Skip to main content
Erschienen in: BMC Women's Health 1/2004

Open Access 01.08.2004 | Report

Cardiovascular Disease

verfasst von: Sherry L Grace, Rick Fry, Angela Cheung, Donna E Stewart

Erschienen in: BMC Women's Health | Sonderheft 1/2004

Abstract

Health Issue

Cardiovascular disease (CVD) is the leading cause of death in Canadian women and men. In general, women present with a wider range of symptoms, are more likely to delay seeking medial care and are less likely to be investigated and treated with evidence-based medications, angioplasty or coronary artery bypass graft than men.

Key Findings

In 1998, 78,964 Canadians died from CVD, almost half (39,197) were women. Acute myocardial infarction, which increases significantly after menopause, was the leading cause of death among women.
Cardiovascular disease accounted for 21% of all hospital admissions for Canadian women over age 50 in 1999. Admissions to hospital for ischemic heart disease were more frequent for men, but the mean length of hospital stay was longer for women.
Mean blood pressure increases with age in both men and women. After age 65, however, high blood pressure is more common among Canadian women. More than one-third of postmenopausal Canadian women have hypertension.
Diabetes increases the mortality and morbidity associated with CVD in women more than it does in men. Depression also contributes to the incidence and recovery from CVD, particularly for women who experience twice the rate of depression as men.

Data Gaps and Recommendations

CVD needs to be recognized as a woman's health issue given Canadian mortality projections (particularly heart failure). Health professionals should be trained to screen, track, and address CVD risk factors among women, including hypertension, elevated lipid levels, smoking, physical inactivity, depression, diabetes and low socio-economic status.

Background

Cardiovascular disease (CVD) is a leading cause of death in Canadian women and men[1]. In general, the onset of CVD is approximately 10 years later in women than in men; women present with a wider range of symptoms[2]; and women are less likely to seek medical care and are less likely than men to be investigated and treated for CVD with specific medications, angioplasty or coronary artery bypass graft [37]. Sex differences have also been described in CVD risk factors, including cigarette smoking, depression, low income, elevated serum lipids, hypertension, obesity and lack of physical activity[8, 9]. Vulnerable subpopulations include Aboriginal women[10, 11], South Asian women[12] and women with diabetes mellitus[13].

Methods

The results of searches of MEDLINE, PsycINFO and Social Science Abstracts published in English from 1990 to 2002 were used to select the articles included in the literature review. Prevalence data were available through self-report in the National Population Health Survey (NPHS) 1998–1999 cycle[14] and the 2000 Canadian Community Health Survey (CCHS)[15]. Vital statistics databases were analyzed to determine mortality by sex and province[16]. Population rates of hospital admission for CVD by sex and province were obtained with the use of databases from the Canadian Institute for Health Information (CIHI)[1]. Data from the NPHS and the CCHS were analyzed to determine the associations of risk factors such as cigarette smoking, leisure-time activity and overweight with self-reported heart disease, as well as to examine vulnerable subgroups according to income, education, ethnicity/culture, social support, marital status and family structure, by sex and province. The results of the Canadian Heart Health Survey[17] were examined to ascertain the prevalence of high serum cholesterol levels and hypertension, and people's knowledge of the major causes of CVD. International comparisons were obtained from Organization for Economic Co-operation and Development (OECD) data[18].

Results

Prevalence and Incidence

The Canadian prevalence of CVD is available only through self-reported data from the NPHS or CCHS. When asked if they had CVD, 3.9% of men and 3.5% of women responded affirmatively, the highest proportion being reported by males in the Atlantic provinces[14]. Although the mortality rate for CVD, particularly ischemic heart disease (IHD), is declining, it is unclear whether the incidence is decreasing as well or the decline in mortality simply reflects increased survival[19].

Mortality Rate

In 1998, there were 78,964 deaths attributable to CVD in Canada, with generally equivalent numbers in men (39,767) and women (39,197)[15]. Acute myocardial infarction (AMI), incidence of which in women increases significantly after menopause and continues to increase with advanced age, was the overall leading cause of death among women.
Canadian mortality counts for IHD by sex are presented in Figure 1. Regional differences in mortality are more notable for AMI and IHD than for cerebrovascular disease (CBVD). In 1997, rates of mortality from IHD among both men and women were highest in Newfoundland and Labrador; among men they were lowest in Prince Edward Island, and among women they were lowest in British Columbia.
With regard to trends over time, mortality rates declined by half from 1969 to 1997[19]. There is still uncertainty with regard to the causes of this decline, but it is suspected that the reduced incidence is partially explained by declines in risk factors as well as a reduction in case-fatality due to treatment advances. Over the lifespan, Canadian CVD/CBVD mortality rates increase substantially with age, and male rates are considerably higher than female rates for AMI and IHD. Rates of CBVD are similar among men and women until age 55, after which men have increased mortality until age 85, when mortality rates among women become higher.

Morbidity Rate/Hospitalization

Data from the Hospital Morbidity Database of CIHI demonstrate that CVD is the leading cause of hospital admissions for men and women (excluding pregnancy and childbirth)[1]. CVD accounted for 21% of all hospital admissions of Canadian women over the age of 50 in 1999, and rates among older women were higher. Admissions to hospital for IHD were more frequent for men than for women, but the mean length of hospital stay for women surpassed that for men. Figure 2 presents hospitalization rates for IHD among women by age and province. Male rates increased consistently with age, but there was a 10-year delay in AMI among women, purportedly due to the protective effects of estrogen. The decline in morbidity is not as strong as the decline in mortality across time. With regard to provincial variation, Newfoundland and Labrador, Nova Scotia and New Brunswick figureed particularly high rates of IHD.

International Comparisons

CVD is the leading cause of death worldwide, but rates vary considerably between countries. In countries with established market economies, CVD and CBVD still contribute to approximately half of all deaths in spite of declines in mortality rates over the past 30 years[20]. Overall, CVD mortality rates are about twice as high among men as women, but in many countries the actual number of deaths from CVD among women is similar to that among men because of their longer life expectancy.
Figure 3 displays the IHD mortality rates from 1960 to 1999 for selected countries per 100,000 females[18]. In the 1960s, the highest mortality rates for AMI among women occurred in Australia, New Zealand, Ireland and the United Kingdom (U.K.), while the lowest rates occurred in Japan and Mediterranean countries. By the late 1990s, Canada continued to enjoy lower rates than the United States and the U.K., but rates were considerably higher than those found in Asian countries such as Japan and Korea.

