Skip to main content
Erschienen in: BMC Cancer 1/2008

Open Access 01.12.2008 | Study protocol

Biomonitoring of complex occupational exposures to carcinogens: The case of sewage workers in Paris

verfasst von: Hamzeh Al Zabadi, Luc Ferrari, Anne-Marie Laurent, Aziz Tiberguent, Christophe Paris, Denis Zmirou-Navier

Erschienen in: BMC Cancer | Ausgabe 1/2008

Abstract

Background

Sewage workers provide an essential service in the protection of public and environmental health. However, they are exposed to varied mixtures of chemicals; some are known or suspected to be genotoxics or carcinogens. Thus, trying to relate adverse outcomes to single toxicant is inappropriate. We aim to investigate if sewage workers are at increased carcinogenic risk as evaluated by biomarkers of exposure and early biological effects.

Methods/design

This cross sectional study will compare exposed sewage workers to non-exposed office workers. Both are voluntaries from Paris municipality, males, aged (20–60) years, non-smokers since at least six months, with no history of chronic or recent illness, and have similar socioeconomic status. After at least 3 days of consecutive work, blood sample and a 24-hour urine will be collected. A caffeine test will be performed, by administering coffee and collecting urines three hours after. Subjects will fill in self-administered questionnaires; one covering the professional and lifestyle habits while the a second one is alimentary. The blood sample will be used to assess DNA adducts in peripheral lymphocytes. The 24-hour urine to assess urinary 8-oxo-7, 8-dihydro-2'-deoxy-Guanosine (8-oxo-dG), and the in vitro genotoxicity tests (comet and micronucleus) using HeLa S3 or HepG2 cells. In parallel, occupational air sampling will be conducted for some Polycyclic Aromatic Hydrocarbons and Volatile Organic Compounds. A weekly sampling chronology at the offices of occupational medicine in Paris city during the regular medical visits will be followed. This protocol has been accepted by the French Est III Ethical Comitee with the number 2007-A00685-48.

Discussion

Biomarkers of exposure and of early biological effects may help overcome the limitations of environmental exposure assessment in very complex occupational or environmental settings.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2407-8-67) contains supplementary material, which is available to authorized users.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

HA drafted the manuscript. LF, DZN and CP participated in the design and coordination of the study protocol and helped to draft the manuscript. Other authors reviewed the manuscript, provided further contributions and suggestions. All authors read and approved the final manuscript.
Abkürzungen
CI
Confidence interval
CYP1A2
Cytochrome P1A2
DNA
Deoxyribo-nucleic Acid
EDTA
Ethylene-diamine-tetra-acetic acid
HCl
Hydrochloric acid
HPLC
High performance liquid chromatography
MgCL2
Magnesium chloride
MN
Micronucleus
PAHs
Polycyclic aromatic hydrocarbons
SMR
Standardized mortality rate
VOCs
Volatile organic compounds
8-oxodG
8-Oxo-7, 8-Dihydro-2'-deoxy-Guanosine

Background

Sewage workers provide an essential service in the protection of public and environmental health. In large cities, sewage is composed of organic residues but also incorporate a wide variety of chemicals produced by roadways scrubbing by rain, water from office and industrial facilities, domestic activities (remainders of painting, drugs, pesticides used indoor, etc). As a result of their contact with wastes, sewage workers are exposed to complex mixtures of toxicants including pathogens, heavy metals, chlorinated organic solvents like chloroform, dichloroethane, perchloroethanol, other solvents (benzene, toluene), aldehydes, nitrosamines, pesticides, dyes, polychlorobiphenyls, and polycyclic aromatic hydrocarbons (PAH) [13]. Many of these compounds are known or suspected to be genotoxics and/or carcinogens [46], which suggests that those workers may be subject to elevated risk of cancer.
Previous studies have indicated an increase in the incidence of cancer among sewage workers [710]. Analyses on specific cancer sites have reported excess numbers of laryngeal, primary liver cancer [8, 10], cancer of the prostate gland, nose and nasal sinuses cancers, stomach [9], central nervous system [11], and bladder cancers [12]. However, these data exhibit conflicting results [8, 9]. A more recent mortality study among the sewage workers of Paris published in 2006 assessed their cause-specific mortality from 1970 until 1999 [7]. A slight but significant excess in mortality was found (SMR = 1.25, 95% CI; 1.15–1.36) in particular from cancer mortality (SMR = 1.37, 95% CI; 1.20–1.56), with a suggested excess for oesophagus, liver, pleura and the brain cancers albeit not significant. However, this study didn't measure personal or workplace exposures; it used only qualitative information gathered by a questionnaire and the computerized register of the employees.
As exposure of sewage workers implies contact with multiple potent genotoxics at varying levels (by concentration, time and location) and routes of exposure (by inhalation, dermal and ingestion) [9], characterizing and quantifying it are extremely difficult, and trying to relate adverse outcomes to single toxicant is inappropriate. However, usage of biomarkers to study the association between exposure and early biological genotoxics effects seems more relevant in this setting [5]. These findings may explain that previous studies among sewage workers exhibited conflicting results; some were biased by many confounding factors; others relied on qualitative and/or a questionnaire data; while others used urine or blood samples to evaluate the exposure without workplace measurements. However, sewage workers might be exposed to many agents that may interact with one another resulting in an immeasurable amount of different chemicals. Rather than trying to describe this immense array of exposures or pursuing the goal to relate the biological health outcomes to specific compound, it might be more reasonable to look for unspecific early effects. Further, changes in the composition of the sewage system over-time may affect the level and character of worker's exposure longitudinally. Thus, assessment of genotoxics at only one point in time may not represent long term occurrence of these substances in the body [13]. However, workplace environment sampling at various locations over-time when the biological specimens were taken might be more representable and would further support the link between occupational sewage exposure and the appearance of genotoxics in both sample types (urine and blood).
In order to precise/assess such exposures to genotoxics/carcinogens compounds, urine genotoxicity has been widely used as a noninvasive method to evaluate recent exposure among populations exposed to environmental and/or workplace-related complex mixtures of chemicals [1416]. In Vitro comet [14] and micronucleus [17] assays are among the most widely-used biomarkers of urine genotoxicity for monitoring the risk of DNA damage that stems from occupational and environmental exposures to genotoxics. Comet assay is a sensitive technique, can detect DNA damage in terms of double and single-strand breaks, and alkaline-labile sites [18, 19]. Micronucleus test is a reliable biomarker of irregularity of genetic material due to non-specific genotoxic exposure [20, 21].
Of the complex mixtures to which sewage workers are exposed, are PAHs and other genotoxic chemicals that are metabolized by and induce the expression of cytochrome P450 enzymes (e.g. CYP1A2) [2224]. The CYP1A2 enzyme is involved in the metabolic activation of a wide range of chemicals and carcinogens like PAHs and aromatic amines [23, 24]. Its activity has been shown to be increased by smoking, ingestion of charbroiled meat, cruciferous vegetables, PAHs and PCBs exposures [23, 2528]. The catalyzed metabolism by CYP1A2 can generate ROS which might lead to oxidative DNA damage [22, 29, 30]. This damage has been associated with an increased risk of cancer generally ascribed to DNA adducts [22, 31]. Thus, measurement of CYP1A2 activity in vivo may be an important tool to assess the exposure to chemical carcinogens and cancer risk. PAHs related DNA-adducts measured by 32P- postlabeling technique is frequently described as the biomarker of choice [3234]. Oxidative DNA damage may be also important in carcinogenesis since the DNA base lesions, such as 8-oxodG, are abundant and highly mutagenic [35, 36]. However, DNA repair via nucleotide and base excision processes leads to elimination and excretion of 8-oxodG in urine quantitatively without metabolism [3740]. Urinary excretion of 8-oxodG is the most widely used noninvasive urinary biomarker of oxidative stress and its measurement in urine has been proposed to assess whole-body oxidative DNA damage [41, 42].
The CYP1A2 was shown to be responsible for the 3-demethylation of caffeine, which is the initial major step in the biotransformation of caffeine in human's body [43]. Urinary metabolites of dietary caffeine is the most noninvasively-used method in the assessment of CYP1A2 activity [4446]. Recent studies have demonstrated that the polymorphism of CYP1A2 could be critical in investigating the induction of the enzyme [47]. The -163C>A (allele CYP1A2*F) polymorphism has been associated with higher enzyme inducibility by smoking [48]. Even if the clinical relevance of this polymorphism remains controversial [47], it is necessary to assess it for a good interpretation of the caffeine metabolism data.
This project is interested in an association of simple, early and non-invasive biomarkers intended to highlight exposure to cocktails of undefined toxic substances having genotoxic properties. We propose to carry out a cross sectional study comparing a particularly exposed category of workers to multiple professional pollutants (Parisians sewage workers) with a non-exposed professional category workers (municipality office workers) by using biomarkers of exposure and early biological effects. The biomarkers dedicated for this study are; the comet and micronucleus tests, which seek the presence of genotoxics in the urine. A second group of biomarkers highlights early effects of these substances; the caffeine test, relevant in the event of exposure to PAHs [49], DNA-adducts in the lymphocytes, a biomarker of early effect indicating the exposure to gentoxics, and urinary 8-oxo-dG, a biomarker of early effect, corresponding to DNA oxidative stress [50]. Our primary objective is to study if the exposed present an increased risk of genotoxic lesions, compared to the nonexposed. The secondary objective is to evaluate the early effects of an exposure to complex genotoxic agents. To achieve these objectives we will; (1) analyze the urine for DNA damage and genotoxicity (using in vitro comet and micronucleus assays and analysis of oxidative stress through 24 h urinary 8-oxodG), (2) analyze peripheral blood lymphocytes for DNA-adducts by 32P-post labelling technique, (3) assess personal exposure to PAHs and VOCs in the workplace environment, and (4) evaluate the PAHs exposure through assessment of CYP1A2 activity by urinary metabolites of dietary caffeine.
The study hypothesis is that exposure of the sewage workers to multiple genotoxics leads to an increase in certain biomarkers of exposure and other biomarkers of early biological effects. The validation of our hypothesis through these biomarkers, would allow the estimation of the total personal exposure to complex mixture of toxic chemicals from different exposure pathways (lungs, skin, and GIT), and different sources (air, diet, lifestyle or occupation), whereas the traditional epidemiological studies don't. Figure 1 presents the theoretical-overview of development from exposure to disease and the study assessment biomarkers.

