Skip to main content
Erschienen in: Discover Oncology 1/2024

Open Access 01.12.2024 | Analysis

Causal relationship between gut microbiota and prostate cancer contributes to the gut-prostate axis: insights from a Mendelian randomization study

verfasst von: Li Wang, Yong-bo Zheng, Shan Yin, Kun-peng Li, Jia-hao Wang, Er-hao Bao, Ping-yu Zhu

Erschienen in: Discover Oncology | Ausgabe 1/2024

Abstract

Background

Changes in gut microbiota abundance have been linked to prostate cancer development. However, the causality of the gut-prostate axis remains unclear.

Methods

The genome-wide association study (GWAS) data for gut microbiota sourced from MiBioGen (n = 14,306), alongside prostate cancer summary data from PRACTICAL (n = 140,254) and FinnGen Consortium (n = 133,164). Inverse-variance-weighted (IVW) was mainly used to compute odds ratios (OR) and 95% confidence intervals (Cl), after diligently scrutinizing potential sources of heterogeneity and horizontal pleiotropy via the rigorous utilization of Cochran's Q test, the MR-PRESSO method, and MR-Egger. We used meta-analysis methods in random effects to combine the Mendelian randomization (MR) estimates from the two sources.

Results

The pooled analyses of MR results show that genus Eubacterium fissicatena (OR = 1.07, 95% CI 1.01 to 1.13, P = 0.011) and genus Odoribacter (OR = 1.14, 95% CI 1.01 to 1.27, P = 0.025) were positively associated with prostate cancer. However, genus Adlercreutzia (OR = 0.89, 95% CI 0.83 to 0.96, P = 0.002), Roseburia (OR = 0.90, 95% CI 0.83 to 0.99, P = 0.03), Holdemania (OR = 0.92, 95% CI 0.86 to 0.97, P = 0.005), Flavonifractor (OR = 0.85, 95% CI 0.74 to 0.98, P = 0.024) and Allisonella (OR = 0.93, 95% CI 0.89 to 0.98, P = 0.011) seems to be a protective factor for prostate cancer. Sensitivity analysis found no significant heterogeneity, horizontal pleiotropy, or reverse causal links in all causal associations.

Conclusion

This MR study lends support to a causal relationship between genetically predicted gut microbiota and prostate cancer. Research on the gut-prostate axis, along with further multi-omics analyses, holds significant implications for the prevention and treatment of prostate cancer.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s12672-024-00925-1.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

In men globally, prostate cancer represents 7% of all new cancer diagnoses, with a pronounced prevalence in Western nations [1]. Notably, it emerges as the second leading cause of cancer-associated mortality in this demographic, culminating in over 350,000 deaths annually [2]. Given this, the urgency of early detection in potentially high-risk individuals, accompanied by swift therapeutic interventions, becomes paramount in curbing both the incidence and mortality rates linked to this malignancy.
The gut microbiota, a diverse collection of microorganisms in the digestive tract, is vital in determining and sustaining the host's health via interactions like nutrient processing and immune system modulation. Obesity and high-fat consumption are linked to Prostate cancer risks, with lifestyle, particularly dietary habits, influencing the gut microbiome [3]. It's long been believed that certain bacteria can cause persistent, mild inflammation, potentially triggering prostate cancer. Although the current positive correlation between prostatitis and prostate cancer rates may be the result of detection bias [4]. Poutahidis et al. [5] demonstrated that gastrointestinal bacterial infections can enhance prostatic intraepithelial neoplasia (PIN) and microinvasive carcinoma in vivo. Additionally, individuals diagnosed with prostate cancer showed significant increases in proinflammatory Bacteroides and Streptococcus species. Antibiotics promote selection for resistant bacteria by enhancing the proliferation of pathogenic strains. Research indicates that antibiotic use elevates the risk of infections from Clostridium difficile and methicillin-resistant Staphylococcus aureus [6]. Tulstrup et al. [7] found that changes in the microbiota due to antibiotics can alter intestinal permeability, thereby heightening the risk of neoplastic alterations. Earlier research has demonstrated that prostate cancer patients exhibiting elevated oestrogen levels may possess intestinal bacterial genes capable of oestrogen metabolism. Such metabolic activity can expedite carcinogenesis by activating polycyclic aromatic hydrocarbons (PAHs) [810]. Escherichia coli commonly resides in the human gut. Murine studies have indicated a potential link between E. coli and prostatitis development [11]. Moreover, Campylobacter jejuni has been identified as an inducer of cell cycle arrest and cellular death through its toxin production. Notably, Clostridium can transform gut glucocorticoids into androgens through side chain cleavage, contributing synergistically to the progression of prostate cancer [12]. While numerous studies have investigated the link between specific gut microbes and prostate cancer, the causal relationship between them remains unclear [13, 14].
Mendelian randomization (MR) emerges as a method of instrumental variable (IV) analysis that harnesses single nucleotide polymorphisms (SNPs) derived from genome-wide association studies (GWAS) as tools to deduce causal associations between two traits [15]. MR approximates the inherent attributes of a RCT and exhibits a reduced susceptibility to the impact of covariates. Moreover, its operational simplicity and cost-effectiveness enhance its appeal [16]. Consequently, we conducted a two-sample MR utilizing aggregated data from accessible GWAS repositories. This approach facilitated an exploration of the conceivable etiological correlation between gut microbiota and the risk of Prostate cancer through a comprehensive meta-analysis.

