Skip to main content
Erschienen in: Journal of Gastrointestinal Cancer 3/2017

23.06.2017 | Review Article

Cancer Stem Cells in Hepatocellular Carcinoma

verfasst von: Tamer Yagci, Metin Cetin, Pelin Balcik Ercin

Erschienen in: Journal of Gastrointestinal Cancer | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Background

Hepatocellular carcinoma is one of the most common cancers and the second leading cause of cancer-related deaths worldwide. Only a small proportion of patients benefit from curative treatment and the prognosis is very poor for the majority of cases due to late presentation, resistance to chemotherapy and high recurrence rate. In recent years, progress in stem cell biology allowed us to explain that hierarchically organized cancer stem cells (CSCs) drive histological and functional heterogeneity of hematological malignancies and solid tumors.

Methods and Results

Also referred to as tumor-initiating cells, CSCs have been isolated from both hepatocellular carcinoma (HCC) cell lines and primary tumors by using hepatic progenitor markers. Although there is still no consensus on cancer stem cell phenotype in HCC, single or combined use of CSC markers defines a minor population of tumor cells with the capacity of self-renewing and the ability to recapitulate the original tumor heterogeneity.

Conclusions

This review focuses on the biological features of CSCs and their potential as diagnostic/prognostic tools and therapeutic targets in HCC.
Literatur
1.
Zurück zum Zitat Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.CrossRef Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.CrossRef
2.
Zurück zum Zitat Reya T, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.CrossRef Reya T, et al. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.CrossRef
3.
Zurück zum Zitat Soltysova A, Altanerova V, Altaner C. Cancer stem cells. Neoplasma. 2005;52(6):435. Soltysova A, Altanerova V, Altaner C. Cancer stem cells. Neoplasma. 2005;52(6):435.
4.
Zurück zum Zitat Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.CrossRef Visvader JE, Lindeman GJ. Cancer stem cells: current status and evolving complexities. Cell Stem Cell. 2012;10(6):717–28.CrossRef
5.
Zurück zum Zitat Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977;197(4302):461–3.CrossRef Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science. 1977;197(4302):461–3.CrossRef
6.
Zurück zum Zitat Dick D. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature med. 1997;3(730–737):1. Dick D. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature med. 1997;3(730–737):1.
7.
Zurück zum Zitat Al-Hajj M, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.CrossRef Al-Hajj M, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.CrossRef
8.
Zurück zum Zitat Dalerba P, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci. 2007;104(24):10158–63.CrossRef Dalerba P, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci. 2007;104(24):10158–63.CrossRef
9.
Zurück zum Zitat O’Brien CA, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.CrossRef O’Brien CA, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106–10.CrossRef
10.
Zurück zum Zitat Ricci-Vitiani L, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.CrossRef Ricci-Vitiani L, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.CrossRef
11.
Zurück zum Zitat Li C, et al. Identification of pancreatic cancer stem cells. Cancer res. 2007;67(3):1030–7.CrossRef Li C, et al. Identification of pancreatic cancer stem cells. Cancer res. 2007;67(3):1030–7.CrossRef
12.
Zurück zum Zitat Singh SK, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.CrossRef Singh SK, et al. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.CrossRef
13.
Zurück zum Zitat Bao S, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.CrossRef Bao S, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.CrossRef
14.
