Skip to main content
Erschienen in: World Journal of Surgical Oncology 1/2014

Open Access 01.12.2014 | Research

Both radical prostatectomy following treatment with neoadjuvant LHRH agonist and estramustine and radiotherapy following treatment with neoadjuvant hormonal therapy achieved favorable oncological outcome in high-risk prostate cancer: a propensity-score matching analysis

verfasst von: Takuya Koie, Chikara Ohyama, Hayato Yamamoto, Atsushi Imai, Shingo Hatakeyama, Takahiro Yoneyama, Yasuhiro Hashimoto, Tohru Yoneyama, Yuki Tobisawa, Masahiko Aoki, Yoshihiro Takai

Erschienen in: World Journal of Surgical Oncology | Ausgabe 1/2014

Abstract

Background

To date, the different treatment modalities for high-risk prostate cancer (Pca) have not been compared in any sufficiently large-scale, prospective, randomized clinical trial. We used propensity-score matching analysis to compare the oncological outcomes of high-risk prostate cancer between patients treated with radical prostatectomy (RP) and those treated with radiation therapy (RT).

Methods

We studied 216 patients who received neoadjuvant therapy followed by RP (RP cohort) and 81 patients who received neoadjuvant androgen-deprivation therapy (ADT) followed by RT (RT cohort). The RP cohort received a luteinizing hormone-releasing hormone agonist and estramustine phosphate (280 mg/day) for 6 months prior to RP. The RT cohort received ADT for at least 6 months prior to RT using a 3-dimensional conformal radiotherapy technique. The total radiation dose was 70 to 76 Gy administered at 2 Gy/fraction.

Results

Propensity-score matching identified 78 matched pairs of patients. The 3-year overall survival rates were 98.3% and 92.1% in the RP and RT groups, respectively (P = 0.156). The 3-year biochemical recurrence-free survival rates were 86.4% and 89.4% in the RP and RT groups, respectively (P = 0.878).

Conclusions

Our study findings may suggest almost identical cancer control of RP and RT with appropriate neoadjuvant therapy in high-risk Pca. Therefore, issues of health-related quality of life may have an important impact on decision making in treatment of high-risk Pca.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7819-12-134) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TK wrote the manuscript. HY, AI, SH, TY and MA performed clinical follow-up examinations and contributed to the manuscript. YH reviewed the pathological specimens. YT, TY and YT contributed to manuscript drafting. CO was responsible for the concept, design, data interpretation, and critical revision of the manuscript. All authors read and approved the final version of the manuscript.
Abkürzungen
ADT
androgen-deprivation therapy
BRFS
biochemical recurrence-free survival
EBRT
external beam-radiation therapy
LHRH + EMP
luteinizing hormone-releasing hormone agonist and estramustine phosphate
OS
overall survival
Pca
prostate cancer
PSA
prostate-specific antigen
RP
radical prostatectomy
RT
radiation therapy
3D-CRT
3-dimensional conformal radiotherapy.

Background

Individuals with prostate-specific antigen (PSA) levels of ≥20 ng/mL, Gleason scores of ≥8, or clinical stage T2c/T3 tumors are defined as high-risk prostate cancer (Pca) patients[1]. Treatment options for high-risk Pca include external beam-radiation therapy (EBRT) with androgen-deprivation therapy (ADT); trimodal therapy with a combination of brachytherapy, EBRT, and ADT; and radical prostatectomy (RP) with neoadjuvant or adjuvant therapy. To date, no sufficiently large-scale, prospective, randomized clinical trials have compared the abovementioned treatment options. Thus, optimal management strategies for high-risk Pca patients have not been established. Previous studies comparing RP and EBRT were difficult to interpret because of biased treatment selection criteria, incomplete follow-up data, varied treatment protocols, and reliance on surrogate endpoints[2]. Above all, several studies comparing Pca treatment options have either overlooked medical comorbidities, because of lack of relevant information[3], or have attempted to control for measured comorbidities using statistical methods[4, 5].
Therefore, we aimed to evaluate the overall survival (OS) and the biochemical recurrence-free survival (BRFS) rates of high-risk Pca patients who underwent either RP or EBRT using propensity-score matching analyses to adjust for treatment selection bias.