Comorbidities

Hypertension

High blood pressure is an independent risk factor for CVD in women. Mean blood pressure increases with age in both women and men, although after age 65 high blood pressure is more common in Canadian women than Canadian men[21]. Over one-third of post-menopausal Canadian women have hypertension. Women tend to be more aware of the problem than are men and, if the condition is treated, are more likely to have it under control (see Figure 4).

Lipid Profile

High blood cholesterol in women is a major risk factor for CVD, and this is amplified by smoking and hypertension. The prevalence of elevated total lipids in women increases rapidly after menopause, such that by age 55 women have higher levels than men (see Figure 5)[24]. Although high total cholesterol in women does not seem to be as great a risk as it is in men, the combination of low levels of high-density lipoprotein (HDL) and elevated triglycerides increases women's risk of death from CVD tenfold. Forty-three percent of Canadian women aged 18 to 74 have a total blood cholesterol above the recommended threshold of 5.2 mmol/L[25]; 32% of women have elevated low-density lipoprotein levels (> 3.4 mmol/L); and 4% of women have low HDL levels (< 0.9 mmol/L).

Diabetes Mellitus

Diabetes mellitus (DM) increases rates of mortality and morbidity from CVD more in women than in men and eliminates the advantage for women in all atherosclerotic disease outcomes except stroke [2629]. Diabetic women are significantly more likely than diabetic men or non-diabetic women to have coronary events. DM is often associated with obesity, a sedentary lifestyle and lower socio-economic status (SES)[30].

Depression

Depression also contributes to the incidence of and poorer recovery from CVD [3136], particularly for women, who experience twice the rate of depression as men[37]. Beaudet[38] showed that Canadians aged 55 to 74 who had had a depressive episode in the previous 12 months were nearly three times as likely to have CVD within the following four years as people who had not experienced any depressive episode (odds ratio [OR] = 2.7, 95% confidence intervals [CI] 1.01–7.04). Frasure-Smith et al[39]. analyzed the impact of gender and depression after AMI in a Canadian sample and found that 8.3% of the depressed women died of cardiac causes in contrast to 2.7% of the non-depressed. Depression during hospitalization was found to have a significant impact on long-term mortality, with the increased risk being largely independent of CVD severity. Patients of both sexes who experienced depression tended to report more advanced cardiac disease.

Vulnerable Subgroups

Socio-economic Status

According to self-reported data, Canadian women and men with CVD tend to have annual income levels in the range of $5,000 to $30,000[14]. Moreover, most Canadians with self-reported CVD have less than secondary education[14], and those with less education are more likely to show early stage atherosclerosis for any given age group[40]. Socio-economic determinants act in part through an increased prevalence of risk factors, but they also have an independent effect that may be mediated through social isolation, coping styles, health behaviour, job strain or stress, and anger or hostility[41, 42].

Ethnicity/Culture

Approximately 1 in 5 Canadians is a first-generation immigrant. In addition to genetic factors, immigrants tend to bring with them cultural habits (e.g. food choices, smoking behaviour) that influence their risk of developing CVD/CBVD[43]. The largest non-European migrant groups are from China and South Asia, and these groups show lower all-cause mortality rates among both men and women. However, South Asian immigrant women have the highest rate of IHD among Canadian women[19, 44]. Studies from the United States show increased rates of IHD among Black women [4547]. Canadian data indicate that 7.3% of Black women versus 2.8% of Black men have self-reported CVD, as compared with 3.5% and 3.9% for the entire population respectively[14].

Social Support/Family Structure

Social support plays an important role in an individual's ability to maintain a healthy lifestyle and recover from illness and surgery [4851]. This may be a greater problem for women, many of whom are widowed or isolated[52]. For instance, 6.8% of Canadian men with self-reported CVD versus 3.9% of women are married, and 15.6% of men with self-reported CVD versus 16.5% of women are widowed[14]. Moreover, women with self-reported CVD are more often living on their own (9.7%), whereas men are most frequently living with a partner (11.5%)[14]. These differences in risk factors likely arise from the age-distribution shift in women's CVD.

Associations between Risk Factors and Self-Reported Heart Disease by Sex

Data from the 2000 CCHS concerning risk factors and vulnerable subgroups were used to examine self-reported heart disease in women and men in a multivariate logistic regression (Some caveats to the use of a cross-sectional survey like the CCHS should be noted. Risk factors such as current daily smoking and current heavy alcohol consumption tend to figure odds ratios that suggest they are protective for heart disease. This is because of a survey bias stemming from the fact that many people engage in these behaviours and do not quit until some related disease has been diagnosed. Their current smoking and drinking are truly associated with lack of a diagnosis. Questions in the NPHS/CCHS surveys are not written in such a way that responses can be used to definitively characterize long-term levels of smoking and drinking. For instance, it is not possible to calculate pack years of smoking from the CCHS data. The two variables "former daily smoker" and "ever reduced alcohol consumption for any reason" are surrogates for past heavy drinking and smoking. They are biased towards a probability of a current diagnosis of heart disease, since many people quit their habits on the advice of a clinician. There is a problem with using a self-reported heart disease outcome, particularly in elderly people, among whom it is by far more common and is greatly under-reported, especially in lower education groups. Caution is warranted when analyzing prevalent cases of coronary heart or other frequently fatal diseases, given that the very high initial mortality may result in the overrepresentation among prevalent cases of people protected from a poor prognosis). (see Figure 6). For both sexes, increasing age, lower household income, former daily smoking, and BMI of less than 27 all showed a positive risk for heart disease, and being physically active and having a higher educational level were protective. However, although being married appears to be protective for females it is neither protective nor a risk for males. This is in line with data presented elsewhere showing that family structure and social support are integral protective factors for women.

Risk Factors

Behavioural

Exercise
Physical activity reduces CVD rates of morbidity and mortality among women[53]. The Canadian Heart Health Survey reported that 36% of Canadian women aged 18 to 74 were classified as physically inactive based on their self-report of leisure-time physical activities. In the 1998–1999 NPHS, 53% of Canadian adults were classified as physically inactive, and this was more prevalent among Canadian women (56.9%) than men (48.6%)[14], in populations with lower SES, and with increasing age[54] (please also refer to the "Personal Health Practices" chapter in this report).
Smoking
Cigarette smoking is the main preventable CVD risk factor for women and men. It is a stronger risk factor for AMI in middle-aged women than in men, and in women who use oral contraceptives[21]. In 1998–1999, more men than women were daily smokers in all age groups except the under 24 group (21% of women versus 20% of men)[14]. For instance, daily smoking between the ages of 25 and 39 was reported by 30% of men and 28% of women, between the ages of 40 and 54 by 28% of men and 24% of women, and for those aged 55 and over by 18% of men and 13% of women. Smoking rates tend to be higher in Quebec and the Atlantic provinces than in other Canadian provinces (please also refer to the "Sex And Gender Differences in Smoking and Self Reported Indicators of Health in Canadian Women" chapter of this report).
Overweight/Obesity
Obesity is highly prevalent among Canadians, and notable increases across North America have been the trend. The Canadian Heart Health Survey[17] reported that 41% of Canadian women aged 18 to 74 years were overweight (defined as a BMI of > 25 kg/m2), and 27% were obese (defined as a BMI > 27 kg/m2). The prevalence of obesity was shown to increase steadily with age and to be higher among men than women (please also refer to the "Physical Activity and Obesity in Canadian Women" chapter of this report).