Zurück zum Zitat Piccirillo S, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444(7120):761–5.CrossRef Piccirillo S, et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature. 2006;444(7120):761–5.CrossRef
15.
Zurück zum Zitat Chiba T, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell–like properties. Hepatology. 2006;44(1):240–51.CrossRef Chiba T, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell–like properties. Hepatology. 2006;44(1):240–51.CrossRef
16.
Zurück zum Zitat Haraguchi N, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24(3):506–13.CrossRef Haraguchi N, et al. Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells. 2006;24(3):506–13.CrossRef
17.
Zurück zum Zitat Yang ZF, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13(2):153–66.CrossRef Yang ZF, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell. 2008;13(2):153–66.CrossRef
18.
Zurück zum Zitat Zhang S, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer res. 2008;68(11):4311–20.PubMedCentralCrossRef Zhang S, et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer res. 2008;68(11):4311–20.PubMedCentralCrossRef
19.
Zurück zum Zitat Curley MD, et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009;27(12):2875–83. Curley MD, et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009;27(12):2875–83.
20.
Zurück zum Zitat Sugihara E, Saya H. Complexity of cancer stem cells. Int J Cancer. 2013;132(6):1249–59.CrossRef Sugihara E, Saya H. Complexity of cancer stem cells. Int J Cancer. 2013;132(6):1249–59.CrossRef
21.
Zurück zum Zitat Clevers H. The cancer stem cell: premises, promises and challenges. Nat med. 2011:313–9.CrossRef Clevers H. The cancer stem cell: premises, promises and challenges. Nat med. 2011:313–9.CrossRef
22.
Zurück zum Zitat Zhou B-BS, et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat rev Drug Discov. 2009;8(10):806–23.CrossRef Zhou B-BS, et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat rev Drug Discov. 2009;8(10):806–23.CrossRef
23.
Zurück zum Zitat Patel P, Chen E. Cancer stem cells, tumor dormancy, and metastasis. Front Endocrinol. 2012;3:125.CrossRef Patel P, Chen E. Cancer stem cells, tumor dormancy, and metastasis. Front Endocrinol. 2012;3:125.CrossRef
24.
Zurück zum Zitat Mani SA, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.PubMedCentralCrossRef Mani SA, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.PubMedCentralCrossRef
25.
Zurück zum Zitat Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):4741–51.PubMedCentralCrossRef Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29(34):4741–51.PubMedCentralCrossRef
26.
Zurück zum Zitat Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRef Torre LA, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRef
27.
Zurück zum Zitat London W, McGlynn K. Liver cancer. Cancer Epidemiology and Prevention. 2006;3:763–86.CrossRef London W, McGlynn K. Liver cancer. Cancer Epidemiology and Prevention. 2006;3:763–86.CrossRef
28.
Zurück zum Zitat Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRef Jemal A, et al. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.CrossRef
29.
Zurück zum Zitat Yeh MM. Pathology of combined hepatocellular-cholangiocarcinoma. J Gastroenterol Hepatol. 2010;25(9):1485–92.CrossRef Yeh MM. Pathology of combined hepatocellular-cholangiocarcinoma. J Gastroenterol Hepatol. 2010;25(9):1485–92.CrossRef
30.
Zurück zum Zitat Ma S, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132(7):2542–56.CrossRef Ma S, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132(7):2542–56.CrossRef
31.
Zurück zum Zitat Suetsugu A, et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys res Commun. 2006;351(4):820–4.CrossRef Suetsugu A, et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys res Commun. 2006;351(4):820–4.CrossRef
32.
