Skip to main content
Erschienen in: NeuroMolecular Medicine 2/2014

01.06.2014 | Original Paper

C-terminus of Human BKca Channel Alpha Subunit Enhances the Permeability of the Brain Endothelial Cells by Interacting with Caveolin-1 and Triggering Caveolin-1 Intracellular Trafficking

verfasst von: Yang Song, Ping Wang, Jun Ma, Yixue Xue

Erschienen in: NeuroMolecular Medicine | Ausgabe 2/2014

Einloggen, um Zugang zu erhalten

Abstract

The blood–tumor barrier (BTB) significantly limits the delivery of chemotherapeutic drugs to brain tumors. In this study, we found a significant increase in the permeability of BTB by mediating the association of the C-terminus of alpha subunit of human large-conductance calcium-activated potassium channels (hSlo1c) with caveolin-1 (Cav-1). We present evidence for the first time that hSlo1c associates with Cav-1 in human brain microvascular endothelial cells (HBMECs). A 57-amino acid (966–1022) fragment in hSlo1c was identified to be critical for hSlo1c/Cav-1 interaction. Activation of HBMECs transfected with fusion plasmids of pCMV–hSlo1c containing aa966–1022 by NS1619 selectively enhanced BTB permeability in a BTB model from the co-culture of HBMECs and U87 MG cells but not if the fusion plasmid lacks this fragment. This effect was attenuated by filipin, an agent disrupting caveolae or deletion of the potential interaction fragment, suggesting hSlo1c/Cav-1 association is crucial for regulating the permeability of BTB. Furthermore, we found that hSlo1c/Cav-1 association boosted Cav-1 transferring from the cell membrane to the cytoplasm of HBMECs. Our study indicates that cytoplasmic hSlo1c not only associates with Cav-1 but also has functional consequences on the permeability of BTB by triggering the intracellular trafficking of its interacting protein partner, Cav-1.
Literatur
Zurück zum Zitat Alioua, A., Lu, R., Kumar, Y., Eghbali, M., Kundu, P., Toro, L., et al. (2008). Slo1 caveolin-binding fragment, a mechanism of caveolin-1-Slo1 interaction regulating Slo1 surface expression. Journal of Biological Chemistry, 283, 4808–4817.PubMedCrossRef Alioua, A., Lu, R., Kumar, Y., Eghbali, M., Kundu, P., Toro, L., et al. (2008). Slo1 caveolin-binding fragment, a mechanism of caveolin-1-Slo1 interaction regulating Slo1 surface expression. Journal of Biological Chemistry, 283, 4808–4817.PubMedCrossRef
Zurück zum Zitat Black, K. L., & Ningaraj, N. S. (2004). Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control, 11, 165–173.PubMed Black, K. L., & Ningaraj, N. S. (2004). Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor. Cancer Control, 11, 165–173.PubMed
Zurück zum Zitat Black, K. L., et al. (2008). Different effects of KCa and KATP agonists on brain tumor permeability between syngeneic and allogeneic rat models. Brain Research, 1227, 198–206.PubMedCentralPubMedCrossRef Black, K. L., et al. (2008). Different effects of KCa and KATP agonists on brain tumor permeability between syngeneic and allogeneic rat models. Brain Research, 1227, 198–206.PubMedCentralPubMedCrossRef
Zurück zum Zitat Brainard, A. M., Korovkina, V. P., & England, S. K. (2009). Disruption of the maxi-K-caveolin-1 interaction alters current expression in human myometrial cells. Reproductive Biology and Endocrinology, 7, 131.PubMedCentralPubMedCrossRef Brainard, A. M., Korovkina, V. P., & England, S. K. (2009). Disruption of the maxi-K-caveolin-1 interaction alters current expression in human myometrial cells. Reproductive Biology and Endocrinology, 7, 131.PubMedCentralPubMedCrossRef