Methods/Design

Study design, population and setting

This cross sectional study will compare an exposed population (under-ground sewage workers) to a control group (office workers). Both groups are from Paris municipality workers and selected among occupational categories with similar socio-economic status. Participation will be voluntary. Subjects will be current nonsmokers since at least 6 months, aged (20–60) years old, being employed during at least the same period, have no history of chronic or recent illness (diabetes, influenza for example) and are not taking any medication (omeprazole for instance) that could interfere with the study results. As sewage workers are mostly males, the study population will be only of males. The study will be conducted in the framework of regular occupational medical visits. All interviews and primary procedures will be taken place at the offices of occupational medicine in Paris city.

Ethical consideration

The study protocol was approved by the local ethical committees (CPP, N°2007-A00685-48). All participants will be given an explanation of the nature of the study, and a signed informed consent will be obtained.

Sampling chronology

Table 1 shows the weekly sampling chronology of the study participants. Briefly, controls will be frequency-matched for age with sewage workers with a 1 to 1 ratio. After at least three consecutive days of work a 24 h urinary sample will be collected from all participants (starting at 9:00 a.m). Subjects will receive a urine collecting bottle and written/oral information describing urine collection. After given their urine samples at 9:00 a.m of the next day (Friday), the exposed will undergo medical examination by occupational health physicians. Blood samples will then be taken by nurses. Thereafter, they will receive a cup of decaffeinated coffee added with 110 mg of caffeine. Three hours later, a urine sample will be taken, from which three aliquots (200 μl each) will be collected to assess the urinary caffeine metabolites and the corresponding CYP1A2 activity. During these 3 hours, subjects will fill in two self-administered questionnaires under the supervision of study researchers. A professional one covering socio-demographic factors, non-occupationally exposures (especially PAHs-related: commuting means, area of residence and indoor sources), medical history, lifestyle (smoking history including passive smoking exposure, alcohol and medications) and other confounders. The other is an alimentary questionnaire collecting detailed-data on diet habits [51]. For the control group, the sequence will be the same but start at 13:30 p.m.
Table 1
Morning sampling chronology of study participants.
*9h00
9h30
10h00-12h00
12h30
13h00
13h30
24h urine collection
     
Pre-treatment of 24h urine samples
    
 
Cup of Coffee
    
Medical visit
  
Blood sample
  
 
Isolation and pre-treatment of lymphocytes
 
Biological tests (urea, creatinine)
 
Questionnaires
   
   
3h urine collection
  
    
Pre-treatment of 3h urine samples
   
Thanks
Departure
 
*Friday of each week. In each study week, 16 participants will be sampled (8 exposed in the morning and 8 non-exposed in the corresponding afternoon).
Blood and urine samples will be processed on the same day as described further. For the 48 h before and during the 3 hours of the caffeine test, subjects will be asked to avoid diets or cooking procedures known to increase CYP1A2 activity or elicit urinary mutagenicity (e.g., cruciferous vegetables; charcoal-broiled or grilled meat) or inhibit CYP1A2 (e.g., grapefruit). They will also be asked to refrain from consuming alcoholic drinks and beverages containing methylxanthines and to avoid massive physical activity as it could increase DNA damage [52, 53]. In table 1 we present the morning sampling chronology for the exposed participants.

Occupational atmospheric sampling

During the first part of the week, before coming to the medical examination, the air of the working places will be collected to be assessed for their COV or HAP content.

Sample size

Sample size was calculated for a type 2 error (α) of 5% and power expectation of 80%. In a non-exposed population, urines are not mutagenic in theory, and both genotoxicity tests should be negative. Thus, if the expected prevalence in the control is 1%, a number of 75 subjects in each group are sufficient to highlight a prevalence of the anomalies of 17% in the exposed. The number of subjects necessary for DNA-adducts study is similar. For urinary 8-oxo-dG, the expected value in reference (control) population is nearly 10.78 ± 6.6 (Mean ± SD) nmole/24h, [54]. Thus 75 subjects in each group are sufficient to detect 18% modification of this value. For CYP1A2 activity, the urinary "molar concentration ratio of 1, 7-dimethylurate plus paraxanthine over caffeine" measured in a reference population is 5.6 ± 1.5 (Mean ± SD) [55], so 75 subjects in each group allow to detect a modification of 13% of this ratio.
As describe above, 16 subjects (8 exposed and 8 non-exposed) will be sampled Each week,. This will result in 10 weeks of sampling procedures to complete data collection according to study sample size of 75 subjects in each group. Each corresponding afternoon, 8 non-exposed participants will follow a similar sampling procedure.
The Parisians sewage workers are nearly 400 individuals, recruitment will be comfortable, even after exclusion of smokers (approximately 45%) [7].

Experimental protocol and technique

Isolation of lymphocytes

This will be carried out using Ficoll gradient centrifugation method of Bøyum [56] with few modifications according to the study conditions. Briefly, 25 ml of freshly obtained venous blood will be collected on anticoagulant (EDTA) and diluted with an equal volume of standard balanced salt solution and layered carefully over Ficoll-Paque Plus density gradient medium, without intermixing, in a centrifuge tube. After centrifuging at room temperature (400 g for 30–40 min), drawing of the upper layer by a clean Pasteur pipette will be done leaving the lymphocytes layer undisturbed at the interface. The upper layer which contains the plasma will be saved for later usual clinical chemistry tests. Using a clean Pasteur pipette the lymphocytes layer will be harvested from the interface and transferred to a clean centrifuge tube. Then it will be centrifuged twice (60–100 g for 10 min at 18–20°C) in a balanced salt solution to wash the lymphocytes and remove any remnants of platelets. The lymphocytes will be suspended with 10% DMSO, coded, and frozen at -80°C until extraction of DNA.

Extraction of DNA

Frozen lymphocytes suspensions will be thawed in a 37°C water bath with gentle agitation. DNA extraction will be carried out using a standard phenol-chloroform method including treatment with RNAses as described elsewhere [57]. DNA purity will be checked by determination of UV spectra between 228 and 300 nm (associated with ratio values: 1.8<A260/A280<1.95 and A260/A230>2.3) and the DNA concentration will be deduced from the A260, as described [58]. DNA solutions will be divided into three portions and frozen at -80°Cin glass vials.

Polymerase chain reaction "PCR" analysis of the CYP1A2

The polymorphism of CYP1A2 will be assessed by real-time polymerase chain reaction and melting curve analysis, as described by Casley and LeBlanc-Westwood [59]. Reactions will be carried out in 20 μL volumes containing 3.5 mM MgCl2 and 50 pg genomic DNA, using Fast Start DNA master mix for hybridization probes from Roche Diagnostics. All conditions will be adapted from Casley and LeBlanc-Westwood [59].

Analysis of DNA-adducts

DNA-adducts will be analyzed by 32P-postlabelling assay as described [60, 61], using Nuclease P1 for enrichment, with modifications from le Goff [57]. Briefly, 5 μg of DNA will be digested, then μCi γ-32P-ATP. Separation will be achieved on thin layer chromatography. Autoradiograms will be obtained after exposure of Kodak Biomax film to the TLC-plates. Each sample will be analyzed two times and in at least two different experiments. The detection limit will be fixed at 0.02 × 10-10, i.e. half of the lowest quantifiable Relative Adduct Level (RAL) value. For qualitative analysis, the mean number of adducts per individual will be calculated.

Pre-treatment of urine samples

The volume of the 24h urine collected in sterile plastic urine collection bottles will be measured immediately and expressed per subject and body weight. Then, three 10 ml aliquots will be coded and frozen at -20°C for 8-oxodG analysis. Another up to 100 ml aliquots will be coded and frozen at -20°C for organic extraction and genotoxicity tests. Both samples will be transferred to the laboratory of analysis (within the same day). The concentration of 8-oxodG in urine stored at -20°C was shown to be constant for at least 3 years [62].