Zurück zum Zitat Yamashita T, et al. Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer res. 2007;67(22):10831–9.CrossRef Yamashita T, et al. Activation of hepatic stem cell marker EpCAM by Wnt–β-catenin signaling in hepatocellular carcinoma. Cancer res. 2007;67(22):10831–9.CrossRef
33.
34.
Zurück zum Zitat Zhang L, et al. The stem cell niche of human livers: symmetry between development and regeneration. Hepatology. 2008;48(5):1598–607.CrossRef Zhang L, et al. The stem cell niche of human livers: symmetry between development and regeneration. Hepatology. 2008;48(5):1598–607.CrossRef
35.
Zurück zum Zitat Tang Y, et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and IL-6 signaling. Proc Natl Acad Sci. 2008;105(7):2445–50.CrossRef Tang Y, et al. Progenitor/stem cells give rise to liver cancer due to aberrant TGF-β and IL-6 signaling. Proc Natl Acad Sci. 2008;105(7):2445–50.CrossRef
36.
Zurück zum Zitat Chen Y, et al. Mature hepatocytes exhibit unexpected plasticity by direct dedifferentiation into liver progenitor cells in culture. Hepatology. 2012;55(2):563–74.PubMedCentralCrossRef Chen Y, et al. Mature hepatocytes exhibit unexpected plasticity by direct dedifferentiation into liver progenitor cells in culture. Hepatology. 2012;55(2):563–74.PubMedCentralCrossRef
37.
Zurück zum Zitat Yin S, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120(7):1444–50.CrossRef Yin S, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120(7):1444–50.CrossRef
38.
Zurück zum Zitat Yang ZF, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology. 2008;47(3):919–28.CrossRef Yang ZF, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology. 2008;47(3):919–28.CrossRef
39.
Zurück zum Zitat Yamashita T, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136(3):1012–1024. e4.CrossRef Yamashita T, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136(3):1012–1024. e4.CrossRef
40.
41.
Zurück zum Zitat Yin AH, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12. Yin AH, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.
42.
Zurück zum Zitat Grosse-Gehling P, et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol. 2013;229(3):355–78.CrossRef Grosse-Gehling P, et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol. 2013;229(3):355–78.CrossRef
43.
Zurück zum Zitat Zheng Y-W, et al. The CD133+ CD44+ precancerous subpopulation of oval cells is a therapeutic target for hepatocellular carcinoma. Stem Cells dev. 2014;23(18):2237–49.PubMedCentralCrossRef Zheng Y-W, et al. The CD133+ CD44+ precancerous subpopulation of oval cells is a therapeutic target for hepatocellular carcinoma. Stem Cells dev. 2014;23(18):2237–49.PubMedCentralCrossRef
44.
Zurück zum Zitat Tang KH, et al. CD133+ liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology. 2012;55(3):807–20.CrossRef Tang KH, et al. CD133+ liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology. 2012;55(3):807–20.CrossRef
45.
Zurück zum Zitat Marhaba R, Zöller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004;35(3):211–31.CrossRef Marhaba R, Zöller M. CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol. 2004;35(3):211–31.CrossRef
46.
Zurück zum Zitat Afify A, Purnell P, Nguyen L. Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Exp Mol Pathol. 2009;86(2):95–100.CrossRef Afify A, Purnell P, Nguyen L. Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Exp Mol Pathol. 2009;86(2):95–100.CrossRef
47.
Zurück zum Zitat van der Windt GJ, et al. CD44 is protective during hyperoxia-induced lung injury. Am J Respir Cell Mol Biol. 2011;44(3):377–83.CrossRef van der Windt GJ, et al. CD44 is protective during hyperoxia-induced lung injury. Am J Respir Cell Mol Biol. 2011;44(3):377–83.CrossRef
48.
Zurück zum Zitat Zhu Z, et al. Cancer stem/progenitor cells are highly enriched in CD133+ CD44+ population in hepatocellular carcinoma. Int J Cancer. 2010;126(9):2067–78. Zhu Z, et al. Cancer stem/progenitor cells are highly enriched in CD133+ CD44+ population in hepatocellular carcinoma. Int J Cancer. 2010;126(9):2067–78.