Zurück zum Zitat Brainard, A. M., Miller, A. J., Martens, J. R., & England, S. K. (2005). Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. American Journal of Physiology-Cell Physiology, 289, C49–C57.PubMedCrossRef Brainard, A. M., Miller, A. J., Martens, J. R., & England, S. K. (2005). Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. American Journal of Physiology-Cell Physiology, 289, C49–C57.PubMedCrossRef
Zurück zum Zitat Cheng, X., & Jaggar, J. H. (2006). Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells. American Journal of Physiology-Heart and Circulatory Physiology, 290, H2309–H2319.PubMedCentralPubMedCrossRef Cheng, X., & Jaggar, J. H. (2006). Genetic ablation of caveolin-1 modifies Ca2+ spark coupling in murine arterial smooth muscle cells. American Journal of Physiology-Heart and Circulatory Physiology, 290, H2309–H2319.PubMedCentralPubMedCrossRef
Zurück zum Zitat Cornford, E. M., & Hyman, S. (2005). Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx, 2, 27–43.PubMedCentralPubMedCrossRef Cornford, E. M., & Hyman, S. (2005). Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx, 2, 27–43.PubMedCentralPubMedCrossRef
Zurück zum Zitat Côté, J., et al. (2012). Induction of selective blood–tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS One, 7, e37485.PubMedCentralPubMedCrossRef Côté, J., et al. (2012). Induction of selective blood–tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS One, 7, e37485.PubMedCentralPubMedCrossRef
Zurück zum Zitat Daniel, E. E., Jury, J., & Wang, Y. F. (2001). nNOS in canine lower esophageal sphincter: colocalized with Cav-1 and Ca2 + -handling proteins? American Journal of Physiology-Gastrointestinal and Liver Physiology, 281, G1101–G1114.PubMed Daniel, E. E., Jury, J., & Wang, Y. F. (2001). nNOS in canine lower esophageal sphincter: colocalized with Cav-1 and Ca2 + -handling proteins? American Journal of Physiology-Gastrointestinal and Liver Physiology, 281, G1101–G1114.PubMed
Zurück zum Zitat Dunn, I. F., Heese, O., & Black, P. M. (2000). Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. Journal of Neuro-oncology, 50, 121–137.PubMedCrossRef Dunn, I. F., Heese, O., & Black, P. M. (2000). Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. Journal of Neuro-oncology, 50, 121–137.PubMedCrossRef
Zurück zum Zitat Frank, P. G., Woodman, S. E., Park, D. S., & Lisanti, M. P. (2003). Caveolin, caveolae, and endothelial cell function. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1161–1168.PubMedCrossRef Frank, P. G., Woodman, S. E., Park, D. S., & Lisanti, M. P. (2003). Caveolin, caveolae, and endothelial cell function. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1161–1168.PubMedCrossRef
Zurück zum Zitat Gu, Y. T., Xue, Y. X., Wang, Y. F., Wang, J. H., ShangGuan, Q. R., Zhang, J. X., et al. (2012). Role of ROS/RhoA/PI3 K/PKB signaling in NS1619-mediated blood–tumor barrier permeability increase. Journal of Molecular Neuroscience, 48, 302–312.PubMedCrossRef Gu, Y. T., Xue, Y. X., Wang, Y. F., Wang, J. H., ShangGuan, Q. R., Zhang, J. X., et al. (2012). Role of ROS/RhoA/PI3 K/PKB signaling in NS1619-mediated blood–tumor barrier permeability increase. Journal of Molecular Neuroscience, 48, 302–312.PubMedCrossRef
Zurück zum Zitat Hu, J., et al. (2007). Calcium-activated potassium channels mediated blood–brain tumor barrier opening in a rat metastatic brain tumor model. Molecular Cancer, 6, 22.PubMedCentralPubMedCrossRef Hu, J., et al. (2007). Calcium-activated potassium channels mediated blood–brain tumor barrier opening in a rat metastatic brain tumor model. Molecular Cancer, 6, 22.PubMedCentralPubMedCrossRef
Zurück zum Zitat Lam, R. S., Shaw, A. R., & Duszyk, M. (2004). Membrane cholesterol content modulates activation of BK channels in colonic epithelia. Biochimica et Biophysica Acta, 1667, 241–248.PubMedCrossRef Lam, R. S., Shaw, A. R., & Duszyk, M. (2004). Membrane cholesterol content modulates activation of BK channels in colonic epithelia. Biochimica et Biophysica Acta, 1667, 241–248.PubMedCrossRef