Methods

Patient selection

We conducted a retrospective chart review of 329 consecutive high-risk Pca patients treated at our institution between July 2004 and July 2012. Thirty-two patients who underwent only RP were excluded. We selected 216 patients who received neoadjuvant therapy followed by RP (the RP cohort) and 81 patients who received neoadjuvant ADT followed by EBRT (the RT cohort). The study protocol and informed consent documents was reviewed and approved by the Hirosaki University institutional review board.

Treatment

A single pathologist reviewed the diagnostic biopsy specimens and surgical specimens. We have previously reported the active effect of luteinizing hormone-releasing hormone (LHRH) plus low-dose estramustine phosphate (EMP; LHRH + EMP) for high-risk Pca patients[6]. Patients in the RP cohort received LHRH (leuprolide (11.25 mg) or goserelin acetate (10.8 mg) every 3 months) and EMP (280 mg/day) for 6 months prior to RP[6]. Retropubic RP was performed as previously described in detail[7]. All patients in the RP cohort underwent the same lymphadenectomy procedure, which included removal of the bilateral obturator lymph nodes.
RT patients received ADT (LHRH and an antiandrogen) for at least 6 months prior to receiving EBRT. All patients were treated using a 3-dimensional conformal radiotherapy (3D-CRT) technique. The clinical target volume included the entire prostate and the bases of the seminal vesicles. A safety margin of 10 mm was added in all directions except posteriorly, where a 6-mm margin was added, to create the planning target volume. The total radiation dose was 70 to 76 Gy delivered in 2 Gy/fraction at 5 fractions/week.

Follow-up evaluations

All patients were followed up by assessing serum PSA and testosterone levels every 3 months for 5 years and every 6 months thereafter. Pretreatment serum PSA levels were measured within 1 month of RP or EBRT administration. No patient was lost to follow-up in this study.
For RP-treated patients, disease recurrence or PSA failure was defined as serum PSA levels exceeding 0.2 ng/mL. If PSA levels did not decrease to less than 0.2 ng/mL after surgery, the date of RP was defined as the date of disease recurrence. For EBRT-treated patients, PSA failure was defined according to the 2006 consensus statement by the American Society of Therapeutic Radiation and Oncology[8]. PSA levels rising by 2 ng/mL or more above the nadir PSA levels is currently defined as biochemical failure after EBRT[8].

Statistical analysis

To reduce the effect of treatment selection bias and potential confounding factors, we performed propensity-score matching analysis[9]. Propensity scores were calculated for each patient using multivariate logistic regression analysis including the following covariates: age, pretreatment PSA levels, biopsy Gleason scores, and clinical tumor staging. Tumors were staged according to the 2002 Staging Manual by the American Joint Committee on Cancer Staging[10]. The Gleason scores for prostate biopsy cores and surgical specimens were determined according to the 2005 guidelines by the International Society of Urological Pathology[11]. The predicted values according to the regression model estimated the propensity of each patient for receiving RP or EBRT according to his/her baseline characteristics. The differences between the two groups were assessed by fitting a logistic regression model using treatment as the response variable and baseline characteristics as covariables. Data were analyzed using IBM SPSS Statistics 20 software (International Business Machines Corp., New York, USA). OS and BRFS rates were analyzed using the Kaplan- Meier estimator. The relationship between survival and subgroup classification was analyzed using the log- rank test. All P values were two-sided and the significance level was set at P <0.05.

Results

Patient characteristics

Propensity-score matching identified 78 matched pairs of patients. Table 1 shows the pretreatment clinical characteristics of the two groups. No differences were noted in age, initial PSA levels, biopsy Gleason scores, or clinical T staging between the two groups. The median follow-up periods of the RP- and EBRT-treated patients were not significantly different.
Table 1
Pretreatment clinical characteristics categorized according to treatment administered to 156 patients with high-risk prostate cancer, adjusted for propensity scores
Pretreatment characteristics
Radiation therapy (N = 78)
Radical prostatectomy (N = 78)
P
Age (year, median)
73.5
71
0.0633a
Initial prostate-specific antigen level (ng/mL, median)
21.42
20.00
0.3886
Clinical T stage
   
T1c
19
22
0.8482
T2
23
19
T3
36
37
 
Biopsy Gleason score
   
≤6
5
4
0.9384
7
24
23
≥8
49
51
 
Follow-up period (month, median)
37.6
31.5
0.3338
aP values indicate statistical significance.
In the RT cohort, the median duration of ADT prior to receiving RT was 12 months (interquartile range: 9 to 16 months). Fifty-four patients (69%) received RT at a dose of 70 Gy, and 24 patients (31%) received RT at a dose of 74 Gy.