2 Methods

2.1 Study design

The study rigorously adhered to the guidelines outlined in the Strengthening the Reporting of Observational Studies in Epidemiology Mendelian Randomization (STROBE-MR) framework [17]. MR relies on three essential assumptions: IVs demonstrate strong correlation with exposure factors, remain unaffected by confounding variables, and impact outcomes solely through the exposure under investigation [18]. We conducted two-sample MR analyses using summary statistics from genome-wide association studies (GWAS) to investigate the connections between the gut microbiome and prostate cancer. The basic assumptions and MR design flow are depicted in Fig. 1. Since publicly available pooled data were utilized, ethical approval was not necessary for this study.

2.2 Data sources

We obtained SNPs associated with gut microbial abundance from the MiBioGen consortium’s GWAS study [19]. This extensive study involved 25 cohorts, comprising a total of 18,340 participants from diverse ethnic backgrounds. Our dataset included 211 taxa with an average abundance exceeding 1%. After excluding 15 taxa from unidentified groups, we finally used 196 bacterial taxa from 14,306 populations of European ancestry for the MR analysis.
Summary data for prostate cancer were obtained from the comprehensive GWAS meta-analysis conducted by the PRACTICAL consortium [20], encompassing 79,148 cases and 61,106 controls of European descent. Additionally, for validation, we acquired a dataset related to prostate cancer from the FinnGen consortium [21], comprising 13,216 prostate cancer patients and 119,948 controls (Table 1).
Table 1
Phenotypic descriptive statistics of studies included in the exposure and outcome genome-wide association studies
Data source
Phenotype
Sample size
Cases
Population
Adjustment
PubMed ID/website
MiBioGen consortium
Gut microbial
14,306
European
Age, sex, technical covariates, and genetic principal components
33462485
PRACTICAL
Prostate cancer
140,254
79,148
European
Age, sex
29892016
FinnGen
Prostate cancer
133,164
13,216
European
Age, sex
PubMed ID: PubMed identifier

2.3 Instrument selection

To ensure the stability of the causal relationship between exposure and outcome, IVs were selected based on the following principles: (1) we established genome-wide significance thresholds for bacterial taxa at p < 1 × 10–5. (2) Cluster analysis was conducted to address linkage disequilibrium (LD) among the selected IVs (r2 < 0.001, kb = 10,000). (3) Only SNPs with a minor allele frequency (MAF) exceeding 0.01 were considered. (4) To mitigate bias from weak IVs, the strength of the IVs was quantified using the F value (β2/SE), with those having F < 10 being excluded [22]. Here, β represents the effect size of exposure and SE represents the standard error of the effect size. We also used PhenoScanner to examine potential confounders (such as body mass index and family history) of exposed SNPs to eliminate effects on outcome. Ultimately, we selected SNPs meeting all the criteria as IVs for downstream MR analysis. The IV selection process is illustrated in Fig. 1.