49.
Zurück zum Zitat Reif AE, Allen JM. The AKR thymic antigen and its distribution in leukemias and nervous tissues. J Exp med. 1964;120(3):413–33.PubMedCentralCrossRef Reif AE, Allen JM. The AKR thymic antigen and its distribution in leukemias and nervous tissues. J Exp med. 1964;120(3):413–33.PubMedCentralCrossRef
50.
Zurück zum Zitat Mima K, et al. CD44s regulates the TGF-β–mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer res. 2012;72(13):3414–23.CrossRef Mima K, et al. CD44s regulates the TGF-β–mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer res. 2012;72(13):3414–23.CrossRef
51.
Zurück zum Zitat Ishimoto T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc− and thereby promotes tumor growth. Cancer Cell. 2011;19(3):387–400.CrossRef Ishimoto T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc− and thereby promotes tumor growth. Cancer Cell. 2011;19(3):387–400.CrossRef
52.
Zurück zum Zitat Lu J-W, et al. Overexpression of Thy1/CD90 in human hepatocellular carcinoma is associated with HBV infection and poor prognosis. Acta Histochem. 2011;113(8):833–8.CrossRef Lu J-W, et al. Overexpression of Thy1/CD90 in human hepatocellular carcinoma is associated with HBV infection and poor prognosis. Acta Histochem. 2011;113(8):833–8.CrossRef
53.
Zurück zum Zitat Went PT, et al. Frequent EpCam protein expression in human carcinomas. Hum Pathol. 2004;35(1):122–8.CrossRef Went PT, et al. Frequent EpCam protein expression in human carcinomas. Hum Pathol. 2004;35(1):122–8.CrossRef
54.
Zurück zum Zitat Kim JW, et al. Cancer-associated molecular signature in the tissue samples of patients with cirrhosis. Hepatology. 2004;39(2):518–27.CrossRef Kim JW, et al. Cancer-associated molecular signature in the tissue samples of patients with cirrhosis. Hepatology. 2004;39(2):518–27.CrossRef
55.
Zurück zum Zitat Yamashita T, et al. Discrete nature of EpCAM+ and CD90+ cancer stem cells in human hepatocellular carcinoma. Hepatology. 2013;57(4):1484–97.CrossRef Yamashita T, et al. Discrete nature of EpCAM+ and CD90+ cancer stem cells in human hepatocellular carcinoma. Hepatology. 2013;57(4):1484–97.CrossRef
56.
Zurück zum Zitat Kurtz J-E, Dufour P. Adecatumumab: an anti-EpCAM monoclonal antibody, from the bench to the bedside. Expert Opin Biol Ther. 2010;10(6):951–8.CrossRef Kurtz J-E, Dufour P. Adecatumumab: an anti-EpCAM monoclonal antibody, from the bench to the bedside. Expert Opin Biol Ther. 2010;10(6):951–8.CrossRef
57.
Zurück zum Zitat Gires O, Bauerle PA. EpCAM as a target in cancer therapy. J Clin Oncol. 2010;28(15):e239–40.CrossRef Gires O, Bauerle PA. EpCAM as a target in cancer therapy. J Clin Oncol. 2010;28(15):e239–40.CrossRef
58.
Zurück zum Zitat Mina-Osorio P. The moonlighting enzyme CD13: old and new functions to target. Trends Mol med. 2008;14(8):361–71.CrossRef Mina-Osorio P. The moonlighting enzyme CD13: old and new functions to target. Trends Mol med. 2008;14(8):361–71.CrossRef
59.
Zurück zum Zitat Kim HM, et al. Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial–mesenchymal transition-like phenomenon. Ann Surg Oncol. 2012;19(3):539–48.CrossRef Kim HM, et al. Increased CD13 expression reduces reactive oxygen species, promoting survival of liver cancer stem cells via an epithelial–mesenchymal transition-like phenomenon. Ann Surg Oncol. 2012;19(3):539–48.CrossRef
Metadaten
Titel
Cancer Stem Cells in Hepatocellular Carcinoma
verfasst von
Tamer Yagci
Metin Cetin
Pelin Balcik Ercin
Publikationsdatum
23.06.2017
Verlag
Springer US
Erschienen in
Journal of Gastrointestinal Cancer / Ausgabe 3/2017
Print ISSN: 1941-6628
Elektronische ISSN: 1941-6636
DOI
https://doi.org/10.1007/s12029-017-9960-7

Weitere Artikel der Ausgabe 3/2017

Journal of Gastrointestinal Cancer 3/2017 Zur Ausgabe

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.