Zurück zum Zitat Liu, L. B., Xue, Y. X., & Liu, Y. H. (2010). Bradykinin increases the permeability of the blood–tumor barrier by the caveolae-mediated transcellular pathway. Journal of Neuro-oncology, 99, 187–194.PubMedCrossRef Liu, L. B., Xue, Y. X., & Liu, Y. H. (2010). Bradykinin increases the permeability of the blood–tumor barrier by the caveolae-mediated transcellular pathway. Journal of Neuro-oncology, 99, 187–194.PubMedCrossRef
Zurück zum Zitat Matveev, S., Li, X., Everson, W., & Smart, E. J. (2001). The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Advanced Drug Delivery Reviews, 49, 237–250.PubMedCrossRef Matveev, S., Li, X., Everson, W., & Smart, E. J. (2001). The role of caveolae and caveolin in vesicle-dependent and vesicle-independent trafficking. Advanced Drug Delivery Reviews, 49, 237–250.PubMedCrossRef
Zurück zum Zitat Meera, P., Wallner, M., Song, M., & Toro, L. (1997). Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proceedings of the National Academy of Sciences of the United States of America, 94, 14066–14071.PubMedCentralPubMedCrossRef Meera, P., Wallner, M., Song, M., & Toro, L. (1997). Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proceedings of the National Academy of Sciences of the United States of America, 94, 14066–14071.PubMedCentralPubMedCrossRef
Zurück zum Zitat Ningaraj, N. S., Rao, M., Hashizume, K., Asotra, K., & Black, K. L. (2002). Regulation of blood–brain tumor barrier permeability by calcium-activated potassium channels. Journal of Pharmacology and Experimental Therapeutics, 301, 838–851.PubMedCrossRef Ningaraj, N. S., Rao, M., Hashizume, K., Asotra, K., & Black, K. L. (2002). Regulation of blood–brain tumor barrier permeability by calcium-activated potassium channels. Journal of Pharmacology and Experimental Therapeutics, 301, 838–851.PubMedCrossRef
Zurück zum Zitat Park, E. J., Zhang, Y. Z., Vykhodtseva, N., & McDannold, N. (2012). Ultrasound-mediated blood–brain/blood–tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. Journal of Controlled Release, 163, 277–284.PubMedCentralPubMedCrossRef Park, E. J., Zhang, Y. Z., Vykhodtseva, N., & McDannold, N. (2012). Ultrasound-mediated blood–brain/blood–tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. Journal of Controlled Release, 163, 277–284.PubMedCentralPubMedCrossRef
Zurück zum Zitat Predescu, D., Vogel, S. M., & Malik, A. B. (2004). Functional and morphological studies of protein transcytosis in continuous endothelia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 287, L895–L901.PubMedCrossRef Predescu, D., Vogel, S. M., & Malik, A. B. (2004). Functional and morphological studies of protein transcytosis in continuous endothelia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 287, L895–L901.PubMedCrossRef
Zurück zum Zitat Proescholdt, M. A., Heiss, J. D., Walbridge, S., Mühlhauser, J., Capogrossi, M. C., Oldfield, E. H., et al. (1999). Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. Journal of Neuropathology and Experimental Neurology, 58, 613–627.PubMedCrossRef Proescholdt, M. A., Heiss, J. D., Walbridge, S., Mühlhauser, J., Capogrossi, M. C., Oldfield, E. H., et al. (1999). Vascular endothelial growth factor (VEGF) modulates vascular permeability and inflammation in rat brain. Journal of Neuropathology and Experimental Neurology, 58, 613–627.PubMedCrossRef
Zurück zum Zitat Qin, L. J., Gu, Y. T., Zhang, H., & Xue, Y. X. (2009). Bradykinin-induced blood–tumor barrier opening is mediated by tumor necrosis factor-alpha. Neuroscience Letters, 450, 172–175.PubMedCrossRef Qin, L. J., Gu, Y. T., Zhang, H., & Xue, Y. X. (2009). Bradykinin-induced blood–tumor barrier opening is mediated by tumor necrosis factor-alpha. Neuroscience Letters, 450, 172–175.PubMedCrossRef