2.4 Statistical analyses

The primary analysis employed the robust inverse-variance weighted (IVW) method [23]. This method has the strongest statistical efficacy, but it must be satisfied that all genetic variation is a valid instrumental variable, and therefore we employed the weighted median, MR-Egger regression, maximum likelihood and simple weighted mode methods as validation approaches. The weighted median allows for up to 50% of the weights in the estimator to be from invalid instruments [24]. To address potential directional pleiotropy, MR-Egger regression and weighted mode methods were employed [25, 26]. The median-based method evaluates the causal link by focusing on the subset with the highest number of SNPs, and the maximum likelihood method helped assess population overlap.
Sensitivity analysis assumes a vital role in the assessment of heterogeneity and potential biases within MR studies. Firstly, heterogeneity was evaluated through the application of Cochran's Q test, which involved calculating the weighted sum of squared differences between specific variability estimates and the overall IVW estimate [27]. To address potential outliers, the MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) method was employed during data analysis [28]. Furthermore, MR-Egger regression was utilized, and intercepts were assessed to identify potential horizontal pleiotropy (p < 0.05 was judged significant). In addition, we performed a leave-one-out analysis to test the stability of the results. We evaluated heterogeneity among variant-specific causal estimates and pinpointed outliers through scatter and funnel plots. Finally, we identified potential bidirectional links between SNPs related to the gut microbiota and prostate cancer using the MR Steiger Filtering Test [29].
We conducted MR analysis using the FinnGen consortium dataset for validation and then merged MR estimates from both FinnGen and PRACTICAL datasets through meta-analysis. Statistical analyses were executed using R version 4.2.2 with the “TwoSampleMR,” “meta,” and “MRPRESSO” packages. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to quantify the MR analysis, and statistical significance was defined as P < 0.05.

3 Results

3.1 Selection of instrumental variables

We selected 13,860 SNPs with locus-wide significance (P < 1 × 10–5) based on 196 bacterial features in the MiBioGen consortium. SNPs with a minor allele frequency ≤ 0.01 were excluded. The linkage disequilibrium threshold was set at r2 = 0.001, with a clumping distance of 10,000 kb. We obtained 102, 178, 215, 375, and 1381 SNPs at the phylum, class, order, family, and genus levels, respectively. Namely, 2251 SNPs were selected as IVs. Importantly, all the included SNPs had F-values exceeding 10, indicating a minimal likelihood of weak IVs bias. The screening through PhenoScanner did not reveal interference from confounding factors (Additional file 2: Tables S1–S2).

3.2 MR analyses

Analyzing data from the PRACTICAL consortium, the IVW results indicate that within the class Alphaproteobacteria (OR = 0.84, 95% CI 0.75 to 0.93, P = 0.001), genus Adlercreutzia (OR = 0.89, 95% CI 0.82 to 0.97, P = 0.005), genus Eubacterium hallii (OR = 0.93, 95% CI 0.86 to 1.0, P = 0.05), genus Roseburia (OR = 0.89, 95% CI 0.8 to 0.98, P = 0.024), genus Holdemania (OR = 0.92, 95% CI 0.86 to 0.99, P = 0.023), genus Flavonifractor (OR = 0.84, 95% CI 0.72 to 0.99, P = 0.037), genus Allisonella (OR = 0.93, 95% CI 0.88 to 0.99, P = 0.026), genus Coprobacter (OR = 0.92, 95% CI 0.87 to 0.98, P = 0.008), and the order Rhodospirillales (OR = 0.91, 95% CI 0.85 to 0.97, P = 0.006) demonstrated protective effects against prostate cancer, while family Porphyromonadaceae (OR = 1.15, 95% CI 1.0 to 1.31, P = 0.048), genus Eubacterium fissicatena (OR = 1.08, 95% CI 1.0 to 1.16, P = 0.046), genus Odoribacter (OR = 1.17, 95% CI 1.01 to 1.36, P = 0.033), genus Dorea (OR = 1.17, 95% CI 1.01 to 1.36, P = 0.033) were risk factors for prostate cancer. Other supplementary methods in MR analysis corroborate comparable trends and findings regarding the influence of gut microbiota on prostate cancer (Fig. 2; Fig. 3A; Additional file 2: Table S3). MR analyses conducted using the FinnGen database did not reveal a statistically significant causal relationship between gut microbiota and prostate cancer (Fig. 2; Fig. 3B; Additional file 2: Table S4). We combined MR estimates from both the PRACTICAL and FinnGen databases by meta-analysis and found that genus Eubacterium fissicatena (OR = 1.07, 95% CI 1.01 to 1.13, P = 0.011) and genus Odoribacter (OR = 1.14, 95% CI 1.01 to 1.27, P = 0.025) were positively associated with Prostate cancer. However, the pooled analysis revealed that genus Adlercreutzia (P = 0.002), genus Roseburia (P = 0.03), genus Holdemania (P = 0.005), genus Flavonifractor (P = 0.024) and genus Allisonella (P = 0.011) showed suggestive associations with a reduced risk for prostate cancer (Fig. 4; Additional file 2: Table S5).
The MR Steiger filtering test found no reverse causal link between the bacterial taxa and prostate cancer (Additional file 2: Table S6). Cochran's Q test results indicated the absence of statistically significant heterogeneity among these IVs. Moreover, both the Egger Intercept test and the MR-PRESSO Global test failed to identify significant horizontal pleiotropy (Table 2). Visual scatter and funnel plots are available in Additional file 1: Figs. S1–S104. Finally, Leave-one-out analyses confirmed result stability.
Table 2
Evaluation of heterogeneity and directional pleiotropy using different methods
Data source
Classification
Bacterial taxas
Heterogeneity
Horizontal pleiotropy
   