Measurement of 8-oxodG concentration in 24h urine

This will be done as described [63]. Briefly, frozen urine samples will be thawed at 37°C for 25 min, mixed and cooled to room temperature. HPLC separation will be performed on a C18 HPLC column (150 × 2 mm, 5 μ) protected by a C18 guard column (10 × 2 mm, 5 μ). The mobile phase for urine samples will be 10 mM ammonium formate, adjusted to pH 3.75 with formic acid and 2% acetonitrile. Electrospray will be performed in the positive ion mode. A stable isotopically marked internal standard of 8-oxodG will be used ([15N5] 8-oxo-dG) (for details, see reference 63).

Urine organic extracts

This will be carried on Sep-Pak C18 cartridges (Waters Associates, Inc) adsorption chromatography as described [64] with some modifications. Briefly, frozen urine samples will be thawed at room temperature and filtered through Whatman filter paper No. 1. Then it will be adjusted to pH 7 using 0.1 M NaOH. The cartridge will firstly be washed 3 times with 3 ml of absolute methanol and 3 ml of ultra-pure water successively before preparation of the columns. Then, the cartridge will be loaded with urine using a glass powder funnel on the column to facilitate the loading process. All operations will be at room temperature. The column will then be washed 3 times with 10 ml distilled water in order to eliminate the residual urine and histidine. The adsorbed components will then be eluted with methanol (5 ml/100 ml urine) into glass test tube. The eluate will be dried at 40°C under a nitrogen stream until complete dryness. Then, the residue will be dissolved in DMSO (0.4 ml/100 ml urine) and stored at -20°C until analysis of genotoxicity tests.

Cell culture

For the two tests (comet and micronucleus) two cell lines will be used. HeLa S3 cellular line cells will be used (ECACC, catalog number 87110901, adherent cells of human cervical carcinoma). Hep G2 is a perpetual adherent cell line which was derived from the liver tissue of a 15 year old caucasian male with a well differentiated hepatocellular carcinoma (ATCC, catalog number HB-8065).

Comet assay "Single Cell Gel Electrophoresis" (SCGE)

The urine extracts kept at -20°C will be thawed and warmed to room temperature shortly before the assay. Comet assay will be performed basically according to Sing et al. 1988 [65], with modifications according to Muller et al. 2000 [66]. Briefly, the cells will be incubated with the organic extract of urine (200 μl) during 24h (typical division duration of these cells). Viability of cells will be determined by trypan blue test. Microscopic slides will be precoated with 100 μl of agarose (1%). The slides will be gently immersed in ice-cold freshly lysis solution and will be covered with fresh electrophoresis buffer for 20 min and placed in a horizontal electrophoresis unit tank filled with new fresh electrophoresis buffer. After electrophoresis, they will be washed with a freshly made neutralizing buffer and stained with 50 μl ethidium bromide solution. They will then be examined for analysis of DNA migration under a fluorescence microscope (Olympus BX-40, Olympus, Japan) using a computerized image analysis system (Komet 5, Kinetic Imaging). Two slides will be analyzed for each sample with fifty cells scored in each slide. Olive tail moment will be used for analysis of results [67].

Micronucleus assay

It will be performed according to the standard protocol of the International Workshops on Genotoxicity Test Procedures [17, 68, 69]. Briefly, after the initial screening; well-prepared slides will be scored using a high power magnification (400–1000 folds) with both bright field and phase-contrast microscope. Frequency of micronucleated cells will be evaluated by the number of cells containing one or more micronuclei (but less than 5). The induction factor will be calculated by dividing treated values by the control ones. Chi-square will be used for the comparisons and when P value is < 0.05 the concentration will be considered positive.

Assessment of CYP1A2 activity by urinary caffeine metabolites

Subjects will be instructed to empty their bladder. Then they will receive a cup of decaffeinated coffee added with 110 mg caffeine. Three hours later, a urine sample will be collected and transferred to tube with 1 ml HCl, pH 3.5. Samples will be coded and frozen at -20°C and then transferred to the laboratory of analysis (within the same day), where it will be stored at -20°C until HPLC analysis. Caffeine and its metabolites will be extracted as described [55]. Briefly, the concentrated residue will be dissolved in 800 μl of 0.05% acetic acid and filtered through a 0.45-μm filter. Here, 100 μl of the filtrate will be injected into HPLC column. Caffeine and its metabolites will be analyzed using an HPLC system as described elsewhere [70]. The metabolites will be identified and quantified by UV detector with a computerized photodiode array detector as compared with definite standards [1,7-dimethylurate (17 U), 1,7-dimethylxantine (17X), and 1,3,7-trimethylxanthine (137X)]. To assess CYP1A2 activity, urinary molar concentration ratio index [17U+ 17X/137X] will be used as it reflects caffeine 3-demethylation activity in this phenotyping procedure [71, 72].

Occupational air sampling

The targeted indicators will be VOCs and PAHs. They have been selected because they are present in the confined environments of the sewers while also emitted by automobile traffic, hence present in ambient and indoor atmospheres, and because they are of health significance.
Since the sewage system is deprived of electricity, air sampling will be carried out using battery-powered devices or passive samplers. The sampling procedure will strive at evaluating exposure near the breathing zone. However, not to disturb the sewage workers, measurements will be done by a companion worker (or a study personnel) who will accompany each studied team and carry the sampling equipment in a back bag. For the reference population (office workers) the same type of sampling materials will be placed in a bag located in the working area, for example on a desk.

Measurement of Volatile Organic Compounds (VOCs)

Collection of VOCs will be carried out on thermal desorption sorbent tubes exposed during the sewage workers worktime from Monday to Thursday and the sampler is recapped after every exposure. Analysis will be carried out by coupling gas chromatography and mass spectrometry. As work in sewage system takes place in a wet environment, a sorbent tube not very sensitive to moisture will be chosen. The list of the selected indicators will be at least the substances measured inside residences within the framework of the national inventory carried out by the Observatory of Indoor Air Quality (OIAQ) in more than 560 French residences. These data were published in November 2006 [73] and can be used as reference values. It is probable that most of compounds found in the residences are also present in the air of the offices. The basic list is as follows:
  • Alkanes: decane, undecane
  • Monocyclic aromatic hydrocarbons: benzene, toluene, meta and para-xylenes, orthoxylene, 1, 2, 4-trimethylbenzene, styrene
  • Chlorinated hydrocarbons: trichloroethylene, tetrachloroethylene, 1–4-dichlorobenzene.
The tubes used for sampling will be analyzed at the Paris city hygiene laboratory on a chain including a thermal desorption module on line with a chromatograph in gas phase equipped with a capillary column and coupled to a mass spectrometer (Quadripole). Quantitative analysis will be carried out on the basis of ion extracts and a range of calibration prepared by doping a lot of sorbent tubes with various quantities of a mixture of the selected VOCs. The first samples (2 to 3) will be devoted to the qualitative analysis (screening) of the chromatographic profiles with the aim to adjust the list of targeted compounds.

Measurement of Polycyclic Aromatic Hydrocarbons

They will be collected with personal air samplers allowing the simultaneously trapping of the volatile and the particulate phases (in case of heavy loss of charge due to high charged XAD2 resin, it will be necessary to carry out two distinct samples, one collecting only gaseous PAHs, the second one for particulate PAHs). The head of the samplers will consist of a cassette containing a filter, to collect particles coupled to a marketed tube filled with XAD2 resin or polyurethane foam. Air will be drawn using a constant flow sampling pump at a calibrated flow-rate of 2 L/min.
Duration of sampling will be at least equal to the daily worktime. However, four consecutive days of cumulative sampling may be necessary because concentrations are expected to be low. In this case, filter will be preserved in an aluminum sheet to avoid photochemical transformations. A first series of measurements will allow determination of the minimal duration of exposure for an acceptable quantification limit.
Thirteen PAHs will be measured: phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(j)fluoranthene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i) perylene, indeno-pyrene. PAHs will be extracted at the laboratory by a solvent in a pressurized cell, so the extracts will be concentrated in an automatic evaporator. They will be analyzed by high HPLC associated with fluorimetric detection. A binary elution gradient consisting of water and acetonitrile will be used to separate the different PAHs. Several couples of wavelengths of excitation and emission will be selected to optimize the sensitivity of the response of the compounds and to limit the chromatographic interferences. The quantitative analysis will be carried out according to the response of standard solutions that are prepared from a marketed mixture of the selected PAHs.

Statistical analysis

For each parameter, data will be compared between the exposed and non-exposed groups. Data will be tested for homogeneity of variance and normality after variable transformation if appropriate. Two-tailed Student's t-test will be used for group and/or sample comparisons relative to DNA-adducts level. Fisher's exact test will also be used for comparison of DNA-adducts pattern distributions between groups. Linear regression analysis will be used for quantitative variables, adjusting for parameters that reflect exposures in the questionnaires. For other parameters, ANOVA will be performed. Correlation analysis of DNA-adducts levels and urine genotoxicity with qualitative parameters will be evaluated by Spearman tests. Potential confounding factors, like age, socioeconomic or passive smoking will be studied, mainly by evaluating their distribution in both groups and by looking for possible association with DNA-adducts levels, urine genotoxicity or caffeine metabolism tests. The influence of confounding factors will be determined by multiple logistic regression after a check of normality (Kolmogorov Smirnov's test). The analysis will be processed by the statistical software SAS (SAS Inc., Version 8.02).