Interventions Aimed at Women

Prevention

Mortality from CVD and CBVD among Canadian women has generally declined over the past three to four decades[3]. However, given that reduced mortality has been seen to a greater degree among men and those of northwestern European ancestry, we must do more. Unfortunately, there are currently no representative Canadian data concerning the efficacy of primary or secondary CVD prevention programs.
North American data generally show significant sex differences in referral to and participation in secondary prevention programs such as cardiac rehabilitation (CR) [5560]. In general, 20% fewer women are enrolled in CR than men,[61, 62] a proportion significantly lower than expected on the basis of morbidity[63]. Despite women's lower participation[64, 65], women of all ages benefit from CR [6669], with improvements in functional capacity, coronary risk and psychosocial well-being that are comparable with or exceed those of men[66].

Diagnosis/Detection Programs

A gap exists in Canadian CVD surveillance data with regard to diagnosis and detection programs. Data from the Canadian Heart Health Survey (1986–1992) show that risk factors for CVD are under-diagnosed and under-detected. For instance, only 42% of Canadians with hypertension were aware that they had hypertension[22]. Of those aged 18 to 74, 26% of men and 18% of women were hypertensive. Among men, 47% were unaware of their hypertensive state, for 21% the condition was not treated and was uncontrolled, for 19% it was treated but not controlled, and for 13% it was treated and under control. Among women, 35% were unaware of their hypertensive status, for 15% it was not treated and was uncontrolled, for 29% it was treated but not controlled, and for 20% it was treated and under control[70].

Treatment/Interventions

Canadian female AMI patients in every age group are less likely to undergo either percutaneous transluminal coronary angioplasty (PTCA) or coronary artery bypass grafting (CABG) revascularization[1, 71]. This may be partially explained by women's higher age at CVD onset, given that the best candidates for revascularization are younger individuals without comorbid conditions.

Discussion

Data Limitations

To improve our understanding and management of CVD among women, we must examine surveillance capabilities, research methodologies, and heart health policies and services (see also the gaps identified in the bulleted points below). With regard to the surveillance of the diagnosis and detection of CVD, we urgently need incidence estimators at the population level (such as the MONICA/ICONS project in Nova Scotia). We lack data on recent physical measures (i.e. hypertension, lipid profiles), for which self-reporting is notoriously poor. We need recent data on who is undergoing treatment for hypertension, hyperlipidemia and depression, and the effectiveness of these treatments. We are unable to capture the number of women or men undergoing stress tests, angiography, echocardiography or 24-hour blood pressure monitoring.
Information on risk factor incidence and prevalence across the lifespan is also lacking. Methodologically speaking, person-oriented data for women (and men) would enable us to follow Canadians longitudinally through the health care system and across the lifespan.
Surveillance data regarding health services evaluation are lacking. We are unable to determine the prevalence of medication prescription, compliance with treatment, or prevention of CVD and CBVD. Physician service utilization data for CVD/CBVD (as compared with those without CVD/CBVD), patient access to physician offices for prevention of CVD/CBVD (i.e. determined through physician billing data at the provincial level), and hospitalization data for patients with CVD/CBVD versus those without it are deficient. In short, the following gaps are notable:
• incidence indicators at the population level;
• recent data on physical measures, such as hypertension and lipid profile;
• information on people undergoing treatment for hypertension and hyperlipidemia, and the control rate;
• person-oriented data to follow people through the health care system;
• prevalence of prevention and detection programs, including community heart health and smoking cessation programs;
• national drug data for the treatment and prevention of CVD/CBVD;
• the changing prevalence of congestive heart failure; and
• the number of women and men undergoing stress tests, angiograms, echocardiography and holteronitoring.

Policy Considerations

With regard to healthy public policy, CVD needs to be recognized as a women's health issue, given the Canadian mortality projections, the aging population, and rampant inequities in health care access and provision. Health professionals should be trained to screen and address CVD risk factors in women, such as hypertension, elevated lipid levels, smoking, physical inactivity, depression, diabetes mellitus and low SES. We need to continue developing and evaluating educational resources for women across the lifespan regarding their risk for CVD and symptom presentation. Efforts to encourage healthy eating habits and physical activity through a multiplicity of approaches should be pursued. This may include working with local governments, workplaces, health care providers and the media to promote the importance of physical activity while recognizing the unique circumstances of women and girls (e.g. by providing a safe environment). Finally, attention must be paid to barriers to physical activity among women of diverse ethnocultural backgrounds and social classes.

