Skip to main content
Erschienen in: Clinical Pharmacokinetics 2/2002

01.02.2002 | Review Articles

Cellular and Clinical Pharmacology of Fludarabine

verfasst von: Dr Varsha Gandhi, William Plunkett

Erschienen in: Clinical Pharmacokinetics | Ausgabe 2/2002

Einloggen, um Zugang zu erhalten

Abstract

In the past decade, fludarabine has had a major impact in increasing the effectiveness of treatment of patients with indolent B-cell malignancies. This has come about in a variety of clinical circumstances, including use of fludarabine alone as well as in combinations with DNA-damaging agents or membrane-targeted antibodies. Other strategies have used fludarabine to reduce immunological function, thus facilitating non-myeloablative stem cell transplants.
Fludarabine is a prodrug that is converted to the free nucleoside 9-β-D-arabinosyl-2-fluoroadenine (F-ara-A) which enters cells and accumulates mainly as the 5′-triphosphate, F-ara-ATP. The rate-limiting step in the formation of triphosphate is conversion of F-ara-A to its monophosphate, which is catalyzed by deoxycytidine kinase. Although F-ara-A is not a good substrate for this enzyme, the high specific activity of this protein results in efficient phosphorylation of F-ara-A in certain tissues. F-ara-ATP has multiple mechanisms of action, which are mostly directed toward DNA. These include inhibition of ribonucleotide reductase, incorporation into DNA resulting in repression of further DNA polymerisation, and inhibition of DNA ligase and DNA primase. Collectively these actions affect DNA synthesis, which is the major mechanism of F-ara-A-induced cytotoxicity Secondarily, incorporation into RNA and inhibition of transcription has been shown in cell lines.
With the standard dose of fludarabine (25 to 30 mg/m2/day given over 30 minutes for 5 days), plasma concentrations of about 3 μmol/L F-ara-A are achieved at the end of each infusion. Serial sampling of leukaemia cells from patients receiving these standard doses of fludarabine has demonstrated that the peak concentrations of F-ara-ATP are achieved 4 hours after start of fludarabine infusion. Although there is heterogeneity among individuals with respect to rate of F-ara-ATP accumulation, the peak concentrations are generally proportional to the dose of the drug. Knowledge of the plasma pharmacokinetics of its principal nucleoside metabolite F-ara-A, and the cellular pharmacology of the proximal active metabolite, F-ara-ATP, has provided some understanding of the activity of fludarabine when used as a single agent. Preclinical studies directed toward learning the mechanisms of action of this agent have formed the basis for several mechanism-based strategies for its combination and scheduling with other agents.
As a single agent fludarabine has been effective for the indolent leukaemias. Biochemical modulation strategies resulted in enhanced accumulation of cytarabine triphosphate and led to the use of fludarabine for the treatment of acute leukaemias. Combination of fludarabine with DNA damaging agents to inhibit DNA repair processes has been highly effective for indolent leukaemias and lymphomas. The current review brings together knowledge of the mechanisms of fludarabine, the state of understanding of the plasma pharmacokinetics, and cellular pharmacodynamics of fludarabine nucleotides. This may be useful in the design of future therapeutic approaches.
Fußnoten
1
Use of tradenames is for product identification only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Montgomery JA, Hewson K. Synthesis of potential anticancer agents X: 2-fluoroadenosine. J Am Chem Soc 1957; 79: 4559–63CrossRef Montgomery JA, Hewson K. Synthesis of potential anticancer agents X: 2-fluoroadenosine. J Am Chem Soc 1957; 79: 4559–63CrossRef
2.
Zurück zum Zitat Chilson OP, Fisher JR. Some comparative studies of calf and chicken adenosine deaminase. Arch Biochem Biophys 1963; 102: 77–85PubMedCrossRef Chilson OP, Fisher JR. Some comparative studies of calf and chicken adenosine deaminase. Arch Biochem Biophys 1963; 102: 77–85PubMedCrossRef
3.
Zurück zum Zitat Cory JG, Suhadolnik RJ. Structural requirements for binding by adenosine deaminase. Biochemistry 1965; 4: 1729–32CrossRef Cory JG, Suhadolnik RJ. Structural requirements for binding by adenosine deaminase. Biochemistry 1965; 4: 1729–32CrossRef
4.
Zurück zum Zitat Frederickson S. Specificity of adenosine deaminase toward adenosine and 2′-deoxyadenosine analogues. Arch Biochem Biophys 1966; 113: 383–9CrossRef Frederickson S. Specificity of adenosine deaminase toward adenosine and 2′-deoxyadenosine analogues. Arch Biochem Biophys 1966; 113: 383–9CrossRef
5.