Discussion

This study aims to investigate the carcinogenic risk associated with occupational exposure of sewage workers to complex chemical mixtures. While the comet assay can detect DNA reparable lesions or alkali-labile sites, micronucleus can detect fixed mutations that persist at least one mitotic cycle [74]. Positive results in the comet don't necessarily correspond to positive results in the micronucleus, especially when genotoxic exposure is small. Thus, the combination of both assays might be more accurate and reasonable. Urinary excretion of 8-oxodG is a repair product of oxidative DNA damage and under the usual steady conditions it reflects the general average risk of a promutagenic oxidative stress in DNA of all tissues and organs [75]. Further, DNA-adducts in peripheral lymphocytes is considered as a good biomarker when studying the early effect of genotoxic exposures in humans [76, 77].
This study is limited by its cross sectional design where systematic differences between exposed and non-exposed could cause under or overestimation of the risk, as exposed subjects may be more motivated to participate than non-exposed. However, genotoxicity tests (urine and lymphocytes) are not likely to be affected by the subjects' interest to the study. Moreover, choosing office workers as a control group may alleviate sources of strong bias such as "healthy worker effect" and social class differences, as both groups belong to the same socioeconomic class. Further, urine genotoxicity is a short-term measure that reflects exposure 24 to 72h before collection [78] and our blood samples will be taken at rest. Airborne assessment will assess exposure by inhalation only, thus possibly misclassifying exposure both quantitatively and qualitatively. Using biomarkers of exposure and of early effects aims to overcome this shortcoming in view to assess the risk. Some difficulties might stem fromthe tiny amounts of promutagens in urine and the presence of urinary histidine, that leads to false positive results. Filtration and concentration of urine might help to solve these problems [64]. Finally, day to day variability in laboratory procedures will be calculated and estimated by analysis.
To summarize, sewage workers are exposed to multiple chemicals from multiple pathways resulting in a complicated matrix of exposure to chemicals and concentrations. In this complex chemical exposure setting, this study combines biological sampling, both in blood and urine, to assess biomarkers of exposure and of early biological effects. These biological indicators will be scaled with results of workplace environment air sampling that will be conducted in parallel. Such biomarkers of exposure and of early biological effects may help overcome the severe limitations of environmental exposure assessment in very complex occupational or environmental settings. If shown discriminating in the framework of this study population, these non-specific biomarkers might be used to assess the genotoxic risk in other populations also experiencing complex exposures.

Acknowledgements

HA is supported by the French Foreign Ministry and The faculty of Medicine of Nancy, The project is granted by The French National Cancer Institut and the Région Lorraine. The authors thank Yvon Le Moullec and Marie-Aude Kerautre for their careful reading of the paper.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