Notes

The views expressed in this report do not necessarily represent the views of the Canadian Population Health Initiative, the Canadian Institute for Health Information or Health Canada.
Literatur
1.
Zurück zum Zitat Canadian Institute for Health Information: Hospital Mortality Database. Ottawa: CIHI. 2002 Canadian Institute for Health Information: Hospital Mortality Database. Ottawa: CIHI. 2002
2.
Zurück zum Zitat Milner KA, Funk M, Richards S, Wilmes RM, Vaccarino V, Krumholz HM: Gender differences in symptom presentation associated with coronary heart disease. Am J Cardiol. 1999, 84: 396-399. 10.1016/S0002-9149(99)00322-7.CrossRefPubMed Milner KA, Funk M, Richards S, Wilmes RM, Vaccarino V, Krumholz HM: Gender differences in symptom presentation associated with coronary heart disease. Am J Cardiol. 1999, 84: 396-399. 10.1016/S0002-9149(99)00322-7.CrossRefPubMed
3.
Zurück zum Zitat Heart and Stroke Foundation of Canada: Women, heart disease and stroke in Canada. Ottawa. 1997 Heart and Stroke Foundation of Canada: Women, heart disease and stroke in Canada. Ottawa. 1997
4.
Zurück zum Zitat Kudenchuk P, Maynard C, Martin J, Wirkus M, Weaver WD: Comparison of presentation, treatment, and outcome of acute myocardial infarction in males versus females. Am J Cardiol. 1996, 78: 9-14. 10.1016/S0002-9149(96)00218-4.CrossRefPubMed Kudenchuk P, Maynard C, Martin J, Wirkus M, Weaver WD: Comparison of presentation, treatment, and outcome of acute myocardial infarction in males versus females. Am J Cardiol. 1996, 78: 9-14. 10.1016/S0002-9149(96)00218-4.CrossRefPubMed
5.
Zurück zum Zitat Majeed FA, Cook DG: Age and sex differences in the management of ischaemic heart disease. Public Health. 1996, 110: 7-12. 10.1016/S0033-3506(96)80027-8.CrossRefPubMed Majeed FA, Cook DG: Age and sex differences in the management of ischaemic heart disease. Public Health. 1996, 110: 7-12. 10.1016/S0033-3506(96)80027-8.CrossRefPubMed
6.
Zurück zum Zitat Schwartz LM, Fisher ES, Tostson ANA, Woloshin S, Chang C, Virnig BA, et al: Treatment and health outcomes of women and men in a cohort with coronary artery disease. Arch Intern Med. 1997, 157: 1545-1551. 10.1001/archinte.157.14.1545.CrossRefPubMed Schwartz LM, Fisher ES, Tostson ANA, Woloshin S, Chang C, Virnig BA, et al: Treatment and health outcomes of women and men in a cohort with coronary artery disease. Arch Intern Med. 1997, 157: 1545-1551. 10.1001/archinte.157.14.1545.CrossRefPubMed
7.
Zurück zum Zitat Vaccarino V, Krumholz HM, Yarzebski J, Gore JM, Goldberg RJ: Sex differences in two-year mortality after hospital discharge for myocardial infarction. Ann Intern Med. 2001, 134 (3): 173-181.CrossRefPubMed Vaccarino V, Krumholz HM, Yarzebski J, Gore JM, Goldberg RJ: Sex differences in two-year mortality after hospital discharge for myocardial infarction. Ann Intern Med. 2001, 134 (3): 173-181.CrossRefPubMed
8.
Zurück zum Zitat Abbey S, Stewart DE: Gender and psychosomatic aspects of ischemic heart disease. J Psychosom Res. 2000, 48 (5): 417-423. 10.1016/S0022-3999(99)00112-9.CrossRefPubMed Abbey S, Stewart DE: Gender and psychosomatic aspects of ischemic heart disease. J Psychosom Res. 2000, 48 (5): 417-423. 10.1016/S0022-3999(99)00112-9.CrossRefPubMed
9.
Zurück zum Zitat Lonn E: Epidemiology of ischemic heart disease in women: women and ischemic heart disease. Canadian Cardiovascular Society, Consensus Conference. 2000 Lonn E: Epidemiology of ischemic heart disease in women: women and ischemic heart disease. Canadian Cardiovascular Society, Consensus Conference. 2000
10.
Zurück zum Zitat Shah BR, Hux JE, Zinman B: Increasing rates of ischemic heart disease in the native population. Arch Intern Med. 2001, 160 (12): 1862-1866. 10.1001/archinte.160.12.1862.CrossRef Shah BR, Hux JE, Zinman B: Increasing rates of ischemic heart disease in the native population. Arch Intern Med. 2001, 160 (12): 1862-1866. 10.1001/archinte.160.12.1862.CrossRef
11.
Zurück zum Zitat Anand S, Tookenay V: Cardiovascular diseases and aboriginal peoples. Can J Cardiol. 1999, 15 (Suppl G): 44G-46G.PubMed Anand S, Tookenay V: Cardiovascular diseases and aboriginal peoples. Can J Cardiol. 1999, 15 (Suppl G): 44G-46G.PubMed
12.
Zurück zum Zitat Shin AY, Anand SS, Wall C, Tu JV, Yusuf S, Naylor DC: Ethnoracial origins and heart disease. In: Cardiovascular health and services in Ontario. Edited by: Naylor DC, Slaughter PM. 1999, Toronto: Institute for Clinical Evaluative Sciences and Heart and Stroke Foundation of Ontario, 267-282. Shin AY, Anand SS, Wall C, Tu JV, Yusuf S, Naylor DC: Ethnoracial origins and heart disease. In: Cardiovascular health and services in Ontario. Edited by: Naylor DC, Slaughter PM. 1999, Toronto: Institute for Clinical Evaluative Sciences and Heart and Stroke Foundation of Ontario, 267-282.
13.
Zurück zum Zitat Shin AY, Jaglal S, Slaughter PM, Iron K: Women and heart disease. In: Cardiovascular health and services in Ontario. Edited by: Naylor DC, Slaughter PM. 1999, Toronto: Institute for Clinical Evaluative Sciences and Heart and Stroke Foundation of Ontario, 336-354. Shin AY, Jaglal S, Slaughter PM, Iron K: Women and heart disease. In: Cardiovascular health and services in Ontario. Edited by: Naylor DC, Slaughter PM. 1999, Toronto: Institute for Clinical Evaluative Sciences and Heart and Stroke Foundation of Ontario, 336-354.
14.
Zurück zum Zitat Statistics Canada: National Population Health Survey:. 1998, –99. Ottawa: Health Statistics Division, Statistics Canada. Statistics Canada: National Population Health Survey:. 1998, –99. Ottawa: Health Statistics Division, Statistics Canada.
16.
Zurück zum Zitat Statistics Canada: Vital statistics. 1999 Statistics Canada: Vital statistics. 1999