I2 (%)
IVW
Egger intercept
SE
P-value
MR-PRESSO global test p
Cochran’s Q
P-value
PRACTICAL
class
Alphaproteobacteria id.2379
26.131
8.122
0.229
0.005
0.020
0.780
0.312
PRACTICAL
family
Porphyromonadaceae id.943
25.235
9.362
0.227
− 0.019
0.016
0.276
0.256
PRACTICAL
genus
Adlercreutzia id.812
0
6.638
0.467
− 0.004
0.017
0.825
0.489
PRACTICAL
genus
Eubacterium fissicatena group id.14373
46.172
14.862
0.061
− 0.018
0.026
0.503
0.083
PRACTICAL
genus
Eubacterium hallii group id.11338
0
11.601
0.638
− 0.005
0.006
0.380
0.630
PRACTICAL
genus
Odoribacter id.952
43.093
10.543
0.103
0.002
0.019
0.902
0.149
PRACTICAL
genus
Roseburia id.2012
28.276
16.730
0.160
− 0.002
0.011
0.841
0.180
PRACTICAL
genus
Holdemania id.2157
23.979
17.100
0.194
− 0.007
0.010
0.494
0.212
PRACTICAL
genus
Flavonifractor id.2059
49.970
7.995
0.091
− 0.014
0.030
0.661
0.153
PRACTICAL
genus
Allisonella id.2174
18.176
6.110
0.295
0.003
0.028
0.905
0.353
PRACTICAL
genus
Dorea id.1997
0
5.752
0.674
0.003
0.010
0.758
0.707
PRACTICAL
genus
Coprobacter id.949
0
7.946
0.634
− 0.012
0.011
0.305
0.675
PRACTICAL
order
Rhodospirillales id.2667
15.006
15.295
0.289
0.021
0.014
0.149
0.323
FinnGen
class
Alphaproteobacteria id.2379
0
2.982
0.702
− 0.005
0.026
0.836
0.718
FinnGen
class
Porphyromonadaceae id.943
0
1.454
0.993
0.003
0.026
0.904
0.994
FinnGen
genus
Adlercreutzia id.812
0
5.722
0.572
0.005
0.027
0.838
0.602
FinnGen
genus
Eubacterium fissicatena group id.14373
0
6.353
0.607
< 0.001
0.030
0.999
0.615
FinnGen
genus
Eubacterium hallii group id.11338
5.595
13.770
0.390
0.004
0.011
0.699
0.432
FinnGen
genus
Odoribacter id.952
0
3.969
0.680
< 0.001
0.021
0.977
0.738
FinnGen
genus
Roseburia id.2012
0
4.406
0.818
− 0.026
0.019
0.204
0.789
FinnGen
genus
Holdemania id.2157
4.738
13.646
0.399
0.002
0.016
0.898
0.433
FinnGen
genus
Flavonifractor id.2059
52.628
8.443
0.076
0.012
0.052
0.824
0.111
FinnGen
genus
Allisonella id.2174
19.936
8.743
0.271
0.021
0.047
0.666
0.294
FinnGen
genus
Dorea id.1997
0
5.767
0.449
0.017
0.017
0.371
0.475
FinnGen
genus
Coprobacter id.949
0
2.601
0.856
− 0.017
0.041
0.696
0.846
FinnGen
order
Rhodospirillales id.2667
0
5.500
0.939
0.010
0.020
0.622
0.938
MR PRESSO: Mendelian randomization pleiotropy residual sum and outlier