HA drafted the manuscript. LF, DZN and CP participated in the design and coordination of the study protocol and helped to draft the manuscript. Other authors reviewed the manuscript, provided further contributions and suggestions. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Bridges O: Double trouble: health risks of accidental sewage release. Chemosphere. 2003, 52: 1373-9. 10.1016/S0045-6535(03)00472-7.CrossRefPubMed Bridges O: Double trouble: health risks of accidental sewage release. Chemosphere. 2003, 52: 1373-9. 10.1016/S0045-6535(03)00472-7.CrossRefPubMed
2.
Zurück zum Zitat Aguayo S, Munoz MJ, de la Torre A, Roset J, de la Pena E, Carballo M: Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Sci Total Environ. 2004, 328: 69-81. 10.1016/j.scitotenv.2004.02.013.CrossRefPubMed Aguayo S, Munoz MJ, de la Torre A, Roset J, de la Pena E, Carballo M: Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Sci Total Environ. 2004, 328: 69-81. 10.1016/j.scitotenv.2004.02.013.CrossRefPubMed
3.
Zurück zum Zitat Blanchard M, Teil MJ, Ollivon D, Legenti L, Chevreuil M: Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France). Environ Res. 2004, 95: 184-97. 10.1016/j.envres.2003.07.003.CrossRefPubMed Blanchard M, Teil MJ, Ollivon D, Legenti L, Chevreuil M: Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France). Environ Res. 2004, 95: 184-97. 10.1016/j.envres.2003.07.003.CrossRefPubMed
4.
Zurück zum Zitat Krishnamurthi K, Devi F, Chakrabarti T: Genotoxic effects of PAH containing sludge extracts in Chinese hamster ovary cell cultures. Biomed Environ Sci. 2003, 16: 68-82.PubMed Krishnamurthi K, Devi F, Chakrabarti T: Genotoxic effects of PAH containing sludge extracts in Chinese hamster ovary cell cultures. Biomed Environ Sci. 2003, 16: 68-82.PubMed
5.
Zurück zum Zitat Sorensen M, Skov H, Autrup H, Hertel O, Loft S: Urban benzene exposure and oxidative DNA damage: influence of genetic polymorphisms in metabolism genes. Sci Total Environ. 2003, 309: 69-80. 10.1016/S0048-9697(03)00054-8.CrossRefPubMed Sorensen M, Skov H, Autrup H, Hertel O, Loft S: Urban benzene exposure and oxidative DNA damage: influence of genetic polymorphisms in metabolism genes. Sci Total Environ. 2003, 309: 69-80. 10.1016/S0048-9697(03)00054-8.CrossRefPubMed
6.
Zurück zum Zitat Lan Q, Mumford JL, Shen M, Demarini DM, Bonner MR, He X, Yeager M, Welch R, Chanock S, Tian L, Chapman RS, Zheng T, Keohavong P, Caporaso N, Rothman N: Oxidative damage-related genes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions. Carcinogenesis. 2004, 25: 2177-81. 10.1093/carcin/bgh240.CrossRefPubMed Lan Q, Mumford JL, Shen M, Demarini DM, Bonner MR, He X, Yeager M, Welch R, Chanock S, Tian L, Chapman RS, Zheng T, Keohavong P, Caporaso N, Rothman N: Oxidative damage-related genes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions. Carcinogenesis. 2004, 25: 2177-81. 10.1093/carcin/bgh240.CrossRefPubMed
7.
Zurück zum Zitat Wild P, Ambroise D, Benbrik E, Tiberguent A, Massin N: Mortality among Paris sewage workers. Occup Environ Med. 2006, 63: 168-72. 10.1136/oem.2005.022954.CrossRefPubMedPubMedCentral Wild P, Ambroise D, Benbrik E, Tiberguent A, Massin N: Mortality among Paris sewage workers. Occup Environ Med. 2006, 63: 168-72. 10.1136/oem.2005.022954.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Lafleur J, Vena JE: Retrospective cohort mortality study of cancer among sewage plant workers. Am J Ind Med. 1991, 19: 75-86. 10.1002/ajim.4700190110.CrossRefPubMed Lafleur J, Vena JE: Retrospective cohort mortality study of cancer among sewage plant workers. Am J Ind Med. 1991, 19: 75-86. 10.1002/ajim.4700190110.CrossRefPubMed
9.
Zurück zum Zitat Friis L, Mikoczy Z, Hagmar L, Edling C: Cancer incidence in a cohort of Swedish sewage workers: extended follow up. Occup Environ Med. 1999, 56: 672-3.CrossRefPubMedPubMedCentral Friis L, Mikoczy Z, Hagmar L, Edling C: Cancer incidence in a cohort of Swedish sewage workers: extended follow up. Occup Environ Med. 1999, 56: 672-3.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Hansen ES, Hilden J, Klausen H, Rosdahl N: Wastewater exposure and health: a comparative study of two occupational groups. Occup Environ Med. 2003, 60: 595-8. 10.1136/oem.60.8.595.CrossRefPubMedPubMedCentral Hansen ES, Hilden J, Klausen H, Rosdahl N: Wastewater exposure and health: a comparative study of two occupational groups. Occup Environ Med. 2003, 60: 595-8. 10.1136/oem.60.8.595.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Olin RG, Ahlbom A, Lindberg-Navier I, Norell SE, Spannare B: Occupational factors associated with astrocytomas: a case-control study. Am J Ind Med. 1987, 11: 615-25. 10.1002/ajim.4700110603.CrossRefPubMed Olin RG, Ahlbom A, Lindberg-Navier I, Norell SE, Spannare B: Occupational factors associated with astrocytomas: a case-control study. Am J Ind Med. 1987, 11: 615-25. 10.1002/ajim.4700110603.CrossRefPubMed
12.
Zurück zum Zitat Scarlett-Kranz JM, Babish JG, Strickland D, Goodrich RM, Lisk DJ: Urinary mutagens in municipal sewage workers and water treatment workers. Am J Epidemiol. 1986, 124: 884-93.PubMed Scarlett-Kranz JM, Babish JG, Strickland D, Goodrich RM, Lisk DJ: Urinary mutagens in municipal sewage workers and water treatment workers. Am J Epidemiol. 1986, 124: 884-93.PubMed
13.
Zurück zum Zitat Ma XF, Babish JG, Scarlett JM, Gutenmann WH, Lisk DJ: Mutagens in urine sampled repetitively from municipal refuse incinerator workers and water treatment workers. J Toxicol Environ Health. 1992, 37: 483-94.CrossRefPubMed Ma XF, Babish JG, Scarlett JM, Gutenmann WH, Lisk DJ: Mutagens in urine sampled repetitively from municipal refuse incinerator workers and water treatment workers. J Toxicol Environ Health. 1992, 37: 483-94.CrossRefPubMed
14.
Zurück zum Zitat Lebailly P, Devaux A, Pottier D, De Meo M, Andre V, Baldi I, Severin F, Bernaud J, Durand B, Henry-Amar M, Gauduchon P: Urine mutagenicity and lymphocyte DNA damage in fruit growers occupationally exposed to the fungicide captan. Occup Environ Med. 2003, 60: 910-7. 10.1136/oem.60.12.910.CrossRefPubMedPubMedCentral Lebailly P, Devaux A, Pottier D, De Meo M, Andre V, Baldi I, Severin F, Bernaud J, Durand B, Henry-Amar M, Gauduchon P: Urine mutagenicity and lymphocyte DNA damage in fruit growers occupationally exposed to the fungicide captan. Occup Environ Med. 2003, 60: 910-7. 10.1136/oem.60.12.910.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Hansen AM, Wallin H, Binderup ML, Dybdahl M, Autrup H, Loft S, Knudsen LE: Urinary 1-hydroxypyrene and mutagenicity in bus drivers and mail carriers exposed to urban air pollution in Denmark. Mutat Res. 2004, 557: 7-17.CrossRefPubMed Hansen AM, Wallin H, Binderup ML, Dybdahl M, Autrup H, Loft S, Knudsen LE: Urinary 1-hydroxypyrene and mutagenicity in bus drivers and mail carriers exposed to urban air pollution in Denmark. Mutat Res. 2004, 557: 7-17.CrossRefPubMed
16.
Zurück zum Zitat Simioli P, Lupi S, Gregorio P, Siwinska E, Mielzynska D, Clonfero E, Pavanello S: Non-smoking coke oven workers show an occupational PAH exposure-related increase in urinary mutagens. Mutat Res. 2004, 562: 103-10.CrossRefPubMed Simioli P, Lupi S, Gregorio P, Siwinska E, Mielzynska D, Clonfero E, Pavanello S: Non-smoking coke oven workers show an occupational PAH exposure-related increase in urinary mutagens. Mutat Res. 2004, 562: 103-10.CrossRefPubMed
17.
Zurück zum Zitat Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M, Kirchner S, Lorge E, Morita T, Norppa H, Surralles J, Vanhauwaert A, Wakata A: Report from the in vitro micronucleus assay working group. Mutat Res. 2003, 540: 153-63.CrossRefPubMed Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M, Kirchner S, Lorge E, Morita T, Norppa H, Surralles J, Vanhauwaert A, Wakata A: Report from the in vitro micronucleus assay working group. Mutat Res. 2003, 540: 153-63.CrossRefPubMed
18.
Zurück zum Zitat Marczynski B, Raulf-Heimsoth M, Preuss R, Kappler M, Schott K, Pesch B, Zoubek G, Hahn JU, Mensing T, Angerer J, Kafferlein HU, Bruning T: Assessment of DNA damage in WBCs of workers occupationally exposed to fumes and aerosols of bitumen. Cancer Epidemiol Biomarkers Prev. 2006, 15: 645-51. 10.1158/1055-9965.EPI-05-0562.CrossRefPubMed Marczynski B, Raulf-Heimsoth M, Preuss R, Kappler M, Schott K, Pesch B, Zoubek G, Hahn JU, Mensing T, Angerer J, Kafferlein HU, Bruning T: Assessment of DNA damage in WBCs of workers occupationally exposed to fumes and aerosols of bitumen. Cancer Epidemiol Biomarkers Prev. 2006, 15: 645-51. 10.1158/1055-9965.EPI-05-0562.CrossRefPubMed
19.
Zurück zum Zitat Abou Chakra OR, Joyeux M, Nerriere E, Strub MP, Zmirou-Navier D: Genotoxicity of organic extracts of urban airborne particulate matter: an assessment within a personal exposure study. Chemosphere. 2007, 66: 1375-81. 10.1016/j.chemosphere.2006.06.066.CrossRefPubMed Abou Chakra OR, Joyeux M, Nerriere E, Strub MP, Zmirou-Navier D: Genotoxicity of organic extracts of urban airborne particulate matter: an assessment within a personal exposure study. Chemosphere. 2007, 66: 1375-81. 10.1016/j.chemosphere.2006.06.066.CrossRefPubMed