17.
Zurück zum Zitat MacLean DR, Petrasovits A, Nargundkar M, et al: Canadian Heart Health Surveys: a profile of cardiovascular risk. Survey methods and data analysis. Canadian Heart Health Surveys Research Group. Can Med Assoc J. 1992, 146 (11): 1969-1974. MacLean DR, Petrasovits A, Nargundkar M, et al: Canadian Heart Health Surveys: a profile of cardiovascular risk. Survey methods and data analysis. Canadian Heart Health Surveys Research Group. Can Med Assoc J. 1992, 146 (11): 1969-1974.
18.
Zurück zum Zitat Organization for Economic Co-operation and Development. International mortality data. OECD. 2001 Organization for Economic Co-operation and Development. International mortality data. OECD. 2001
19.
Zurück zum Zitat Heart and Stroke Foundation of Canada: The changing face of heart disease and stroke in Canada. Ottawa. 2000, 1-107. Heart and Stroke Foundation of Canada: The changing face of heart disease and stroke in Canada. Ottawa. 2000, 1-107.
20.
Zurück zum Zitat Advisory Board of the First International Conference on Women, Heart Diseases and Stroke. The 2000 Victoria declaration on women, heart diseases, and stroke. CVD Prev. 2000, 3: 174-327. Advisory Board of the First International Conference on Women, Heart Diseases and Stroke. The 2000 Victoria declaration on women, heart diseases, and stroke. CVD Prev. 2000, 3: 174-327.
21.
Zurück zum Zitat Heart and Stroke Foundation of Canada: Heart disease and stroke in Canada. Ottawa. 1995 Heart and Stroke Foundation of Canada: Heart disease and stroke in Canada. Ottawa. 1995
22.
Zurück zum Zitat Kirkland SA, MacLean DR, Langille DB, Joffres MR, MacPherson KM, Andreou P: Knowledge and awareness of risk factors for cardiovascular disease among Canadians 55 to 74 years of age: results from the Canadian Heart Health Surveys, 1986–1992. Can Med Assoc J. 1999, 161 (Suppl 8): S10-S16. Kirkland SA, MacLean DR, Langille DB, Joffres MR, MacPherson KM, Andreou P: Knowledge and awareness of risk factors for cardiovascular disease among Canadians 55 to 74 years of age: results from the Canadian Heart Health Surveys, 1986–1992. Can Med Assoc J. 1999, 161 (Suppl 8): S10-S16.
23.
Zurück zum Zitat Langille DB, Joffres MR, MacPherson KM, et al: Prevalence of risk factors for cardiovascular disease. Can Med Assoc J. 1999, 161: S3-S9. Langille DB, Joffres MR, MacPherson KM, et al: Prevalence of risk factors for cardiovascular disease. Can Med Assoc J. 1999, 161: S3-S9.
24.
Zurück zum Zitat Connelly PW, MacLean DR, Horlick L, O'Connor B, Petrasovits A, Little JA: Plasma lipids and lipoproteins and the prevalence of risk for coronary heart disease in Canadian adults. Can Med Assoc J. 1992, 146 (11): 1977-1987. Connelly PW, MacLean DR, Horlick L, O'Connor B, Petrasovits A, Little JA: Plasma lipids and lipoproteins and the prevalence of risk for coronary heart disease in Canadian adults. Can Med Assoc J. 1992, 146 (11): 1977-1987.
25.
Zurück zum Zitat Health Canada: Canadians and heart health: reducing the risk. Ottawa. 1995 Health Canada: Canadians and heart health: reducing the risk. Ottawa. 1995
26.
Zurück zum Zitat Wilson PWF: Diabetes mellitus and coronary heart disease. Am J Kidney Dis. 1999, 32 (Suppl 3): S89-S100. Wilson PWF: Diabetes mellitus and coronary heart disease. Am J Kidney Dis. 1999, 32 (Suppl 3): S89-S100.
27.
Zurück zum Zitat Sowers JR: Diabetes mellitus and cardiovascular disease in women. Arch Intern Med. 1998, 158: 617-621. 10.1001/archinte.158.6.617.CrossRefPubMed Sowers JR: Diabetes mellitus and cardiovascular disease in women. Arch Intern Med. 1998, 158: 617-621. 10.1001/archinte.158.6.617.CrossRefPubMed
28.
Zurück zum Zitat Pan WH, Cedres LB, Liu K: Relationship of clinical diabetes and asymptomatic hyperglycemia to risk of coronary heart disease mortality in men and women. Am J Epidemiol. 1986, 123 (3): 504-516.PubMed Pan WH, Cedres LB, Liu K: Relationship of clinical diabetes and asymptomatic hyperglycemia to risk of coronary heart disease mortality in men and women. Am J Epidemiol. 1986, 123 (3): 504-516.PubMed
29.
Zurück zum Zitat Gaba MK, Gaba S, Clark LT: Cardiovascular disease in patients with diabetes: clinical considerations. J Assoc Academic Minority Physicians. 1999, 10 (1): 15-22. Gaba MK, Gaba S, Clark LT: Cardiovascular disease in patients with diabetes: clinical considerations. J Assoc Academic Minority Physicians. 1999, 10 (1): 15-22.
30.
Zurück zum Zitat Beckles GL, Thompson-Reid PE: Socioeconomic status of women with diabetes – United States 2000. MMWR. 2002, 51 (7): 147-148. Beckles GL, Thompson-Reid PE: Socioeconomic status of women with diabetes – United States 2000. MMWR. 2002, 51 (7): 147-148.
31.
Zurück zum Zitat Ferketich AK, Schwartzbaum JA, Frid DJ, Moeschberger ML: Depression as an antecedent to heart disease among women and men in the NHANES I study. Arch Intern Med. 2000, 160 (9): 1261-1268. 10.1001/archinte.160.9.1261.CrossRefPubMed Ferketich AK, Schwartzbaum JA, Frid DJ, Moeschberger ML: Depression as an antecedent to heart disease among women and men in the NHANES I study. Arch Intern Med. 2000, 160 (9): 1261-1268. 10.1001/archinte.160.9.1261.CrossRefPubMed
32.
Zurück zum Zitat Lane D, Carroll D, Ring C, Beevers DG, Lip GYH: Effects of depression and anxiety on mortality and quality-of-life four months after myocardial infarction. J Psychosom Res. 2000, 49: 229-238. 10.1016/S0022-3999(00)00170-7.CrossRefPubMed Lane D, Carroll D, Ring C, Beevers DG, Lip GYH: Effects of depression and anxiety on mortality and quality-of-life four months after myocardial infarction. J Psychosom Res. 2000, 49: 229-238. 10.1016/S0022-3999(00)00170-7.CrossRefPubMed
33.