Zurück zum Zitat Salkoff, L., Butler, A., Ferreira, G., Santi, C., & Wei, A. (2006). High-conductance potassium channels of the SLO family. Nature Reviews Neuroscience, 7, 921–931.PubMedCrossRef Salkoff, L., Butler, A., Ferreira, G., Santi, C., & Wei, A. (2006). High-conductance potassium channels of the SLO family. Nature Reviews Neuroscience, 7, 921–931.PubMedCrossRef
Zurück zum Zitat Sheikov, N., McDannold, N., Jolesz, F., Zhang, Y. Z., Tam, K., & Hynynen, K. (2006). Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood–brain barrier. Ultrasound in Medicine and Biology, 32, 1399–1409.PubMedCrossRef Sheikov, N., McDannold, N., Jolesz, F., Zhang, Y. Z., Tam, K., & Hynynen, K. (2006). Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood–brain barrier. Ultrasound in Medicine and Biology, 32, 1399–1409.PubMedCrossRef
Zurück zum Zitat Stewart, P. A., Hayakawa, K., & Farrell, C. L. (1994). Quantitation of blood–brain barrier ultrastructure. Microscopy Research and Technique, 27, 516–527.PubMedCrossRef Stewart, P. A., Hayakawa, K., & Farrell, C. L. (1994). Quantitation of blood–brain barrier ultrastructure. Microscopy Research and Technique, 27, 516–527.PubMedCrossRef
Zurück zum Zitat Terasaki, T., & Pardridge, W. M. (2000). Targeted drug delivery to the brain; (blood–brain barrier, efflux, endothelium, biological transport). Journal of Drug Targeting, 8, 353–355.PubMedCrossRef Terasaki, T., & Pardridge, W. M. (2000). Targeted drug delivery to the brain; (blood–brain barrier, efflux, endothelium, biological transport). Journal of Drug Targeting, 8, 353–355.PubMedCrossRef
Zurück zum Zitat Wallner, M., Meera, P., & Toro, L. (1996). Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: an additional transmembrane region at the N terminus. Proceedings of the National Academy of Sciences of the United States of America, 93, 14922–14927.PubMedCentralPubMedCrossRef Wallner, M., Meera, P., & Toro, L. (1996). Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: an additional transmembrane region at the N terminus. Proceedings of the National Academy of Sciences of the United States of America, 93, 14922–14927.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wang, X. L., Ye, D., Peterson, T. E., Cao, S., Shah, V. H., Katusic, Z. S., et al. (2005). Caveolae targeting and regulation of large conductance Ca(2+)-activated K+ channels in vascular endothelial cells. Journal of Biological Chemistry, 280, 11656–11664.PubMedCrossRef Wang, X. L., Ye, D., Peterson, T. E., Cao, S., Shah, V. H., Katusic, Z. S., et al. (2005). Caveolae targeting and regulation of large conductance Ca(2+)-activated K+ channels in vascular endothelial cells. Journal of Biological Chemistry, 280, 11656–11664.PubMedCrossRef
Zurück zum Zitat Weksler, B. B., et al. (2005). Blood–brain barrier-specific properties of a human adult brain endothelial cell line. The FASEB Journal, 19, 1872–1874. Weksler, B. B., et al. (2005). Blood–brain barrier-specific properties of a human adult brain endothelial cell line. The FASEB Journal, 19, 1872–1874.
Zurück zum Zitat Weyerbrock, A., Walbridge, S., Saavedra, J. E., Keefer, L. K., & Oldfield, E. H. (2011). Differential effects of nitric oxide on blood–brain barrier integrity and cerebral blood flow in intracerebral C6 gliomas. Neuro-oncology, 13, 203–211.PubMedCentralPubMedCrossRef Weyerbrock, A., Walbridge, S., Saavedra, J. E., Keefer, L. K., & Oldfield, E. H. (2011). Differential effects of nitric oxide on blood–brain barrier integrity and cerebral blood flow in intracerebral C6 gliomas. Neuro-oncology, 13, 203–211.PubMedCentralPubMedCrossRef