4 Discussion

In this study, large-scale GWAS data using European ancestry, combined with MR and meta-analyses demonstrated a potential causal link between gut microbiome and prostate cancer.
Despite the anatomical distance between the prostate and the gut, a substantial body of research suggests a potential link between the gut microbiome and both prostate cancer development and drug resistance. Liss et al. [30] conducted a study utilizing 16S rRNA sequencing to analyze the gut microbiota of 133 American men who underwent prostate biopsies. Their findings indicated elevated levels of Streptococcus and Bacteroides species in men diagnosed with prostate cancer. Further genome studies indicate that alterations in folate and arginine pathways, possibly influenced by gut microbes, may play a role in prostate cancer risk. Golombos et al. [13] observed a greater prevalence of Bacteroides massiliensis in individuals with prostate cancer in comparison to the healthy control group. Conversely, Faecalibacterium prausnitzii and Eubacterium rectalie exhibited higher relative abundances among the control group. Elevation of F.prausnitzii and E.rectalie is associated with the formation of anti-inflammatory butyrate, resulting in a symbiotic and protective effect [31, 32].
The results of data pooled from the PRACTICAL and FinnGen consortiums indicate that the genus Eubacterium fissicatena and Odoribacter are associated with an increased risk of prostate cancer. Conversely, the genus Adlercreutzia, Roseburia, Holdemania, Flavonifractor, and Allisonella are potential protective factors against prostate cancer. In fact, the gut microbiome tends to be influenced by host genetics. Xu et al. [33] demonstrated that Odoribacter had nominally significant heritability estimates (0.476), implying its potential role as a genetic carcinogenic factor for prostate cancer. The Eubacterium fissicatena group may be associated with in vivo metabolism. Nutritional investigations have shown a significant increase in the abundance of the E. fissicatena group in populations following a low-calorie diet for 6 days a week [34]. Despite the absence of specific studies on the relationship between the E. fissicatena group and prostate cancer, Zang et al. discovered a causal relationship between E. fissicatena and psoriasis. This finding suggests that gut microbes play a role in mediating the modulation of relevant immune responses [35].
Equol, a secondary metabolite of daidzein produced by the intestinal microbiota, is significantly associated with a reduced risk of prostate cancer in Japanese men, as indicated by plasma equol levels in a study [36]. Additionally, a positive correlation was detected between the genus Adlercreutzia and S-equol concentration [37]. Roseburia, a Gram-positive anaerobic bacterium, induces cancer cell apoptosis through the inhibition of histone deacetylases and related signaling pathways. It also contributes to immune homeostasis and has anti-inflammatory properties by producing short-chain fatty acids [38]. While research on the role of Holdemania, Flavonifractor, and Allisonella in prostate cancer is limited, their correlation with colorectal cancer and metabolism suggests potential roles in immune function, inflammation, and hormone levels. These factors have been implicated in the development and progression of prostate cancer [39, 40]. The effects of bacteria on prostate cancer risk are likely multifactorial, involving a combination of specific microbial activities, host responses, and interactions within the broader microbiome [41]. Eubacteriales from the same order may have different effects on prostate cancer, which is related to the fact that different species in the same bacterial order may have different metabolic pathways and produce different metabolites. Secondly, the functions of bacteria will vary according to the host and environment, and finally we cannot ignore the interactions between bacterial groups [42]. As research in this field progresses, a more nuanced understanding of these complexities will likely emerge.

4.1 Strength and limitation

Our MR analysis has the following advantages. Firstly, the sample size in the GWAS was large and the study strictly adhered to the three assumptions of MR, thus reducing confounders and reverse bias. Secondly, the study population included only individuals of European origin, minimizing population stratification interference. Finally, sensitivity analyses and different model estimations were used to ensure the reliability of the results.
However, certain limitations are unavoidable. Firstly, we assumed of a linear relationship between gut microbiota and prostate cancer risk, disregarding the potential presence of U-shaped associations. Furthermore, the generalizability of our results to different racial groups and various subtypes of prostate cancer is uncertain. Additionally, data limitations such as individual dietary habits and environmental factors may lead to confounding factors. Consequently, further molecular experiments are imperative to corroborate the findings of this study.

5 Conclusion

This MR study unveils genetic evidence supporting a causal link between gut microbiota and prostate cancer. The multi-omics-based platform is anticipated to offer fresh perspectives on prostate cancer diagnosis and treatment by delving into the pathogenic mechanisms and potential bacterial biomarkers.