Zurück zum Zitat Stansfeld SA, Fuhrer R, Shipley MJ, Marmot M: Psychological distress as a risk factor for coronary heart disease in the Whitehall II study. Int J Epidemiol. 2002, 31: 248-255. 10.1093/ije/31.1.248.CrossRefPubMed Stansfeld SA, Fuhrer R, Shipley MJ, Marmot M: Psychological distress as a risk factor for coronary heart disease in the Whitehall II study. Int J Epidemiol. 2002, 31: 248-255. 10.1093/ije/31.1.248.CrossRefPubMed
34.
Zurück zum Zitat Schwartzman JB, Glaus KD: Depression and coronary heart disease in women: implications for clinical practice and research. Professional Psychology: Research and Practice. 2000, 31 (1): 48-57. 10.1037//0735-7028.31.1.48.CrossRef Schwartzman JB, Glaus KD: Depression and coronary heart disease in women: implications for clinical practice and research. Professional Psychology: Research and Practice. 2000, 31 (1): 48-57. 10.1037//0735-7028.31.1.48.CrossRef
35.
Zurück zum Zitat Ziegelstein R, Fauerbach J, Stevens S, Romanelli J, Ritcher D, Bush D: Patients with depression are less likely to follow recommendations to reduce cardiac risk during recovery from a myocardial infarction. Arch Intern Med. 2000, 160 (12): 1818-1823. 10.1001/archinte.160.12.1818.CrossRefPubMed Ziegelstein R, Fauerbach J, Stevens S, Romanelli J, Ritcher D, Bush D: Patients with depression are less likely to follow recommendations to reduce cardiac risk during recovery from a myocardial infarction. Arch Intern Med. 2000, 160 (12): 1818-1823. 10.1001/archinte.160.12.1818.CrossRefPubMed
36.
Zurück zum Zitat Wassertheil-Smoller S, Applegate WB, Berge K, Chang CJ, Davis BR, Grimm R, et al: Change in depression as a precursor of cardiovascular events. Arch Intern Med. 1996, 156: 553-561. 10.1001/archinte.156.5.553.CrossRefPubMed Wassertheil-Smoller S, Applegate WB, Berge K, Chang CJ, Davis BR, Grimm R, et al: Change in depression as a precursor of cardiovascular events. Arch Intern Med. 1996, 156: 553-561. 10.1001/archinte.156.5.553.CrossRefPubMed
37.
Zurück zum Zitat Nolen-Hoeksema S, Larson J, Grayson C: Explaining the gender difference in depressive symptoms. J Pers Soc Psychol. 1999, 77 (5): 1061-1072. 10.1037//0022-3514.77.5.1061.CrossRefPubMed Nolen-Hoeksema S, Larson J, Grayson C: Explaining the gender difference in depressive symptoms. J Pers Soc Psychol. 1999, 77 (5): 1061-1072. 10.1037//0022-3514.77.5.1061.CrossRefPubMed
38.
Zurück zum Zitat Beaudet M: Depression and incident heart disease. Toronto: Annual Epidemiology Conference. 2001 Beaudet M: Depression and incident heart disease. Toronto: Annual Epidemiology Conference. 2001
39.
Zurück zum Zitat Frasure-Smith N, Lesperance F, Juneau M, Talajic M, Bourassa MG: Gender, depression, and one-year prognosis after myocardial infarction. Psychosom Med. 1999, 61 (1): 26-37.CrossRefPubMed Frasure-Smith N, Lesperance F, Juneau M, Talajic M, Bourassa MG: Gender, depression, and one-year prognosis after myocardial infarction. Psychosom Med. 1999, 61 (1): 26-37.CrossRefPubMed
40.
Zurück zum Zitat Gallo LC, Matthews KA, Kuller LH, Sutton-Tyrrell K, Edmundowicz D: Educational attainment and coronary aortic calcification in post-menopausal women. Psychosom Med. 2001, 63 (6): 925-935.CrossRefPubMed Gallo LC, Matthews KA, Kuller LH, Sutton-Tyrrell K, Edmundowicz D: Educational attainment and coronary aortic calcification in post-menopausal women. Psychosom Med. 2001, 63 (6): 925-935.CrossRefPubMed
41.
Zurück zum Zitat Escobedo LG, Giles WH, Anda RF: Socioeconomic status, race, and death from coronary heart disease. Am J Prev Med. 1997, 13: 123-130.PubMed Escobedo LG, Giles WH, Anda RF: Socioeconomic status, race, and death from coronary heart disease. Am J Prev Med. 1997, 13: 123-130.PubMed
42.
Zurück zum Zitat Kaplan G, Keil J: Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation. 1993, 88 (4 pt 1): 1973-1998.CrossRefPubMed Kaplan G, Keil J: Socioeconomic factors and cardiovascular disease: a review of the literature. Circulation. 1993, 88 (4 pt 1): 1973-1998.CrossRefPubMed
43.
Zurück zum Zitat Rubia M, Marcos I, Muenning AP: Increased risk of heart disease and stroke among foreign-born females residing in the United States. Am J Prev Med. 2002, 22 (1): 30-35. 10.1016/S0749-3797(01)00400-7.CrossRefPubMed Rubia M, Marcos I, Muenning AP: Increased risk of heart disease and stroke among foreign-born females residing in the United States. Am J Prev Med. 2002, 22 (1): 30-35. 10.1016/S0749-3797(01)00400-7.CrossRefPubMed
45.
Zurück zum Zitat Rosenberg L, Palmer JR, Rao RS, Adams-Campbell LL: Risk factors for coronary heart disease in African-American women. Am J Epidemiol. 1999, 150 (9): 904-909.CrossRefPubMed Rosenberg L, Palmer JR, Rao RS, Adams-Campbell LL: Risk factors for coronary heart disease in African-American women. Am J Epidemiol. 1999, 150 (9): 904-909.CrossRefPubMed
46.
Zurück zum Zitat Sundquist J, Winkleby MA, Pudaric S: Cardiovascular disease risk factors among older Black, Mexican-American, and White women and men: an analysis of NHANES III, 1988–1994. Third national health and nutrition examination. J Am Geriatr Soc. 2001, 49 (2): 109-116. 10.1046/j.1532-5415.2001.49030.x.CrossRefPubMed Sundquist J, Winkleby MA, Pudaric S: Cardiovascular disease risk factors among older Black, Mexican-American, and White women and men: an analysis of NHANES III, 1988–1994. Third national health and nutrition examination. J Am Geriatr Soc. 2001, 49 (2): 109-116. 10.1046/j.1532-5415.2001.49030.x.CrossRefPubMed
47.
Zurück zum Zitat Tofler GH, Stone PH, Muller JE: Effects of gender and race on prognosis after myocardial infarction: adverse prognosis for women, particularly Black women. J Am Coll Cardiol. 1987, 9 (3): 473-482.CrossRefPubMed Tofler GH, Stone PH, Muller JE: Effects of gender and race on prognosis after myocardial infarction: adverse prognosis for women, particularly Black women. J Am Coll Cardiol. 1987, 9 (3): 473-482.CrossRefPubMed