20.
Zurück zum Zitat Bonassi S, Ugolini D, Kirsch-Volders M, Stromberg U, Vermeulen R, Tucker JD: Human population studies with cytogenetic biomarkers: review of the literature and future prospectives. Environ Mol Mutagen. 2005, 45: 258-70. 10.1002/em.20115.CrossRefPubMed Bonassi S, Ugolini D, Kirsch-Volders M, Stromberg U, Vermeulen R, Tucker JD: Human population studies with cytogenetic biomarkers: review of the literature and future prospectives. Environ Mol Mutagen. 2005, 45: 258-70. 10.1002/em.20115.CrossRefPubMed
21.
Zurück zum Zitat Lorge E, Thybaud V, Aardema MJ, Oliver J, Wakata A, Lorenzon G, Marzin D: SFTG international collaborative study on in vitro micronucleus test I. General conditions and overall conclusions of the study. Mutat Res. 2006, 607: 13-36.CrossRefPubMed Lorge E, Thybaud V, Aardema MJ, Oliver J, Wakata A, Lorenzon G, Marzin D: SFTG international collaborative study on in vitro micronucleus test I. General conditions and overall conclusions of the study. Mutat Res. 2006, 607: 13-36.CrossRefPubMed
22.
Zurück zum Zitat Szeliga J, Dipple A: DNA adduct formation by polycyclic aromatic hydrocarbon dihydrodiol epoxides. Chem Res Toxicol. 1998, 11: 1-11. 10.1021/tx970142f.CrossRefPubMed Szeliga J, Dipple A: DNA adduct formation by polycyclic aromatic hydrocarbon dihydrodiol epoxides. Chem Res Toxicol. 1998, 11: 1-11. 10.1021/tx970142f.CrossRefPubMed
23.
Zurück zum Zitat Landi MT, Sinha R, Lang NP, Kadlubar FF: Human cytochrome P4501A2. IARC Sci Publ. 1999, 148: 173-95.PubMed Landi MT, Sinha R, Lang NP, Kadlubar FF: Human cytochrome P4501A2. IARC Sci Publ. 1999, 148: 173-95.PubMed
24.
Zurück zum Zitat Rundle A, Tang D, Zhou J, Cho S, Perera F: The association between glutathione S transferase M1 genotype and polycyclic aromatic hydrocarbon-DNA adducts in breast tissue. Cancer Epidemiol Biomarkers Prev. 2000, 9: 1079-85.PubMed Rundle A, Tang D, Zhou J, Cho S, Perera F: The association between glutathione S transferase M1 genotype and polycyclic aromatic hydrocarbon-DNA adducts in breast tissue. Cancer Epidemiol Biomarkers Prev. 2000, 9: 1079-85.PubMed
25.
Zurück zum Zitat Sinha R, Rothman N, Brown ED, Mark SD, Hoover RN, Caporaso NE, Levander OA, Knize MG, Lang NP, Kadlubar FF: Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans. Cancer Res. 1994, 54: 6154-9.PubMed Sinha R, Rothman N, Brown ED, Mark SD, Hoover RN, Caporaso NE, Levander OA, Knize MG, Lang NP, Kadlubar FF: Pan-fried meat containing high levels of heterocyclic aromatic amines but low levels of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans. Cancer Res. 1994, 54: 6154-9.PubMed
26.
Zurück zum Zitat Safe SH: Modulation of gene expression and endocrine response pathways by 2,3,7,8 tetrachlorodibenzo-p-dioxin and related compounds. Pharmacol Ther. 1995, 67: 247-81. 10.1016/0163-7258(95)00017-B.CrossRefPubMed Safe SH: Modulation of gene expression and endocrine response pathways by 2,3,7,8 tetrachlorodibenzo-p-dioxin and related compounds. Pharmacol Ther. 1995, 67: 247-81. 10.1016/0163-7258(95)00017-B.CrossRefPubMed
27.
Zurück zum Zitat Kall MA, Clausen J: Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man. Hum Exp Toxicol. 1995, 14: 801-7.CrossRefPubMed Kall MA, Clausen J: Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man. Hum Exp Toxicol. 1995, 14: 801-7.CrossRefPubMed
28.
Zurück zum Zitat Li W, Harper PA, Tang BK, Okey AB: Regulation of cytochrome P450 enzymes by aryl hydrocarbon receptor in human cells: CYP1A2 expression in the LS180 colon carcinoma cell line after treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin or 3 methylcholanthrene. Biochem Pharmacol. 1998, 56: 599-612. 10.1016/S0006-2952(98)00208-1.CrossRefPubMed Li W, Harper PA, Tang BK, Okey AB: Regulation of cytochrome P450 enzymes by aryl hydrocarbon receptor in human cells: CYP1A2 expression in the LS180 colon carcinoma cell line after treatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin or 3 methylcholanthrene. Biochem Pharmacol. 1998, 56: 599-612. 10.1016/S0006-2952(98)00208-1.CrossRefPubMed
29.
Zurück zum Zitat Loft S, Deng XS, Tuo J, Wellejus A, Sorensen M, Poulsen HE: Experimental study of oxidative DNA damage. Free Radic Res. 1998, 29: 525-39. 10.1080/10715769800300571.CrossRefPubMed Loft S, Deng XS, Tuo J, Wellejus A, Sorensen M, Poulsen HE: Experimental study of oxidative DNA damage. Free Radic Res. 1998, 29: 525-39. 10.1080/10715769800300571.CrossRefPubMed
30.
Zurück zum Zitat Bonvallot V, Baeza-Squiban A, Baulig A, Brulant S, Boland S, Muzeau F, Barouki R, Marano F: Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am J Respir Cell Mol Biol. 2001, 25: 515-21.CrossRefPubMed Bonvallot V, Baeza-Squiban A, Baulig A, Brulant S, Boland S, Muzeau F, Barouki R, Marano F: Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression. Am J Respir Cell Mol Biol. 2001, 25: 515-21.CrossRefPubMed
31.
Zurück zum Zitat Cheng YW, Chen CY, Lin P, Huang KH, Lin TS, Wu MH, Lee H: DNA adduct level in lung tissue may act as a risk biomarker of lung cancer. Eur J Cancer. 2000, 36: 1381-8. 10.1016/S0959-8049(00)00131-3.CrossRefPubMed Cheng YW, Chen CY, Lin P, Huang KH, Lin TS, Wu MH, Lee H: DNA adduct level in lung tissue may act as a risk biomarker of lung cancer. Eur J Cancer. 2000, 36: 1381-8. 10.1016/S0959-8049(00)00131-3.CrossRefPubMed
32.
Zurück zum Zitat Sram RJ, Binkova B: Molecular epidemiology studies on occupational and environmental exposure to mutagens and carcinogens, 1997–1999. Environ Health Perspect. 2000, 108 (Suppl 1): 57-70. 10.2307/3454632.CrossRefPubMedPubMedCentral Sram RJ, Binkova B: Molecular epidemiology studies on occupational and environmental exposure to mutagens and carcinogens, 1997–1999. Environ Health Perspect. 2000, 108 (Suppl 1): 57-70. 10.2307/3454632.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Castano-Vinyals G, D'Errico A, Malats N, Kogevinas M: Biomarkers of exposure to polycyclic aromatic hydrocarbons from environmental air pollution. Occup Environ Med. 2004, 61: 12-10.1136/oem.2003.008375.CrossRef Castano-Vinyals G, D'Errico A, Malats N, Kogevinas M: Biomarkers of exposure to polycyclic aromatic hydrocarbons from environmental air pollution. Occup Environ Med. 2004, 61: 12-10.1136/oem.2003.008375.CrossRef
34.
Zurück zum Zitat Peluso M, Munnia A, Hoek G, Krzyzanowski M, Veglia F, Airoldi L, Autrup H, Dunning A, Garte S, Hainaut P, Malaveille C, Gormally E, Matullo G, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, Linseisen J, Boeing H, Trichopoulou A, Trichopoulos D, Kaladidi A, Palli D, Krogh V, Tumino R, Panico S, Bueno-De-Mesquita HB, Peeters PH, Kumle M, Gonzalez CA, Martinez C, Dorronsoro M, Barricarte A, Navarro C, Quiros JR, Berglund G, Janzon L, Jarvholm B, Day NE, Key TJ, Saracci R, Kaaks R, Riboli E, Vineis P: DNA adducts and lung cancer risk: a prospective study. Cancer Res. 2005, 65: 8042-8.PubMed Peluso M, Munnia A, Hoek G, Krzyzanowski M, Veglia F, Airoldi L, Autrup H, Dunning A, Garte S, Hainaut P, Malaveille C, Gormally E, Matullo G, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, Linseisen J, Boeing H, Trichopoulou A, Trichopoulos D, Kaladidi A, Palli D, Krogh V, Tumino R, Panico S, Bueno-De-Mesquita HB, Peeters PH, Kumle M, Gonzalez CA, Martinez C, Dorronsoro M, Barricarte A, Navarro C, Quiros JR, Berglund G, Janzon L, Jarvholm B, Day NE, Key TJ, Saracci R, Kaaks R, Riboli E, Vineis P: DNA adducts and lung cancer risk: a prospective study. Cancer Res. 2005, 65: 8042-8.PubMed
35.
Zurück zum Zitat Loft S, Poulsen HE: Cancer risk and oxidative DNA damage in man. J Mol Med. 1996, 74: 297-312. 10.1007/s001090050031.CrossRefPubMed Loft S, Poulsen HE: Cancer risk and oxidative DNA damage in man. J Mol Med. 1996, 74: 297-312. 10.1007/s001090050031.CrossRefPubMed
36.
Zurück zum Zitat Kasai H: Analysis of a form of oxidative DNA damage, 8-hydroxy-2' deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997, 387: 147-63. 10.1016/S1383-5742(97)00035-5.CrossRefPubMed Kasai H: Analysis of a form of oxidative DNA damage, 8-hydroxy-2' deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 1997, 387: 147-63. 10.1016/S1383-5742(97)00035-5.CrossRefPubMed
37.
Zurück zum Zitat Loft S, Poulsen HE: Antioxidant intervention studies related to DNA damage, DNA repair and gene expression. Free Radic Res. 2000, 33 (Suppl): 67-83. Loft S, Poulsen HE: Antioxidant intervention studies related to DNA damage, DNA repair and gene expression. Free Radic Res. 2000, 33 (Suppl): 67-83.
38.