Pathological outcomes in the radical prostatectomy cohort

All patients in the RP cohort were evaluated for pathological response. Regarding the pathological T stage, 5%, 59%, and 36% of patients had pT0, pT2, and pT3 tumors, respectively. Seven patients (9%) had positive surgical margins in the surgical specimens. None of the patients had received adjuvant therapy, including ADT or RT.

Oncological outcomes

The 3-year OS rates were 98.3% and 92.1% for the RP and RT cohorts, respectively (P = 0.156; Figure 1). At the time of analysis, 5 RT patients had died. The causes of death were prostate cancer, colorectal cancer, hepatocellular carcinoma, cerebral hemorrhage, and chronic heart failure. One patient from the RP cohort committed suicide. The 3-year BRFS rates were 86.4% and 89.4% in the RP and RT cohorts, respectively (P = 0.878; Figure 2). At the time of analysis, PSA failure had occurred in 11 RT and 9 RP patients. These patients did not show clinical recurrence except for 1 RT-treated patient. In the RP cohort, the 3-year BRFS rate was 89.9% (95% confidence interval (CI): 66.5 to 77.7) in patients who achieved pathological T0/T2 status, and 78.1% (95% CI: 45.4 to 73.9) in those with T3 status (P = 0.018).

Discussion

To our knowledge, the efficacies of EBRT and RP in terms of biochemical outcomes, particularly in high-risk Pca patients, have not been compared in randomized controlled trials; therefore, reliance on observational data has become mandatory. A comparative analysis of studies involving prostate cancer treated with various modalities was conducted by the Prostate Cancer Results Study Group. The analysis, authored by Grimm et al., provides some insight into the relative effectiveness of surgery and RT for high-risk disease[12]. Combination therapies involving RT and brachytherapy plus or minus ADT appear superior to more localized treatments such as RP alone or RT alone[12]. In the present study, OS and PSA outcomes following RP or 3D-CRT were compared among high-risk Pca patients who were matched for pretreatment predictors.
We administered neoadjuvant LHRH + EMP followed by RP to high-risk Pca patients. Among high-risk Pca patients, reported rates of PSA-free survival after RP alone was 35 to 62%[13, 14]. Furthermore, neoadjuvant hormone therapy before RP reduces the rate of positive surgical margins, potentially resulting in pathologic complete responses. However, neoadjuvant ADT has not been shown to be beneficial for patient outcomes, especially in terms of PSA-free survival, in randomized trials[15]. Long-term administration of low-dose EMP may have a positive impact on the PSA-free survival rate; the PSA-free survival rate was 86.4% in our study, which was higher than the values reported by several other clinical trial[1315].
In EBRT-treated high-risk Pca patients, an RT dose of 70 Gy may be inadequate to eradicate the disease completely. Support for this hypothesis came from a randomized dose escalation trial (78 Gy versus 70 Gy)[16], in which a beneficial effect was noted for all patients in terms of the 5-year BRFS rate (78% versus 68%; P = 0.03), and particularly, in patients with a pretreatment PSA level of >10 to 20 ng/mL (72% versus 43%; P = 0.01). Patients with locally advanced Pca were found to experience favorable survival outcomes in a prospective randomized clinical trial when ADT was added to EBRT[17].
In fact, a more favorable outcome may be achieved with neoadjuvant LHRH + EMP and RP or 3D-CRT and ADT than RP or 3D-CRT alone in high-risk Pca patients. Our study findings may suggest almost identical cancer control by RP and RT with appropriate neoadjuvant therapy in high-risk Pca. On the other hand, it is interesting to note that benefits in terms of BRFS were not observed after treatment completion in the two groups in the present study. This observation may be attributable to the differing definition of PSA failure between RP- and EBRT-treated patients. PSA must reach the nadir value in patients treated with EBRT, and this can take 1 to 2 years or occasionally longer[18]. Conversely, almost all RP-treated patients will achieve the nadir PSA value within 1 to 2 months or sooner after therapy. Therefore, clinically meaningful and reliable results require longer follow-up periods.
Finally, the current study was not performed as a non-inferiority study to compare the efficacy of RP with the RT in patients with high-risk Pca. Our findings were limited by the retrospective nature of our study and the relatively small study sample size. The RP patients received neoadjuvant LHRH + EMP, and RT patients received neoadjuvant LHRH and antiandrogen. Propensity-score analysis is a method used to reduce bias in observational studies and matching was limited to available variables. Additionally, other factors such as quality of life, continence, and erectile function, which also affect treatment decisions, were not evaluated in our study. Therefore, issues of health-related quality of life may have an important impact on decision making of treatment in high-risk prostate cancer. However, our study results may assist in decision-making for managing high-risk Pca patients because prospective randomized clinical trial data are lacking. Future clinical trials are warranted.