Acknowledgements

We are grateful to the consortium that provided all the public GWAS data.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17–48.CrossRefPubMed Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. Ca Cancer J Clin. 2023;73(1):17–48.CrossRefPubMed
2.
Zurück zum Zitat Prostate cancer. Nat Rev Dis Primers. 2021, 7(1):8. Prostate cancer. Nat Rev Dis Primers. 2021, 7(1):8.
4.
Zurück zum Zitat Langston ME, Horn M, Khan S, Pakpahan R, Doering M, Dennis LK, Sutcliffe S. A systematic review and meta-analysis of associations between clinical prostatitis and prostate cancer: new estimates accounting for detection bias. Cancer Eepidemiol Biomarkers Prev. 2019;28(10):1594–603.CrossRef Langston ME, Horn M, Khan S, Pakpahan R, Doering M, Dennis LK, Sutcliffe S. A systematic review and meta-analysis of associations between clinical prostatitis and prostate cancer: new estimates accounting for detection bias. Cancer Eepidemiol Biomarkers Prev. 2019;28(10):1594–603.CrossRef
5.
Zurück zum Zitat Poutahidis T, Cappelle K, Levkovich T, Lee CW, Doulberis M, Ge Z, Fox JG, Horwitz BH, Erdman SE. Pathogenic intestinal bacteria enhance prostate cancer development via systemic activation of immune cells in mice. PLoS ONE. 2013;8(8): e73933.ADSCrossRefPubMedPubMedCentral Poutahidis T, Cappelle K, Levkovich T, Lee CW, Doulberis M, Ge Z, Fox JG, Horwitz BH, Erdman SE. Pathogenic intestinal bacteria enhance prostate cancer development via systemic activation of immune cells in mice. PLoS ONE. 2013;8(8): e73933.ADSCrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Hunter PA, Dawson S, French GL, Goossens H, Hawkey PM, Kuijper EJ, Nathwani D, Taylor DJ, Teale CJ, Warren RE, et al. Antimicrobial-resistant pathogens in animals and man: prescribing, practices and policies. J Antimicrob Chemother. 2010;65(Suppl 1):i3-17.CrossRefPubMed Hunter PA, Dawson S, French GL, Goossens H, Hawkey PM, Kuijper EJ, Nathwani D, Taylor DJ, Teale CJ, Warren RE, et al. Antimicrobial-resistant pathogens in animals and man: prescribing, practices and policies. J Antimicrob Chemother. 2010;65(Suppl 1):i3-17.CrossRefPubMed
7.
Zurück zum Zitat Tulstrup MV, Christensen EG, Carvalho V, Linninge C, Ahrné S, Højberg O, Licht TR, Bahl MI. Antibiotic treatment affects intestinal permeability and gut microbial composition in wistar rats dependent on antibiotic class. PLoS ONE. 2015;10(12): e0144854.CrossRefPubMedPubMedCentral Tulstrup MV, Christensen EG, Carvalho V, Linninge C, Ahrné S, Højberg O, Licht TR, Bahl MI. Antibiotic treatment affects intestinal permeability and gut microbial composition in wistar rats dependent on antibiotic class. PLoS ONE. 2015;10(12): e0144854.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell. 2021;39(10):1317–41.CrossRefPubMed Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell. 2021;39(10):1317–41.CrossRefPubMed
9.
Zurück zum Zitat Althuis MD, Fergenbaum JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME. Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev. 2004;13(10):1558–68.CrossRefPubMed Althuis MD, Fergenbaum JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME. Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev. 2004;13(10):1558–68.CrossRefPubMed
10.
Zurück zum Zitat Sha S, Ni L, Stefil M, Dixon M, Mouraviev V. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig Clin Urol. 2020;61(Suppl 1):S43-s50.CrossRefPubMed Sha S, Ni L, Stefil M, Dixon M, Mouraviev V. The human gastrointestinal microbiota and prostate cancer development and treatment. Investig Clin Urol. 2020;61(Suppl 1):S43-s50.CrossRefPubMed
11.
Zurück zum Zitat Krieger JN, Thumbikat PJMs: Bacterial prostatitis: bacterial virulence, clinical outcomes, and new directions. 2016, 4(1):4.1. 01. Krieger JN, Thumbikat PJMs: Bacterial prostatitis: bacterial virulence, clinical outcomes, and new directions. 2016, 4(1):4.1. 01.
12.
Zurück zum Zitat Maeda T, Murata M, Chiba H, Takasawa A, Tanaka S, Kojima T, Masumori N, Tsukamoto T, Sawada N. Claudin-4-targeted therapy using Clostridium perfringens enterotoxin for prostate cancer. Prostate. 2012;72(4):351–60.CrossRefPubMed Maeda T, Murata M, Chiba H, Takasawa A, Tanaka S, Kojima T, Masumori N, Tsukamoto T, Sawada N. Claudin-4-targeted therapy using Clostridium perfringens enterotoxin for prostate cancer. Prostate. 2012;72(4):351–60.CrossRefPubMed
13.