48.
Zurück zum Zitat Cohen S, Kaplan JR, Manuck SB: Social support and coronary heart disease: underlying psychological and biological mechanisms. In: Social support and cardiovascular disease. Plenum series in behavioral psychophysiology and medicine. Edited by: Shumaker SA, Czajkowski SM. 1994, New York: Plenum Press, 195-221.CrossRef Cohen S, Kaplan JR, Manuck SB: Social support and coronary heart disease: underlying psychological and biological mechanisms. In: Social support and cardiovascular disease. Plenum series in behavioral psychophysiology and medicine. Edited by: Shumaker SA, Czajkowski SM. 1994, New York: Plenum Press, 195-221.CrossRef
49.
Zurück zum Zitat Ell K, Dunkel-Schetter C: Social support and adjustment to myocardial infarction, angioplasty, and coronary artery bypass surgery. In: Social support and cardiovascular disease. Plenum series in behavioral psychophysiology and medicine. Edited by: Shumaker SA, Czajkowski SM. 1994, New York: Plenum Press, 301-332.CrossRef Ell K, Dunkel-Schetter C: Social support and adjustment to myocardial infarction, angioplasty, and coronary artery bypass surgery. In: Social support and cardiovascular disease. Plenum series in behavioral psychophysiology and medicine. Edited by: Shumaker SA, Czajkowski SM. 1994, New York: Plenum Press, 301-332.CrossRef
50.
Zurück zum Zitat Holahan CJ, Moos RH, Holahan CK, Brennan PL: Social support, coping, and depressive symptoms in a late-middle-aged sample of patients reporting cardiac illness. Health Psychol. 1995, 4 (2): 152-163. 10.1037/0278-6133.14.2.152.CrossRef Holahan CJ, Moos RH, Holahan CK, Brennan PL: Social support, coping, and depressive symptoms in a late-middle-aged sample of patients reporting cardiac illness. Health Psychol. 1995, 4 (2): 152-163. 10.1037/0278-6133.14.2.152.CrossRef
51.
Zurück zum Zitat Orth-Gomer K: International epidemiological evidence for a relationship between social support and cardiovascular disease. In: Social support and cardiovascular disease. Plenum series in behavioral psychophysiology and medicine. Edited by: Shumaker SA, Czajkowski SM. 1994, New York: Plenum Press, 97-117.CrossRef Orth-Gomer K: International epidemiological evidence for a relationship between social support and cardiovascular disease. In: Social support and cardiovascular disease. Plenum series in behavioral psychophysiology and medicine. Edited by: Shumaker SA, Czajkowski SM. 1994, New York: Plenum Press, 97-117.CrossRef
52.
Zurück zum Zitat Brummett BH, Barefoot JC, Siegler IC, Clapp-Channing NE, Lytle BL, Bosworth HB, et al: Characteristics of socially isolated patients with coronary artery disease who are at elevated risk for mortality. Psychosom Med. 2001, 63: 267-274.CrossRefPubMed Brummett BH, Barefoot JC, Siegler IC, Clapp-Channing NE, Lytle BL, Bosworth HB, et al: Characteristics of socially isolated patients with coronary artery disease who are at elevated risk for mortality. Psychosom Med. 2001, 63: 267-274.CrossRefPubMed
53.
Zurück zum Zitat Stephens T: International trend in the prevalence of physical activity and other health determinants. Orlando: Federation international de médecin du sport, World Congress of Sports Medicine. 1998 Stephens T: International trend in the prevalence of physical activity and other health determinants. Orlando: Federation international de médecin du sport, World Congress of Sports Medicine. 1998
54.
Zurück zum Zitat Statistics Canada: National Population Health Survey overview, 1996–97. Ottawa: Minister of Industry, Cat. No. 82-567-XPB. 1998 Statistics Canada: National Population Health Survey overview, 1996–97. Ottawa: Minister of Industry, Cat. No. 82-567-XPB. 1998
55.
Zurück zum Zitat Barber K, Stommel M, Kroll J, Holmes-Rovner M, McIntosh B: Cardiac rehabilitation for community-based patients with myocardial infarction: factors predicting discharge recommendation and participation. J Clin Epidemiol. 2001, 54 (10): 1025-1030. 10.1016/S0895-4356(01)00375-4.CrossRefPubMed Barber K, Stommel M, Kroll J, Holmes-Rovner M, McIntosh B: Cardiac rehabilitation for community-based patients with myocardial infarction: factors predicting discharge recommendation and participation. J Clin Epidemiol. 2001, 54 (10): 1025-1030. 10.1016/S0895-4356(01)00375-4.CrossRefPubMed
56.
Zurück zum Zitat Burns KJ, Camaione DN, Froman RD, Clark BA: Predictors of referral to cardiac rehabilitation and cardiac exercise self-efficacy. Clin Nurs Res. 1998, 7 (2): 147-163. 10.1177/105477389800700205.CrossRefPubMed Burns KJ, Camaione DN, Froman RD, Clark BA: Predictors of referral to cardiac rehabilitation and cardiac exercise self-efficacy. Clin Nurs Res. 1998, 7 (2): 147-163. 10.1177/105477389800700205.CrossRefPubMed
57.
Zurück zum Zitat Cannistra LB, Balady GJ, O'Malley CJ, Weiner DA, Ryan TJ: Comparison of the clinical profile and outcome of women and men in cardiac rehabilitation. Am J Cardiol. 1992, 69: 1274-1279. 10.1016/0002-9149(92)91220-X.CrossRefPubMed Cannistra LB, Balady GJ, O'Malley CJ, Weiner DA, Ryan TJ: Comparison of the clinical profile and outcome of women and men in cardiac rehabilitation. Am J Cardiol. 1992, 69: 1274-1279. 10.1016/0002-9149(92)91220-X.CrossRefPubMed
58.
Zurück zum Zitat Carhart R, Ades P: Gender differences in cardiac rehabilitation. Cardiol Clin. 1998, 16 (1): 37-43. 10.1016/S0733-8651(05)70382-9.CrossRefPubMed Carhart R, Ades P: Gender differences in cardiac rehabilitation. Cardiol Clin. 1998, 16 (1): 37-43. 10.1016/S0733-8651(05)70382-9.CrossRefPubMed