Conclusions

Our study findings may suggest almost identical cancer control of RP and RT with appropriate neoadjuvant therapy in high-risk Pca. Therefore, issues of health-related quality of life may have an important impact on decision making in treatment of high-risk Pca.

Acknowledgements

No funding was received for the present study.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​ ) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

TK wrote the manuscript. HY, AI, SH, TY and MA performed clinical follow-up examinations and contributed to the manuscript. YH reviewed the pathological specimens. YT, TY and YT contributed to manuscript drafting. CO was responsible for the concept, design, data interpretation, and critical revision of the manuscript. All authors read and approved the final version of the manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Lester-Coll NH, Goldhaber SZ, Sher DJ, D’Amico AV: Death from high-risk prostate cancer versus cardiovascular mortality with hormone therapy. Cancer. 2013, 119: 1808-1815. 10.1002/cncr.27980.CrossRefPubMed Lester-Coll NH, Goldhaber SZ, Sher DJ, D’Amico AV: Death from high-risk prostate cancer versus cardiovascular mortality with hormone therapy. Cancer. 2013, 119: 1808-1815. 10.1002/cncr.27980.CrossRefPubMed
2.
Zurück zum Zitat Hoffman RM, Koyama T, Kang-Hsien F, Albertsen PC, Barry MJ, Goodman M, Hamilton AS, Potosky AL, Stanford JL, Stroup AM, Penson DF: Mortality after radical prostatectomy or external beam radiotherapy for localized prostate cancer. J Natl Cancer Inst. 2013, 105: 711-718. 10.1093/jnci/djt059.PubMedCentralCrossRefPubMed Hoffman RM, Koyama T, Kang-Hsien F, Albertsen PC, Barry MJ, Goodman M, Hamilton AS, Potosky AL, Stanford JL, Stroup AM, Penson DF: Mortality after radical prostatectomy or external beam radiotherapy for localized prostate cancer. J Natl Cancer Inst. 2013, 105: 711-718. 10.1093/jnci/djt059.PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Abdollah F, Sun M, Thuret R, Jeldres C, Tian Z, Briganti A, Shariat SF, Perrotte P, Rigatti P, Montorsi F, Karakiewicz PI: A competing-risks analysis of survival after alternative treatment modalities for prostate cancer patients: 1988-2006. Eur Urol. 2011, 59: 88-95. 10.1016/j.eururo.2010.10.003.CrossRefPubMed Abdollah F, Sun M, Thuret R, Jeldres C, Tian Z, Briganti A, Shariat SF, Perrotte P, Rigatti P, Montorsi F, Karakiewicz PI: A competing-risks analysis of survival after alternative treatment modalities for prostate cancer patients: 1988-2006. Eur Urol. 2011, 59: 88-95. 10.1016/j.eururo.2010.10.003.CrossRefPubMed
4.
Zurück zum Zitat Abdollah F, Schmitges J, Sun M, Jeldres C, Tian Z, Briganti A, Shariat SF, Perrotte P, Montorsi F, Karakiewicz PI: Comparison of mortality outcomes after radical prostatectomy versus radiotherapy in patients with localized prostate cancer: a population-based analysis. Int J Urol. 2012, 19: 836-844. 10.1111/j.1442-2042.2012.03052.x.CrossRefPubMed Abdollah F, Schmitges J, Sun M, Jeldres C, Tian Z, Briganti A, Shariat SF, Perrotte P, Montorsi F, Karakiewicz PI: Comparison of mortality outcomes after radical prostatectomy versus radiotherapy in patients with localized prostate cancer: a population-based analysis. Int J Urol. 2012, 19: 836-844. 10.1111/j.1442-2042.2012.03052.x.CrossRefPubMed
5.
Zurück zum Zitat Kibel AS, Ciezki JP, Klein EA, Reddy CA, Lubahn JD, Haslag-Minoff J, Deasy JO, Michalski JM, Kallogjeri D, Piccirillo JF, Rabah DM, Yu C, Kattan MW, Stephenson AJ: Survival among men with clinically localized prostate cancer treated with radical prostatectomy or radiation therapy in the prostate specific antigen era. J Urol. 2012, 187: 1259-1265. 10.1016/j.juro.2011.11.084.CrossRefPubMed Kibel AS, Ciezki JP, Klein EA, Reddy CA, Lubahn JD, Haslag-Minoff J, Deasy JO, Michalski JM, Kallogjeri D, Piccirillo JF, Rabah DM, Yu C, Kattan MW, Stephenson AJ: Survival among men with clinically localized prostate cancer treated with radical prostatectomy or radiation therapy in the prostate specific antigen era. J Urol. 2012, 187: 1259-1265. 10.1016/j.juro.2011.11.084.CrossRefPubMed