Zurück zum Zitat Golombos DM, Ayangbesan A, O’Malley P, Lewicki P, Barlow L, Barbieri CE, Chan C, DuLong C, Abu-Ali G, Huttenhower C, et al. The role of gut microbiome in the pathogenesis of prostate cancer: a prospective. Pilot Study Urol. 2018;111:122–8.PubMed Golombos DM, Ayangbesan A, O’Malley P, Lewicki P, Barlow L, Barbieri CE, Chan C, DuLong C, Abu-Ali G, Huttenhower C, et al. The role of gut microbiome in the pathogenesis of prostate cancer: a prospective. Pilot Study Urol. 2018;111:122–8.PubMed
14.
Zurück zum Zitat Sfanos KS, Markowski MC, Peiffer LB, Ernst SE, White JR, Pienta KJ, Antonarakis ES, Ross AE. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 2018;21(4):539–48.CrossRefPubMedPubMedCentral Sfanos KS, Markowski MC, Peiffer LB, Ernst SE, White JR, Pienta KJ, Antonarakis ES, Ross AE. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 2018;21(4):539–48.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Emdin CA, Khera AV, Kathiresan SJJ. Mendelian randomization. 2017;318(19):1925–6. Emdin CA, Khera AV, Kathiresan SJJ. Mendelian randomization. 2017;318(19):1925–6.
16.
Zurück zum Zitat Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98.CrossRefPubMedPubMedCentral Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, VanderWeele TJ, Higgins JPT, Timpson NJ, Dimou N, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR Statement. JAMA. 2021;326(16):1614–21.CrossRefPubMed Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, VanderWeele TJ, Higgins JPT, Timpson NJ, Dimou N, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR Statement. JAMA. 2021;326(16):1614–21.CrossRefPubMed
18.
Zurück zum Zitat Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.CrossRefPubMedPubMedCentral Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–52.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A, Le Roy CI, Raygoza Garay JA, Finnicum CT, Liu X, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53(2):156–65.CrossRefPubMedPubMedCentral Kurilshikov A, Medina-Gomez C, Bacigalupe R, Radjabzadeh D, Wang J, Demirkan A, Le Roy CI, Raygoza Garay JA, Finnicum CT, Liu X, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53(2):156–65.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, Dadaev T, Leongamornlert D, Anokian E, Cieza-Borrella C, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928–36.CrossRefPubMedPubMedCentral Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, Dadaev T, Leongamornlert D, Anokian E, Cieza-Borrella C, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928–36.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508–18.ADSCrossRefPubMedPubMedCentral Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508–18.ADSCrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Mounier N, Kutalik Z. Bias correction for inverse variance weighting Mendelian randomization. Genet Epidemiol. 2023;47(4):314–31.CrossRefPubMed Mounier N, Kutalik Z. Bias correction for inverse variance weighting Mendelian randomization. Genet Epidemiol. 2023;47(4):314–31.CrossRefPubMed
23.
Zurück zum Zitat Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.CrossRefPubMedPubMedCentral Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.CrossRefPubMedPubMedCentral Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.CrossRefPubMedPubMedCentral Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.CrossRefPubMedPubMedCentral Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28(1):30–42.CrossRefPubMed Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017;28(1):30–42.CrossRefPubMed
28.
Zurück zum Zitat Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.CrossRefPubMedPubMedCentral Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11): e1007081.CrossRefPubMedPubMedCentral Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11): e1007081.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Liss MA, White JR, Goros M, Gelfond J, Leach R, Johnson-Pais T, Lai Z, Rourke E, Basler J, Ankerst D, et al. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur Urol. 2018;74(5):575–82.CrossRefPubMedPubMedCentral Liss MA, White JR, Goros M, Gelfond J, Leach R, Johnson-Pais T, Lai Z, Rourke E, Basler J, Ankerst D, et al. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur Urol. 2018;74(5):575–82.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16(3):255–61.CrossRefPubMed Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16(3):255–61.CrossRefPubMed
32.