59.
Zurück zum Zitat Caulin-Glaser T, Blum M, Schmeizl R, Prigerson HG, Zaret B, Mazure CM: Gender differences in referral to cardiac rehabilitation programs after revascularization. J Cardiopulm Rehabil. 2001, 21: 24-30. 10.1097/00008483-200101000-00006.CrossRefPubMed Caulin-Glaser T, Blum M, Schmeizl R, Prigerson HG, Zaret B, Mazure CM: Gender differences in referral to cardiac rehabilitation programs after revascularization. J Cardiopulm Rehabil. 2001, 21: 24-30. 10.1097/00008483-200101000-00006.CrossRefPubMed
60.
Zurück zum Zitat Cristian A, Mandy K, Root B: Comparison between men and women admitted to an inpatient rehabilitation unit after cardiac surgery. Arch Phys Med Rehabil. 1999, 80: 183-185. 10.1016/S0003-9993(99)90118-1.CrossRefPubMed Cristian A, Mandy K, Root B: Comparison between men and women admitted to an inpatient rehabilitation unit after cardiac surgery. Arch Phys Med Rehabil. 1999, 80: 183-185. 10.1016/S0003-9993(99)90118-1.CrossRefPubMed
61.
Zurück zum Zitat Grace SL, Abbey S, Shnek Z, Irvine J, Franche RI, Stewart D: Cardiac rehabilitation II: referral and participation. Gen Hosp Psychiatry. 2002, 24 (3): 127-134. 10.1016/S0163-8343(02)00178-0.CrossRefPubMed Grace SL, Abbey S, Shnek Z, Irvine J, Franche RI, Stewart D: Cardiac rehabilitation II: referral and participation. Gen Hosp Psychiatry. 2002, 24 (3): 127-134. 10.1016/S0163-8343(02)00178-0.CrossRefPubMed
62.
Zurück zum Zitat Ades P, Waldmann M, Polk D, Coflesky J: Referral patterns and exercise response in the rehabilitation of female coronary patients aged > 62 years. Am J Cardiol. 1992, 69: 1422-1425. 10.1016/0002-9149(92)90894-5.CrossRefPubMed Ades P, Waldmann M, Polk D, Coflesky J: Referral patterns and exercise response in the rehabilitation of female coronary patients aged > 62 years. Am J Cardiol. 1992, 69: 1422-1425. 10.1016/0002-9149(92)90894-5.CrossRefPubMed
63.
Zurück zum Zitat Thomas R, Miller N, Lamendola C, Berra K, Hedback B, Durstine J, et al: National survey of gender differences in cardiac rehabilitation programs. J Cardiopulm Rehabil. 1996, 16: 402-412. 10.1097/00008483-199611000-00010.CrossRefPubMed Thomas R, Miller N, Lamendola C, Berra K, Hedback B, Durstine J, et al: National survey of gender differences in cardiac rehabilitation programs. J Cardiopulm Rehabil. 1996, 16: 402-412. 10.1097/00008483-199611000-00010.CrossRefPubMed
64.
Zurück zum Zitat Hawthorne MH: Women recovering from coronary artery bypass surgery. Scholarly Inquiry for Nursing Practice: An International Journal. 1993, 7 (4): 223-52. Hawthorne MH: Women recovering from coronary artery bypass surgery. Scholarly Inquiry for Nursing Practice: An International Journal. 1993, 7 (4): 223-52.
65.
Zurück zum Zitat Schuster P, Waldron J: Gender differences in cardiac rehabilitation patients. Rehabil Nurs. 1991, 16 (5): 248-253.CrossRefPubMed Schuster P, Waldron J: Gender differences in cardiac rehabilitation patients. Rehabil Nurs. 1991, 16 (5): 248-253.CrossRefPubMed
66.
Zurück zum Zitat O'Callaghan W, Teo K, O'Riordan J, Webb H, Dolphin T, Horgan JH: Comparative response of male and female patients with coronary artery disease to exercise rehabilitation. Eur Heart J. 1984, 5: 649-651.PubMed O'Callaghan W, Teo K, O'Riordan J, Webb H, Dolphin T, Horgan JH: Comparative response of male and female patients with coronary artery disease to exercise rehabilitation. Eur Heart J. 1984, 5: 649-651.PubMed
67.
Zurück zum Zitat Oldridge N, LaSalle D, Jones N: Exercise rehabilitation of female patients with coronary heart disease. Am Heart J. 1980, 100: 755-757. 10.1016/0002-8703(80)90244-6.CrossRefPubMed Oldridge N, LaSalle D, Jones N: Exercise rehabilitation of female patients with coronary heart disease. Am Heart J. 1980, 100: 755-757. 10.1016/0002-8703(80)90244-6.CrossRefPubMed
68.
Zurück zum Zitat O'Farrell P, Murray J, Huston P, LeGrand C, Adamo K: Sex differences in cardiac rehabilitation. Can J Cardiol. 2000, 16 (3): 319-325.PubMed O'Farrell P, Murray J, Huston P, LeGrand C, Adamo K: Sex differences in cardiac rehabilitation. Can J Cardiol. 2000, 16 (3): 319-325.PubMed
69.
Zurück zum Zitat Lavie C, Milani R, Cassidy M, Gilliland Y: Effects of cardiac rehabilitation and exercise training programs in women with depression. Am J Cardiol. 1999, 83: 1480-1483. 10.1016/S0002-9149(99)00127-7.CrossRefPubMed Lavie C, Milani R, Cassidy M, Gilliland Y: Effects of cardiac rehabilitation and exercise training programs in women with depression. Am J Cardiol. 1999, 83: 1480-1483. 10.1016/S0002-9149(99)00127-7.CrossRefPubMed
70.
Zurück zum Zitat Joffres MR, Ghadirian P, Fodor JG, Petrasovits A, Chockalingam A, Hamet P: Awareness, treatment, and control of hypertension in Canada. Am J Hypertens. 1997, 10 (10): 1097-1102. 10.1016/S0895-7061(97)00224-0.CrossRefPubMed Joffres MR, Ghadirian P, Fodor JG, Petrasovits A, Chockalingam A, Hamet P: Awareness, treatment, and control of hypertension in Canada. Am J Hypertens. 1997, 10 (10): 1097-1102. 10.1016/S0895-7061(97)00224-0.CrossRefPubMed
71.
Zurück zum Zitat Johansen H, Nair C, Wolfson M: Revascularization and heart attack outcomes. Health Rep. 2002, 13 (2): 35-46.PubMed Johansen H, Nair C, Wolfson M: Revascularization and heart attack outcomes. Health Rep. 2002, 13 (2): 35-46.PubMed
Metadaten
Titel
Cardiovascular Disease
verfasst von
Sherry L Grace
Rick Fry
Angela Cheung
Donna E Stewart
Publikationsdatum
01.08.2004
Verlag
BioMed Central
Erschienen in
BMC Women's Health / Ausgabe Sonderheft 1/2004
Elektronische ISSN: 1472-6874
DOI
https://doi.org/10.1186/1472-6874-4-S1-S15

Weitere Artikel der Sonderheft 1/2004

BMC Women's Health 1/2004 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.