6.
Zurück zum Zitat Koie T, Ohyama C, Yamamoto H, Hatakeyama S, Yoneyama T, Hashimoto Y, Kamimura N: Safety and effectiveness of neoadjuvant luteinizing hormone-releasing hormone agonist plus low-dose estramustine phosphate in high-risk prostate cancer: a prospective single-arm study. Prostate Cancer Prostatic Dis. 2012, 15: 397-401. 10.1038/pcan.2012.29.CrossRefPubMed Koie T, Ohyama C, Yamamoto H, Hatakeyama S, Yoneyama T, Hashimoto Y, Kamimura N: Safety and effectiveness of neoadjuvant luteinizing hormone-releasing hormone agonist plus low-dose estramustine phosphate in high-risk prostate cancer: a prospective single-arm study. Prostate Cancer Prostatic Dis. 2012, 15: 397-401. 10.1038/pcan.2012.29.CrossRefPubMed
7.
Zurück zum Zitat Koie T, Yamamoto H, Hatakeyama S, Kudoh S, Yoneyama T, Hashimoto Y, Kamimura N, Ohyama C: Minimum incision endoscopic radical prostatectomy: clinical and oncological outcomes at a single institute. Eur J Surg Oncol. 2011, 37: 805-810. 10.1016/j.ejso.2011.06.009.CrossRefPubMed Koie T, Yamamoto H, Hatakeyama S, Kudoh S, Yoneyama T, Hashimoto Y, Kamimura N, Ohyama C: Minimum incision endoscopic radical prostatectomy: clinical and oncological outcomes at a single institute. Eur J Surg Oncol. 2011, 37: 805-810. 10.1016/j.ejso.2011.06.009.CrossRefPubMed
8.
Zurück zum Zitat Roach M, Hanks G, Thames H, Schellhammer P, Shipley WU, Sokol GH, Sandler H: Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix consensus conference. Int J Radiat Oncol Biol Phys. 2006, 65: 965-974. 10.1016/j.ijrobp.2006.04.029.CrossRefPubMed Roach M, Hanks G, Thames H, Schellhammer P, Shipley WU, Sokol GH, Sandler H: Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix consensus conference. Int J Radiat Oncol Biol Phys. 2006, 65: 965-974. 10.1016/j.ijrobp.2006.04.029.CrossRefPubMed
9.
Zurück zum Zitat Rubin DB, Thomas N: Matching estimated propensity scores: relating theory to practice. Biometrics. 1996, 52: 249-264. 10.2307/2533160.CrossRefPubMed Rubin DB, Thomas N: Matching estimated propensity scores: relating theory to practice. Biometrics. 1996, 52: 249-264. 10.2307/2533160.CrossRefPubMed
10.
Zurück zum Zitat AJCC cancer staging manual. Edited by: Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. 2010, New York: Springer, 7 AJCC cancer staging manual. Edited by: Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A. 2010, New York: Springer, 7
11.
Zurück zum Zitat Epstein JI, Allsbrook WC, Amin MB, Egevad LL, ISUP Grading Committee: The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005, 29: 1228-1242. 10.1097/01.pas.0000173646.99337.b1.CrossRefPubMed Epstein JI, Allsbrook WC, Amin MB, Egevad LL, ISUP Grading Committee: The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2005, 29: 1228-1242. 10.1097/01.pas.0000173646.99337.b1.CrossRefPubMed
12.
Zurück zum Zitat Grimm P, Billiet I, Bostwick D, Dicker AP, Frank S, Immerzeel J, Keyes M, Kupelian P, Lee WR, Machtens S, Mayadev J, Moran BJ, Merrick G, Millar J, Roach M, Stock R, Shinohara K, Scholz M, Weber E, Zietman A, Zelefsky M, Wong J, Wentworth S, Vera R, Langley S: Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy: results from the prostate cancer results study group. BJU Int. 2012, 109: 22-29.CrossRefPubMed Grimm P, Billiet I, Bostwick D, Dicker AP, Frank S, Immerzeel J, Keyes M, Kupelian P, Lee WR, Machtens S, Mayadev J, Moran BJ, Merrick G, Millar J, Roach M, Stock R, Shinohara K, Scholz M, Weber E, Zietman A, Zelefsky M, Wong J, Wentworth S, Vera R, Langley S: Comparative analysis of prostate-specific antigen free survival outcomes for patients with low, intermediate and high risk prostate cancer treatment by radical therapy: results from the prostate cancer results study group. BJU Int. 2012, 109: 22-29.CrossRefPubMed
13.