Zurück zum Zitat Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105(43):16731–6.ADSCrossRefPubMedPubMedCentral Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105(43):16731–6.ADSCrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Xu F, Fu Y, Sun TY, Jiang Z, Miao Z, Shuai M, Gou W, Ling CW, Yang J, Wang J, et al. The interplay between host genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases. Microbiome. 2020;8(1):145.CrossRefPubMedPubMedCentral Xu F, Fu Y, Sun TY, Jiang Z, Miao Z, Shuai M, Gou W, Ling CW, Yang J, Wang J, et al. The interplay between host genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases. Microbiome. 2020;8(1):145.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Mohr AE, Jasbi P, Bowes DA, Dirks B, Whisner CM, Arciero KM, Poe M, Gu H, Gumpricht E, Sweazea KL, et al. Exploratory analysis of one versus two-day intermittent fasting protocols on the gut microbiome and plasma metabolome in adults with overweight/obesity. Front Nutr. 2022;9:1036080.CrossRefPubMedPubMedCentral Mohr AE, Jasbi P, Bowes DA, Dirks B, Whisner CM, Arciero KM, Poe M, Gu H, Gumpricht E, Sweazea KL, et al. Exploratory analysis of one versus two-day intermittent fasting protocols on the gut microbiome and plasma metabolome in adults with overweight/obesity. Front Nutr. 2022;9:1036080.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Zang C, Liu J, Mao M, Zhu W, Chen W, Wei B. Causal associations between gut microbiota and psoriasis: a Mendelian randomization study. Dermatol Ther. 2023;13:2331.CrossRef Zang C, Liu J, Mao M, Zhu W, Chen W, Wei B. Causal associations between gut microbiota and psoriasis: a Mendelian randomization study. Dermatol Ther. 2023;13:2331.CrossRef
36.
Zurück zum Zitat Kurahashi N, Iwasaki M, Inoue M, Sasazuki S, Tsugane S. Plasma isoflavones and subsequent risk of prostate cancer in a nested case-control study: the Japan Public Health Center. J Clin Oncol. 2008;26(36):5923–9.CrossRefPubMed Kurahashi N, Iwasaki M, Inoue M, Sasazuki S, Tsugane S. Plasma isoflavones and subsequent risk of prostate cancer in a nested case-control study: the Japan Public Health Center. J Clin Oncol. 2008;26(36):5923–9.CrossRefPubMed
37.
Zurück zum Zitat Liu Y, Wu X, Jiang H. High dietary fat intake lowers serum equol concentration and promotes prostate carcinogenesis in a transgenic mouse prostate model. Nutr Metab. 2019;16:24.CrossRef Liu Y, Wu X, Jiang H. High dietary fat intake lowers serum equol concentration and promotes prostate carcinogenesis in a transgenic mouse prostate model. Nutr Metab. 2019;16:24.CrossRef
38.
Zurück zum Zitat Chen J, Vitetta L. Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clin Colorectal Cancer. 2018;17(3):e541–4.CrossRefPubMed Chen J, Vitetta L. Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary fiber. Clin Colorectal Cancer. 2018;17(3):e541–4.CrossRefPubMed
39.
Zurück zum Zitat Sheng Q, Du H, Cheng X, Cheng X, Tang Y, Pan L, Wang Q, Lin J. Characteristics of fecal gut microbiota in patients with colorectal cancer at different stages and different sites. Oncol Lett. 2019;18(5):4834–44.PubMedPubMedCentral Sheng Q, Du H, Cheng X, Cheng X, Tang Y, Pan L, Wang Q, Lin J. Characteristics of fecal gut microbiota in patients with colorectal cancer at different stages and different sites. Oncol Lett. 2019;18(5):4834–44.PubMedPubMedCentral
40.
Zurück zum Zitat Kharofa J, Apewokin S, Alenghat T, Ollberding NJ. Metagenomic analysis of the fecal microbiome in colorectal cancer patients compared to healthy controls as a function of age. Cancer Med. 2023;12(3):2945–57.CrossRefPubMed Kharofa J, Apewokin S, Alenghat T, Ollberding NJ. Metagenomic analysis of the fecal microbiome in colorectal cancer patients compared to healthy controls as a function of age. Cancer Med. 2023;12(3):2945–57.CrossRefPubMed
41.
Zurück zum Zitat Fujita K, Matsushita M, Banno E, De Velasco MA, Hatano K, Nonomura N, Uemura H. Gut microbiome and prostate cancer. Int J Urol. 2022;29(8):793–8.CrossRefPubMed Fujita K, Matsushita M, Banno E, De Velasco MA, Hatano K, Nonomura N, Uemura H. Gut microbiome and prostate cancer. Int J Urol. 2022;29(8):793–8.CrossRefPubMed
Metadaten
Titel
Causal relationship between gut microbiota and prostate cancer contributes to the gut-prostate axis: insights from a Mendelian randomization study
verfasst von
Li Wang
Yong-bo Zheng
Shan Yin
Kun-peng Li
Jia-hao Wang
Er-hao Bao
Ping-yu Zhu
Publikationsdatum
01.12.2024
Verlag
Springer US
Erschienen in
Discover Oncology / Ausgabe 1/2024
Print ISSN: 1868-8497
Elektronische ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-024-00925-1

Weitere Artikel der Ausgabe 1/2024

Discover Oncology 1/2024 Zur Ausgabe

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.