Zurück zum Zitat Nishimura S: Involvement of mammalian OGG1(MMH) in excision of the 8 hydroxyguanine residue in DNA. Free Radic Biol Med. 2002, 32: 813-21. 10.1016/S0891-5849(02)00778-5.CrossRefPubMed Nishimura S: Involvement of mammalian OGG1(MMH) in excision of the 8 hydroxyguanine residue in DNA. Free Radic Biol Med. 2002, 32: 813-21. 10.1016/S0891-5849(02)00778-5.CrossRefPubMed
39.
Zurück zum Zitat Bjelland S, Seeberg E: Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res. 2003, 531: 37-80.CrossRefPubMed Bjelland S, Seeberg E: Mutagenicity, toxicity and repair of DNA base damage induced by oxidation. Mutat Res. 2003, 531: 37-80.CrossRefPubMed
40.
Zurück zum Zitat Moller P, Vogel U, Pedersen A, Dragsted LO, Sandstrom B, Loft S: No effect of 600 grams fruit and vegetables per day on oxidative DNA damage and repair in healthy nonsmokers. Cancer Epidemiol Biomarkers Prev. 2003, 12: 1016-22.PubMed Moller P, Vogel U, Pedersen A, Dragsted LO, Sandstrom B, Loft S: No effect of 600 grams fruit and vegetables per day on oxidative DNA damage and repair in healthy nonsmokers. Cancer Epidemiol Biomarkers Prev. 2003, 12: 1016-22.PubMed
41.
Zurück zum Zitat Loft S, Poulsen HE: Markers of oxidative damage to DNA: antioxidants and molecular damage. Methods Enzymol. 1999, 300: 166-84.CrossRefPubMed Loft S, Poulsen HE: Markers of oxidative damage to DNA: antioxidants and molecular damage. Methods Enzymol. 1999, 300: 166-84.CrossRefPubMed
42.
Zurück zum Zitat Olinski R, Rozalski R, Gackowski D, Foksinski M, Siomek A, Cooke MS: Urinary measurement of 8-OxodG, 8-OxoGua, and 5HMUra: a noninvasive assessment of oxidative damage to DNA. Antioxid Redox Signal. 2006, 8: 1011-9. 10.1089/ars.2006.8.1011.CrossRefPubMed Olinski R, Rozalski R, Gackowski D, Foksinski M, Siomek A, Cooke MS: Urinary measurement of 8-OxodG, 8-OxoGua, and 5HMUra: a noninvasive assessment of oxidative damage to DNA. Antioxid Redox Signal. 2006, 8: 1011-9. 10.1089/ars.2006.8.1011.CrossRefPubMed
43.
Zurück zum Zitat Berthou F, Guillois B, Riche C, Dreano Y, Jacqz-Aigrain E, Beaune PH: Interspecies variations in caffeine metabolism related to cytochrome P4501A enzymes. Xenobiotica. 1992, 22: 671-80.CrossRefPubMed Berthou F, Guillois B, Riche C, Dreano Y, Jacqz-Aigrain E, Beaune PH: Interspecies variations in caffeine metabolism related to cytochrome P4501A enzymes. Xenobiotica. 1992, 22: 671-80.CrossRefPubMed
44.
Zurück zum Zitat Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T: Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo). 1999, 125: 803-8.CrossRef Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T: Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo). 1999, 125: 803-8.CrossRef
45.
Zurück zum Zitat Seow A, Zhao B, Lee EJ, Poh WT, Teh M, Eng P, Wang YT, Tan WC, Lee HP: Cytochrome P4501A2 (CYP1A2) activity and lung cancer risk: a preliminary study among Chinese women in Singapore. Carcinogenesis. 2001, 22: 673-7. 10.1093/carcin/22.4.673.CrossRefPubMed Seow A, Zhao B, Lee EJ, Poh WT, Teh M, Eng P, Wang YT, Tan WC, Lee HP: Cytochrome P4501A2 (CYP1A2) activity and lung cancer risk: a preliminary study among Chinese women in Singapore. Carcinogenesis. 2001, 22: 673-7. 10.1093/carcin/22.4.673.CrossRefPubMed
46.
Zurück zum Zitat Fanlo A, Sinues B, Mayayo E, Bernal L, Soriano A, Martinez-Jarreta B, Martinez-Ballarin E: Urinary mutagenicity, CYP1A2 and NAT2 activity in textile industry workers. J Occup Health. 2004, 46: 440-7. 10.1539/joh.46.440.CrossRefPubMed Fanlo A, Sinues B, Mayayo E, Bernal L, Soriano A, Martinez-Jarreta B, Martinez-Ballarin E: Urinary mutagenicity, CYP1A2 and NAT2 activity in textile industry workers. J Occup Health. 2004, 46: 440-7. 10.1539/joh.46.440.CrossRefPubMed
47.
Zurück zum Zitat Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L: Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol. 2007, 63: 537-46. 10.1007/s00228-007-0288-2.CrossRefPubMed Ghotbi R, Christensen M, Roh HK, Ingelman-Sundberg M, Aklillu E, Bertilsson L: Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol. 2007, 63: 537-46. 10.1007/s00228-007-0288-2.CrossRefPubMed
48.
Zurück zum Zitat Sachse C, Brockmoller J, Bauer S, Roots I: Functional significance of a C->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999, 47: 445-449. 10.1046/j.1365-2125.1999.00898.x.CrossRefPubMedPubMedCentral Sachse C, Brockmoller J, Bauer S, Roots I: Functional significance of a C->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999, 47: 445-449. 10.1046/j.1365-2125.1999.00898.x.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Faber MS, Jetter A, Fuhr U: Assessment of CYP1A2 activity in clinical practice: why, how, and when?. Basic Clin Pharmacol Toxicol. 2005, 97: 125-34. 10.1111/j.1742-7843.2005.pto_973160.x.CrossRefPubMed Faber MS, Jetter A, Fuhr U: Assessment of CYP1A2 activity in clinical practice: why, how, and when?. Basic Clin Pharmacol Toxicol. 2005, 97: 125-34. 10.1111/j.1742-7843.2005.pto_973160.x.CrossRefPubMed
50.
Zurück zum Zitat Wu LL, Chiou CC, Chang PY, Wu JT: Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004, 339: 1-9. 10.1016/j.cccn.2003.09.010.CrossRefPubMed Wu LL, Chiou CC, Chang PY, Wu JT: Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004, 339: 1-9. 10.1016/j.cccn.2003.09.010.CrossRefPubMed
51.
Zurück zum Zitat Preziosi P, Galan P, Aissa M, Hercberg S, Boccalon H: Prevalence of venous insufficiency in French adults of the SUVIMAX cohort. Supplementation en Vitamines et Mineraux Antioxydants. Int Angiol. 1999, 18: 171-5.PubMed Preziosi P, Galan P, Aissa M, Hercberg S, Boccalon H: Prevalence of venous insufficiency in French adults of the SUVIMAX cohort. Supplementation en Vitamines et Mineraux Antioxydants. Int Angiol. 1999, 18: 171-5.PubMed
52.
Zurück zum Zitat Poulsen HE, Weimann A, Loft S: Methods to detect DNA damage by free radicals: relation to exercise. Proc Nutr Soc. 1999, 58: 1007-14. 10.1017/S0029665199001329.CrossRefPubMed Poulsen HE, Weimann A, Loft S: Methods to detect DNA damage by free radicals: relation to exercise. Proc Nutr Soc. 1999, 58: 1007-14. 10.1017/S0029665199001329.CrossRefPubMed
53.
Zurück zum Zitat Tsai K, Hsu TG, Hsu KM, Cheng H, Liu TY, Hsu CF, Kong CW: Oxidative DNA damage in human peripheral leukocytes induced by massive aerobic exercise. Free Radic Biol Med. 2001, 31: 1465-72. 10.1016/S0891-5849(01)00729-8.CrossRefPubMed Tsai K, Hsu TG, Hsu KM, Cheng H, Liu TY, Hsu CF, Kong CW: Oxidative DNA damage in human peripheral leukocytes induced by massive aerobic exercise. Free Radic Biol Med. 2001, 31: 1465-72. 10.1016/S0891-5849(01)00729-8.CrossRefPubMed
54.
Zurück zum Zitat Loft S, Poulsen HE, Vistisen K, Knudsen LE: Increased urinary excretion of 8-oxo-2'-deoxyguanosine, a biomarker of oxidative DNA damage, in urban bus drivers. Mutat Res. 1999, 441: 11-9.CrossRefPubMed Loft S, Poulsen HE, Vistisen K, Knudsen LE: Increased urinary excretion of 8-oxo-2'-deoxyguanosine, a biomarker of oxidative DNA damage, in urban bus drivers. Mutat Res. 1999, 441: 11-9.CrossRefPubMed
55.
Zurück zum Zitat Ryu SD, Chung WG: Induction of the procarcinogen-activating CYP1A2 by a herbal dietary supplement in rats and humans. Food Chem Toxicol. 2003, 41: 861-6. 10.1016/S0278-6915(03)00037-1.CrossRefPubMed Ryu SD, Chung WG: Induction of the procarcinogen-activating CYP1A2 by a herbal dietary supplement in rats and humans. Food Chem Toxicol. 2003, 41: 861-6. 10.1016/S0278-6915(03)00037-1.CrossRefPubMed
56.
Zurück zum Zitat Boyum A: Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest. 1968, 77-89. Suppl 97 Boyum A: Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest. 1968, 77-89. Suppl 97
57.
Zurück zum Zitat Le Goff J, Andre V, Lebailly P, Pottier D, Perin F, Perin O, Gauduchon P: Seasonal variations of DNA-adduct patterns in open field farmers handling pesticides. Mutat Res. 2005, 587: 90-102.CrossRefPubMed Le Goff J, Andre V, Lebailly P, Pottier D, Perin F, Perin O, Gauduchon P: Seasonal variations of DNA-adduct patterns in open field farmers handling pesticides. Mutat Res. 2005, 587: 90-102.CrossRefPubMed
58.
Zurück zum Zitat Godschalk RW, Maas LM, Kleinjans JC, Van Schooten FJ: Influences of DNA isolation and RNA contamination on carcinogen-DNA adduct analysis by 32P postlabeling. Environ Mol Mutagen. 1998, 32: 344-50. 10.1002/(SICI)1098-2280(1998)32:4<344::AID-EM8>3.0.CO;2-P.CrossRefPubMed Godschalk RW, Maas LM, Kleinjans JC, Van Schooten FJ: Influences of DNA isolation and RNA contamination on carcinogen-DNA adduct analysis by 32P postlabeling. Environ Mol Mutagen. 1998, 32: 344-50. 10.1002/(SICI)1098-2280(1998)32:4<344::AID-EM8>3.0.CO;2-P.CrossRefPubMed
59.
Zurück zum Zitat Casley WL, LeBlanc-Westwood CA: Assay for the simultaneous detection of the *1C and *1F alleles of the CYP1A2 gene by real-time polymerase chain reaction and melting curve analysis. Psychiatr Genet. 2006, 16: 81-3. 10.1097/01.ypg.0000185030.35558.6d.CrossRefPubMed Casley WL, LeBlanc-Westwood CA: Assay for the simultaneous detection of the *1C and *1F alleles of the CYP1A2 gene by real-time polymerase chain reaction and melting curve analysis. Psychiatr Genet. 2006, 16: 81-3. 10.1097/01.ypg.0000185030.35558.6d.CrossRefPubMed