Zurück zum Zitat Xie, H., Xue, Y. X., Liu, L. B., & Liu, Y. H. (2010). Endothelial-monocyte-activating polypeptide II increases blood–tumor barrier permeability by down-regulating the expression levels of tight junction associated proteins. Brain Research, 1319, 13–20.PubMedCrossRef Xie, H., Xue, Y. X., Liu, L. B., & Liu, Y. H. (2010). Endothelial-monocyte-activating polypeptide II increases blood–tumor barrier permeability by down-regulating the expression levels of tight junction associated proteins. Brain Research, 1319, 13–20.PubMedCrossRef
Zurück zum Zitat Xie, H., Xue, Y. X., Liu, L. B., Liu, Y. H., & Wang, P. (2012). Role of RhoA/ROCK signaling in endothelial-monocyte-activating polypeptide II opening of the blood–tumor barrier: Role of RhoA/ROCK signaling in EMAP II opening of the BTB. Journal of Molecular Neuroscience, 46, 666–676.PubMedCrossRef Xie, H., Xue, Y. X., Liu, L. B., Liu, Y. H., & Wang, P. (2012). Role of RhoA/ROCK signaling in endothelial-monocyte-activating polypeptide II opening of the blood–tumor barrier: Role of RhoA/ROCK signaling in EMAP II opening of the BTB. Journal of Molecular Neuroscience, 46, 666–676.PubMedCrossRef
Zurück zum Zitat Yao, Y., Kubota, T., Sato, K., Kitai, R., Takeuchi, H., & Arishima, H. (2001). Prognostic value of vascular endothelial growth factor and its receptors Flt-1 and Flk-1 in astrocytic tumours. Acta Neurochirurgica, 143, 159–166.PubMedCrossRef Yao, Y., Kubota, T., Sato, K., Kitai, R., Takeuchi, H., & Arishima, H. (2001). Prognostic value of vascular endothelial growth factor and its receptors Flt-1 and Flk-1 in astrocytic tumours. Acta Neurochirurgica, 143, 159–166.PubMedCrossRef
Zurück zum Zitat Yuan, F., Chen, Y., Dellian, M., Safabakhsh, N., Ferrara, N., & Jain, R. K. (1996). Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proceedings of the National Academy of Sciences of the United States of America, 93, 14765–14770.PubMedCentralPubMedCrossRef Yuan, F., Chen, Y., Dellian, M., Safabakhsh, N., Ferrara, N., & Jain, R. K. (1996). Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proceedings of the National Academy of Sciences of the United States of America, 93, 14765–14770.PubMedCentralPubMedCrossRef
Zurück zum Zitat Zagzag, D., Miller, D. C., Sato, Y., Rifkin, D. B., & Burstein, D. E. (1990). Immunohistochemical localization of basic fibroblast growth factor in astrocytomas. Cancer Research, 50, 7393–7398.PubMed Zagzag, D., Miller, D. C., Sato, Y., Rifkin, D. B., & Burstein, D. E. (1990). Immunohistochemical localization of basic fibroblast growth factor in astrocytomas. Cancer Research, 50, 7393–7398.PubMed
Zurück zum Zitat Zhao, L. N., Yang, Z. H., Liu, Y. H., Ying, H. Q., Zhang, H., & Xue, Y. X. (2011). Vascular endothelial growth factor increases permeability of the blood–tumor barrier via caveolae-mediated transcellular pathway. Journal of Molecular Neuroscience, 44, 122–129.PubMedCrossRef Zhao, L. N., Yang, Z. H., Liu, Y. H., Ying, H. Q., Zhang, H., & Xue, Y. X. (2011). Vascular endothelial growth factor increases permeability of the blood–tumor barrier via caveolae-mediated transcellular pathway. Journal of Molecular Neuroscience, 44, 122–129.PubMedCrossRef
Metadaten
Titel
C-terminus of Human BKca Channel Alpha Subunit Enhances the Permeability of the Brain Endothelial Cells by Interacting with Caveolin-1 and Triggering Caveolin-1 Intracellular Trafficking
verfasst von
Yang Song
Ping Wang
Jun Ma
Yixue Xue
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 2/2014
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-014-8300-3

Weitere Artikel der Ausgabe 2/2014

NeuroMolecular Medicine 2/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.