Zurück zum Zitat Walz J, Joniau S, Chun F, Isbarn H, Jeldres C, Yossepowitch O, Chao-Yu H, Klein EA, Scardino PT, Reuther A, Poppel HV, Graefen M, Huland H, Karakiewics PI: Pathological results and rate of treatment failure in high-risk prostate cancer patients after radical prostatectomy. BJU Int. 2010, 107: 765-770.CrossRefPubMed Walz J, Joniau S, Chun F, Isbarn H, Jeldres C, Yossepowitch O, Chao-Yu H, Klein EA, Scardino PT, Reuther A, Poppel HV, Graefen M, Huland H, Karakiewics PI: Pathological results and rate of treatment failure in high-risk prostate cancer patients after radical prostatectomy. BJU Int. 2010, 107: 765-770.CrossRefPubMed
14.
Zurück zum Zitat Xylinas E, Daché A, Rouprȇt M: Is radical prostatectomy a viable therapeutic option in clinically locally advanced [T3] prostate cancer?. BJU Int. 2010, 106: 1596-1600. 10.1111/j.1464-410X.2010.09630.x.CrossRefPubMed Xylinas E, Daché A, Rouprȇt M: Is radical prostatectomy a viable therapeutic option in clinically locally advanced [T3] prostate cancer?. BJU Int. 2010, 106: 1596-1600. 10.1111/j.1464-410X.2010.09630.x.CrossRefPubMed
15.
Zurück zum Zitat Soloway MS, Pareek K, Sharifi R, Wajsman Z, McLeod D, Wood DP, Puras-Baez A, Lupron Depot Neoadjuvant Prostate Cancer Study Group: Neoadjuvant androgen ablation before radical prostatectomy in cT2bNxM0 prostate cancer: 5-year results. J Urol. 2002, 167: 112-116. 10.1016/S0022-5347(05)65393-1.CrossRefPubMed Soloway MS, Pareek K, Sharifi R, Wajsman Z, McLeod D, Wood DP, Puras-Baez A, Lupron Depot Neoadjuvant Prostate Cancer Study Group: Neoadjuvant androgen ablation before radical prostatectomy in cT2bNxM0 prostate cancer: 5-year results. J Urol. 2002, 167: 112-116. 10.1016/S0022-5347(05)65393-1.CrossRefPubMed
16.
Zurück zum Zitat Pollack A, Zagars GK, Smith LG, Lee JJ, von Eschenbach AC, Antolak JA, Starkschall G, Rosen I: Preliminary results of a randomized radiotherapy dose-escalation study comparing 70 Gy with 78 Gy for prostate cancer. J Clin Oncol. 2000, 18: 3904-3911.PubMed Pollack A, Zagars GK, Smith LG, Lee JJ, von Eschenbach AC, Antolak JA, Starkschall G, Rosen I: Preliminary results of a randomized radiotherapy dose-escalation study comparing 70 Gy with 78 Gy for prostate cancer. J Clin Oncol. 2000, 18: 3904-3911.PubMed
17.
Zurück zum Zitat Bolla M, Gonsalez D, Warde P, Dubois JB, Mirimanoff RO, Storme G, Bernier J, Kuten A, Sternberg C, Gil T, Collette L, Pierart M: Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Eng J Med. 1997, 337: 295-300. 10.1056/NEJM199707313370502.CrossRef Bolla M, Gonsalez D, Warde P, Dubois JB, Mirimanoff RO, Storme G, Bernier J, Kuten A, Sternberg C, Gil T, Collette L, Pierart M: Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Eng J Med. 1997, 337: 295-300. 10.1056/NEJM199707313370502.CrossRef
18.
Zurück zum Zitat Lee WR, Hanlon AL, Hanks GE: Prostate specific antigen nadir following external beam radiation therapy for clinically localized prostate cancer: the relationship between nadir level and disease free survival. J Urol. 1996, 156: 450-453. 10.1016/S0022-5347(01)65876-2.CrossRefPubMed Lee WR, Hanlon AL, Hanks GE: Prostate specific antigen nadir following external beam radiation therapy for clinically localized prostate cancer: the relationship between nadir level and disease free survival. J Urol. 1996, 156: 450-453. 10.1016/S0022-5347(01)65876-2.CrossRefPubMed
Metadaten
Titel
Both radical prostatectomy following treatment with neoadjuvant LHRH agonist and estramustine and radiotherapy following treatment with neoadjuvant hormonal therapy achieved favorable oncological outcome in high-risk prostate cancer: a propensity-score matching analysis
verfasst von
Takuya Koie
Chikara Ohyama
Hayato Yamamoto
Atsushi Imai
Shingo Hatakeyama
Takahiro Yoneyama
Yasuhiro Hashimoto
Tohru Yoneyama
Yuki Tobisawa
Masahiko Aoki
Yoshihiro Takai
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
World Journal of Surgical Oncology / Ausgabe 1/2014
Elektronische ISSN: 1477-7819
DOI
https://doi.org/10.1186/1477-7819-12-134