60.
61.
Zurück zum Zitat Reddy MV, Randerath K: Nuclease P1-mediated enhancement of sensitivity of 32P postlabeling test for structurally diverse DNA adducts. Carcinogenesis. 1986, 7: 1543-51. 10.1093/carcin/7.9.1543.CrossRefPubMed Reddy MV, Randerath K: Nuclease P1-mediated enhancement of sensitivity of 32P postlabeling test for structurally diverse DNA adducts. Carcinogenesis. 1986, 7: 1543-51. 10.1093/carcin/7.9.1543.CrossRefPubMed
62.
Zurück zum Zitat Loft S, Velthuis-te Wierik EJ, van den Berg H, Poulsen HE: Energy restriction and oxidative DNA damage in humans. Cancer Epidemiol Biomarkers Prev. 1995, 4: 515-9.PubMed Loft S, Velthuis-te Wierik EJ, van den Berg H, Poulsen HE: Energy restriction and oxidative DNA damage in humans. Cancer Epidemiol Biomarkers Prev. 1995, 4: 515-9.PubMed
63.
Zurück zum Zitat Weimann A, Belling D, Poulsen HE: Measurement of 8-oxo-2'-deoxyguanosine and 8 oxo-2'-deoxyadenosine in DNA and human urine by high performance liquid chromatography-electrospray tandem mass spectrometry. Free Radic Biol Med. 2001, 30: 757-64. 10.1016/S0891-5849(01)00462-2.CrossRefPubMed Weimann A, Belling D, Poulsen HE: Measurement of 8-oxo-2'-deoxyguanosine and 8 oxo-2'-deoxyadenosine in DNA and human urine by high performance liquid chromatography-electrospray tandem mass spectrometry. Free Radic Biol Med. 2001, 30: 757-64. 10.1016/S0891-5849(01)00462-2.CrossRefPubMed
64.
Zurück zum Zitat Kuenemann-Migeot C, Callais F, Momas I, Festy B: Urinary promutagens of smokers: comparison of concentration methods and relation to cigarette consumption. Mutat Res. 1996, 368: 141-7. 10.1016/0165-1218(96)00004-3.CrossRefPubMed Kuenemann-Migeot C, Callais F, Momas I, Festy B: Urinary promutagens of smokers: comparison of concentration methods and relation to cigarette consumption. Mutat Res. 1996, 368: 141-7. 10.1016/0165-1218(96)00004-3.CrossRefPubMed
65.
Zurück zum Zitat Singh NP, McCoy MT, Tice RR, Schneider EL: A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988, 175: 184-91. 10.1016/0014-4827(88)90265-0.CrossRefPubMed Singh NP, McCoy MT, Tice RR, Schneider EL: A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988, 175: 184-91. 10.1016/0014-4827(88)90265-0.CrossRefPubMed
66.
Zurück zum Zitat Muller-Pillet V, Joyeux M, Ambroise D, Hartemann P: Genotoxic activity of five haloacetonitriles: comparative investigations in the single cell gel electrophoresis (comet) assay and the ames-fluctuation test. Environ Mol Mutagen. 2000, 36: 52-8. 10.1002/1098-2280(2000)36:1<52::AID-EM8>3.0.CO;2-9.CrossRefPubMed Muller-Pillet V, Joyeux M, Ambroise D, Hartemann P: Genotoxic activity of five haloacetonitriles: comparative investigations in the single cell gel electrophoresis (comet) assay and the ames-fluctuation test. Environ Mol Mutagen. 2000, 36: 52-8. 10.1002/1098-2280(2000)36:1<52::AID-EM8>3.0.CO;2-9.CrossRefPubMed
67.
Zurück zum Zitat Olive PL, Banath JP, Durand RE: Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res. 1990, 122: 86-94. 10.2307/3577587.CrossRefPubMed Olive PL, Banath JP, Durand RE: Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Radiat Res. 1990, 122: 86-94. 10.2307/3577587.CrossRefPubMed
68.
Zurück zum Zitat Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M, Lorge E, Norppa H, Surralles J, von der Hude W, Wakata A: Report from the In Vitro Micronucleus Assay Working Group. Environ Mol Mutagen. 2000, 35: 167-72. 10.1002/(SICI)1098-2280(2000)35:3<167::AID-EM3>3.0.CO;2-G.CrossRefPubMed Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M, Lorge E, Norppa H, Surralles J, von der Hude W, Wakata A: Report from the In Vitro Micronucleus Assay Working Group. Environ Mol Mutagen. 2000, 35: 167-72. 10.1002/(SICI)1098-2280(2000)35:3<167::AID-EM3>3.0.CO;2-G.CrossRefPubMed
69.
Zurück zum Zitat Lorge E, Lambert C, Gervais V, Becourt-Lhote N, Delongeas JL, Claude N: Genetic toxicity assessment: employing the best science for human safety evaluation. Part II: Performances of the in vitro micronucleus test compared to the mouse lymphoma assay and the in vitro chromosome aberration assay. Toxicol Sci. 2007, 96: 214-7. 10.1093/toxsci/kfl193.CrossRefPubMed Lorge E, Lambert C, Gervais V, Becourt-Lhote N, Delongeas JL, Claude N: Genetic toxicity assessment: employing the best science for human safety evaluation. Part II: Performances of the in vitro micronucleus test compared to the mouse lymphoma assay and the in vitro chromosome aberration assay. Toxicol Sci. 2007, 96: 214-7. 10.1093/toxsci/kfl193.CrossRefPubMed
70.
Zurück zum Zitat Chung WG, Roh HK, Kim HM, Cha YN: Involvement of CYP3A1, 2B1, and 2E1 in C-8 hydroxylation and CYP 1A2 and flavin-containing monooxygenase in N demethylation of caffeine; identified by using inducer treated rat liver microsomes that are characterized with testosterone metabolic patterns. Chem Biol Interact. 1998, 113: 1-14. 10.1016/S0009-2797(97)00109-9.CrossRefPubMed Chung WG, Roh HK, Kim HM, Cha YN: Involvement of CYP3A1, 2B1, and 2E1 in C-8 hydroxylation and CYP 1A2 and flavin-containing monooxygenase in N demethylation of caffeine; identified by using inducer treated rat liver microsomes that are characterized with testosterone metabolic patterns. Chem Biol Interact. 1998, 113: 1-14. 10.1016/S0009-2797(97)00109-9.CrossRefPubMed
71.
Zurück zum Zitat Butler MA, Lang NP, Young JF, Caporaso NE, Vineis P, Hayes RB, Teitel CH, Massengill JP, Lawsen MF, Kadlubar FF: Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics. 1992, 2: 116-27. 10.1097/00008571-199206000-00003.CrossRefPubMed Butler MA, Lang NP, Young JF, Caporaso NE, Vineis P, Hayes RB, Teitel CH, Massengill JP, Lawsen MF, Kadlubar FF: Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics. 1992, 2: 116-27. 10.1097/00008571-199206000-00003.CrossRefPubMed
72.
Zurück zum Zitat Nakajima M, Yokoi T, Mizutani M, Shin S, Kadlubar FF, Kamataki T: Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: absence of mutation prescribing the phenotype in the CYP1A2 gene. Cancer Epidemiol Biomarkers Prev. 1994, 3: 413-21.PubMed Nakajima M, Yokoi T, Mizutani M, Shin S, Kadlubar FF, Kamataki T: Phenotyping of CYP1A2 in Japanese population by analysis of caffeine urinary metabolites: absence of mutation prescribing the phenotype in the CYP1A2 gene. Cancer Epidemiol Biomarkers Prev. 1994, 3: 413-21.PubMed
74.
Zurück zum Zitat Kassie F, Parzefall W, Knasmuller S: Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res. 2000, 463: 13-31. 10.1016/S1383-5742(00)00041-7.CrossRefPubMed Kassie F, Parzefall W, Knasmuller S: Single cell gel electrophoresis assay: a new technique for human biomonitoring studies. Mutat Res. 2000, 463: 13-31. 10.1016/S1383-5742(00)00041-7.CrossRefPubMed
75.
Zurück zum Zitat Vineis P, Husgafvel-Pursiainen K: Air pollution and cancer: biomarker studies in human populations. Carcinogenesis. 2005, 26: 1846-55. 10.1093/carcin/bgi216.CrossRefPubMed Vineis P, Husgafvel-Pursiainen K: Air pollution and cancer: biomarker studies in human populations. Carcinogenesis. 2005, 26: 1846-55. 10.1093/carcin/bgi216.CrossRefPubMed
76.
Zurück zum Zitat Godschalk RW, Van Schooten FJ, Bartsch H: A critical evaluation of DNA adducts as biological markers for human exposure to polycyclic aromatic compounds. Biochem Mol Biol. 2003, 36: 1-11.CrossRef Godschalk RW, Van Schooten FJ, Bartsch H: A critical evaluation of DNA adducts as biological markers for human exposure to polycyclic aromatic compounds. Biochem Mol Biol. 2003, 36: 1-11.CrossRef
77.
Zurück zum Zitat Phillips DH, Hewer A, Arlt VM: 32P-postlabeling analysis of DNA adducts. Methods Mol Biol. 2005, 291: 3-12.PubMed Phillips DH, Hewer A, Arlt VM: 32P-postlabeling analysis of DNA adducts. Methods Mol Biol. 2005, 291: 3-12.PubMed
78.
Zurück zum Zitat Sousa J, Nath J, Tucker JD, Ong TM: Dietary factors affecting the urinary mutagenicity assay system. I. Detection of mutagenic activity in human urine following a fried beef meal. Mutat Res. 1985, 149: 365-74.CrossRefPubMed Sousa J, Nath J, Tucker JD, Ong TM: Dietary factors affecting the urinary mutagenicity assay system. I. Detection of mutagenic activity in human urine following a fried beef meal. Mutat Res. 1985, 149: 365-74.CrossRefPubMed
Metadaten
Titel
Biomonitoring of complex occupational exposures to carcinogens: The case of sewage workers in Paris
verfasst von
Hamzeh Al Zabadi
Luc Ferrari
Anne-Marie Laurent
Aziz Tiberguent
Christophe Paris
Denis Zmirou-Navier
Publikationsdatum
01.12.2008
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2008
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-8-67

Weitere Artikel der Ausgabe 1/2008

BMC Cancer 1/2008 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.