sapienza C, Cavenee WK, Kern SE, et al. Loss of heterozygosity for chromosomes 1 or 14 defines subsets of advanced neuroblastomas. Cancer Res. 1992;52(7):1780–5.PubMed Fong CT, White PS, Peterson K, Sapienza C, Cavenee WK, Kern SE, et al. Loss of heterozygosity for chromosomes 1 or 14 defines subsets of advanced neuroblastomas. Cancer Res. 1992;52(7):1780–5.PubMed
58.
Zurück zum Zitat Takayama H, Suzuki T, Mugishima H, Fujisawa T, Ookuni M, Schwab M, et al. Deletion mapping of chromosomes 14q and 1p in human neuroblastoma. Oncogene. 1992;7(6):1185–9.PubMed Takayama H, Suzuki T, Mugishima H, Fujisawa T, Ookuni M, Schwab M, et al. Deletion mapping of chromosomes 14q and 1p in human neuroblastoma. Oncogene. 1992;7(6):1185–9.PubMed
59.
Zurück zum Zitat Srivatsan ES, Ying KL, Seeger RC. Deletion of chromosome 11 and of 14q sequences in neuroblastoma. Genes Chromosomes Cancer. 1993;7(1):32–7.PubMedCrossRef Srivatsan ES, Ying KL, Seeger RC. Deletion of chromosome 11 and of 14q sequences in neuroblastoma. Genes Chromosomes Cancer. 1993;7(1):32–7.PubMedCrossRef
60.
Zurück zum Zitat Srivatsan ES, Murali V, Seeger RC. Loss of heterozygosity for alleles on chromosomes 11q and 14q in neuroblastoma. Prog Clin Biol Res. 1991;366:91–8.PubMed Srivatsan ES, Murali V, Seeger RC. Loss of heterozygosity for alleles on chromosomes 11q and 14q in neuroblastoma. Prog Clin Biol Res. 1991;366:91–8.PubMed
61.
Zurück zum Zitat Guo C, White PS, Hogarty MD, Brodeur GM, Gerbing R, Stram DO, et al. Deletion of 11q23 is a frequent event in the evolution of MYCN single-copy high-risk neuroblastomas. Med Pediatr Oncol. 2000;35(6):544–6.PubMedCrossRef Guo C, White PS, Hogarty MD, Brodeur GM, Gerbing R, Stram DO, et al. Deletion of 11q23 is a frequent event in the evolution of MYCN single-copy high-risk neuroblastomas. Med Pediatr Oncol. 2000;35(6):544–6.PubMedCrossRef
62.
Zurück zum Zitat Guo C, White PS, Weiss MJ, Hogarty MD, Thompson PM, Stram DO, et al. Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene. 1999;18(35):4948–57.PubMedCrossRef Guo C, White PS, Weiss MJ, Hogarty MD, Thompson PM, Stram DO, et al. Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene. 1999;18(35):4948–57.PubMedCrossRef
63.
Zurück zum Zitat Maris JM, Guo C, White PS, Hogarty MD, Thompson PM, Stram DO, et al. Allelic deletion at chromosome bands 11q14-23 is common in neuroblastoma. Med Pediatr Oncol. 2001;36(1):24–7.PubMedCrossRef Maris JM, Guo C, White PS, Hogarty MD, Thompson PM, Stram DO, et al. Allelic deletion at chromosome bands 11q14-23 is common in neuroblastoma. Med Pediatr Oncol. 2001;36(1):24–7.PubMedCrossRef
64.
Zurück zum Zitat Krona C, Caren H, Sjoberg RM, Sandstedt B, Laureys G, Kogner P, et al. Analysis of neuroblastoma tumour progression; loss of PHOX2B on 4p13 and 17q gain are early events in neuroblastoma tumourigenesis. Int J Oncol. 2008;32(3):575–83.PubMed Krona C, Caren H, Sjoberg RM, Sandstedt B, Laureys G, Kogner P, et al. Analysis of neuroblastoma tumour progression; loss of PHOX2B on 4p13 and 17q gain are early events in neuroblastoma tumourigenesis. Int J Oncol. 2008;32(3):575–83.PubMed
65.
Zurück zum Zitat Perri P, Longo L, Cusano R, McConville CM, Rees SA, Devoto M, et al. Weak linkage at 4p16 to predisposition for human neuroblastoma. Oncogene. 2002;21(54):8356–60.PubMedCrossRef Perri P, Longo L, Cusano R, McConville CM, Rees SA, Devoto M, et al. Weak linkage at 4p16 to predisposition for human neuroblastoma. Oncogene. 2002;21(54):8356–60.PubMedCrossRef
66.