Weitere Artikel der Ausgabe 1/2014

World Journal of Surgical Oncology 1/2014 Zur Ausgabe

Wie erfolgreich ist eine Re-Ablation nach Rezidiv?

23.04.2024 Ablationstherapie Nachrichten

Nach der Katheterablation von Vorhofflimmern kommt es bei etwa einem Drittel der Patienten zu Rezidiven, meist binnen eines Jahres. Wie sich spätere Rückfälle auf die Erfolgschancen einer erneuten Ablation auswirken, haben Schweizer Kardiologen erforscht.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Mehr Schaden als Nutzen durch präoperatives Aussetzen von GLP-1-Agonisten?

23.04.2024 Operationsvorbereitung Nachrichten

Derzeit wird empfohlen, eine Therapie mit GLP-1-Rezeptoragonisten präoperativ zu unterbrechen. Eine neue Studie nährt jedoch Zweifel an der Notwendigkeit der Maßnahme.

Ureterstriktur: Innovative OP-Technik bewährt sich

19.04.2024 EAU 2024 Kongressbericht

Die Ureterstriktur ist eine relativ seltene Komplikation, trotzdem bedarf sie einer differenzierten Versorgung. In komplexen Fällen wird dies durch die roboterassistierte OP-Technik gewährleistet. Erste Resultate ermutigen.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.