Zurück zum Zitat Mora J, Alaminos M, de Torres C, Illei P, Qin J, Cheung NK, et al. Comprehensive analysis of the 9p21 region in neuroblastoma suggests a role for genes mapping to 9p21-23 in the biology of favourable stage 4 tumours. Br J Cancer. 2004;91(6):1112–8.PubMedPubMedCentralCrossRef Mora J, Alaminos M, de Torres C, Illei P, Qin J, Cheung NK, et al. Comprehensive analysis of the 9p21 region in neuroblastoma suggests a role for genes mapping to 9p21-23 in the biology of favourable stage 4 tumours. Br J Cancer. 2004;91(6):1112–8.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Giordani L, Iolascon A, Servedio V, Mazzocco K, Longo L, Tonini GP. Two regions of deletion in 9p22- p24 in neuroblastoma are frequently observed in favorable tumors. Cancer Genet Cytogenet. 2002;135(1):42–7.PubMedCrossRef Giordani L, Iolascon A, Servedio V, Mazzocco K, Longo L, Tonini GP. Two regions of deletion in 9p22- p24 in neuroblastoma are frequently observed in favorable tumors. Cancer Genet Cytogenet. 2002;135(1):42–7.PubMedCrossRef
68.
Zurück zum Zitat Furuta S, Ohira M, Machida T, Hamano S, Nakagawara A. Analysis of loss of heterozygosity at 16p12-p13 (familial neuroblastoma locus) in 470 neuroblastomas including both sporadic and mass screening tumors. Med Pediatr Oncol. 2000;35(6):531–3.PubMedCrossRef Furuta S, Ohira M, Machida T, Hamano S, Nakagawara A. Analysis of loss of heterozygosity at 16p12-p13 (familial neuroblastoma locus) in 470 neuroblastomas including both sporadic and mass screening tumors. Med Pediatr Oncol. 2000;35(6):531–3.PubMedCrossRef
69.
Zurück zum Zitat Depuydt P, Boeva C, Hocking TD, Cannoodt R, Ambros IM, Ambros PF, et al. Genomic amplifications and distal 6q loss: novel markers for poor survival in high-risk neuroblastoma patients. J Natl Cancer Inst. 2018;110(10):1084–93.PubMedPubMedCentralCrossRef Depuydt P, Boeva C, Hocking TD, Cannoodt R, Ambros IM, Ambros PF, et al. Genomic amplifications and distal 6q loss: novel markers for poor survival in high-risk neuroblastoma patients. J Natl Cancer Inst. 2018;110(10):1084–93.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Hoebeeck J, Michels E, Menten B, Van Roy N, Eggert A, Schramm A, et al. High resolution tiling-path BAC array deletion mapping suggests commonly involved 3p21-p22 tumor suppressor genes in neuroblastoma and more frequent tumors. Int J Cancer. 2007;120(3):533–8.PubMedCrossRef Hoebeeck J, Michels E, Menten B, Van Roy N, Eggert A, Schramm A, et al. High resolution tiling-path BAC array deletion mapping suggests commonly involved 3p21-p22 tumor suppressor genes in neuroblastoma and more frequent tumors. Int J Cancer. 2007;120(3):533–8.PubMedCrossRef
71.
Zurück zum Zitat Spitz R, Hero B, Ernestus K, Berthold F. Deletions in chromosome arms 3p and 11q are new prognostic markers in localized and 4s neuroblastoma. Clin Cancer Res. 2003;9(1):52–8.PubMed Spitz R, Hero B, Ernestus K, Berthold F. Deletions in chromosome arms 3p and 11q are new prognostic markers in localized and 4s neuroblastoma. Clin Cancer Res. 2003;9(1):52–8.PubMed
72.
Zurück zum Zitat Spitz R, Hero B, Ernestus K, Berthold F. FISH analyses for alterations in chromosomes 1, 2, 3, and 11 define high-risk groups in neuroblastoma. Med Pediatr Oncol. 2003;41(1):30–5.PubMedCrossRef Spitz R, Hero B, Ernestus K, Berthold F. FISH analyses for alterations in chromosomes 1, 2, 3, and 11 define high-risk groups in neuroblastoma. Med Pediatr Oncol. 2003;41(1):30–5.PubMedCrossRef
Metadaten
Titel
Bioinformatics analysis of recurrent deletion regions in neuroblastoma
verfasst von
Hasan Onur Caglar
Publikationsdatum
01.03.2022
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 3/2022
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-021-01639-y

Weitere Artikel der Ausgabe 3/2022

Medical Oncology 3/2022 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.