Zurück zum Zitat Skipper HE, Montgomery JA, Thompson JR, et al. Structure-activity relationships and cross-resistance observed on evaluation of a series of purine analogs against experimental neoplasms. Cancer Res 1959; 19: 425–37PubMed Skipper HE, Montgomery JA, Thompson JR, et al. Structure-activity relationships and cross-resistance observed on evaluation of a series of purine analogs against experimental neoplasms. Cancer Res 1959; 19: 425–37PubMed
6.
Zurück zum Zitat Shigeura HT, Boxer GE, Sampson SD, et al. Metabolism of 2-fluoroadenosine by Ehrlich ascites cells. Arch Biochem Biophys 1965; 111:713–9PubMedCrossRef Shigeura HT, Boxer GE, Sampson SD, et al. Metabolism of 2-fluoroadenosine by Ehrlich ascites cells. Arch Biochem Biophys 1965; 111:713–9PubMedCrossRef
7.
Zurück zum Zitat Parks Jr RE, Brown P. Incorporation of nucleosides into the nucleotide pools of human erythrocytes: adenosine and its analogs. Biochemistry 1983; 12: 3294–302CrossRef Parks Jr RE, Brown P. Incorporation of nucleosides into the nucleotide pools of human erythrocytes: adenosine and its analogs. Biochemistry 1983; 12: 3294–302CrossRef
8.
Zurück zum Zitat Zimmerman TP, Rideout JE, Wolberg G, et al. 2-Fluoroadenosine 3′-5′-monophosphate. A metabolite of 2-fluoroadenosine in mouse cytotoxic lymphocytes. J Biol Chem 1976; 251: 6757–66PubMed Zimmerman TP, Rideout JE, Wolberg G, et al. 2-Fluoroadenosine 3′-5′-monophosphate. A metabolite of 2-fluoroadenosine in mouse cytotoxic lymphocytes. J Biol Chem 1976; 251: 6757–66PubMed
9.
10.
Zurück zum Zitat Danhauser L, Plunkett W, Keating M, et al. 9-β-D-Arabino-furanosyl-2-fluoroadenine 5′-monophosphate pharmacokinetics in plasma and tumor cells of patients with relapsed leukemia andlymphoma. Cancer Chemother Pharmacol 1996; 18: 145–52 Danhauser L, Plunkett W, Keating M, et al. 9-β-D-Arabino-furanosyl-2-fluoroadenine 5′-monophosphate pharmacokinetics in plasma and tumor cells of patients with relapsed leukemia andlymphoma. Cancer Chemother Pharmacol 1996; 18: 145–52
11.
Zurück zum Zitat Barrueco JR, Jacobsen DM, Chang C-H, et al. Proposed mechanism of therapeutic selectivity of 9-β-D-arabinofuranosyl-2-fluoroadenine against murine leukemia based upon lower capacities for transport and phosphorylation in proliferative intestinal epithelium compared to tumor cells. Cancer Res 1987; 47: 700–6PubMed Barrueco JR, Jacobsen DM, Chang C-H, et al. Proposed mechanism of therapeutic selectivity of 9-β-D-arabinofuranosyl-2-fluoroadenine against murine leukemia based upon lower capacities for transport and phosphorylation in proliferative intestinal epithelium compared to tumor cells. Cancer Res 1987; 47: 700–6PubMed
12.
Zurück zum Zitat Carson DA, Wasson DB, Kaye J, et al. Deoxycytidine kinase-mediated toxicity of deoxyadenosine analogs toward human lymphoblasts in vitro and toward murine L1210 leukemia in vivo. Proc Natl Acad Sci U S A 1980; 77: 6865–9PubMedCrossRef Carson DA, Wasson DB, Kaye J, et al. Deoxycytidine kinase-mediated toxicity of deoxyadenosine analogs toward human lymphoblasts in vitro and toward murine L1210 leukemia in vivo. Proc Natl Acad Sci U S A 1980; 77: 6865–9PubMedCrossRef
13.
Zurück zum Zitat Dow LW, Bell DE, Poulakos L, et al. Difference in metabolism and cytotoxicity between 9-β-D-arabinofuranosyladenine and 9-β-D-arabinofuranosyl-2-fluoroadenine in human leukemic lymphoblasts. Cancer Res 1980; 40: 1405–10PubMed Dow LW, Bell DE, Poulakos L, et al. Difference in metabolism and cytotoxicity between 9-β-D-arabinofuranosyladenine and 9-β-D-arabinofuranosyl-2-fluoroadenine in human leukemic lymphoblasts. Cancer Res 1980; 40: 1405–10PubMed
14.
Zurück zum Zitat Shewach DS, Reynolds KK, and Hertel L. Nucleotide specificity of human deoxycytidine kinase. Mol Pharmacol 1993; 42: 518–24 Shewach DS, Reynolds KK, and Hertel L. Nucleotide specificity of human deoxycytidine kinase. Mol Pharmacol 1993; 42: 518–24
15.
Zurück zum Zitat Krenitsky TA, Tuttle JV, Koszalka GW, et al. Deoxycytidine kinase from calf thymus: substrate and inhibitor specificity. J Biol Chem 1976; 251: 4055–61PubMed Krenitsky TA, Tuttle JV, Koszalka GW, et al. Deoxycytidine kinase from calf thymus: substrate and inhibitor specificity. J Biol Chem 1976; 251: 4055–61PubMed
16.
Zurück zum Zitat Avramis VI, Plunkett W. Metabolism and therapeutic efficacy of 9-β-D-arabinofuranosyl-2-fluoroadenine against murine leukemia P388. Cancer Res 1982; 42: 2587–91PubMed Avramis VI, Plunkett W. Metabolism and therapeutic efficacy of 9-β-D-arabinofuranosyl-2-fluoroadenine against murine leukemia P388. Cancer Res 1982; 42: 2587–91PubMed
17.
Zurück zum Zitat Brockman RW, Schabel Jr FM, Montgomery JA. Biological activity of 9-β-D-arabinofuranosyl-2-fluoroadenine, a metabolically stable analog of 9-β-D-arabinofuranosyladenine. Biochem Pharmacol 1977; 26: 2193–6PubMedCrossRef Brockman RW, Schabel Jr FM, Montgomery JA. Biological activity of 9-β-D-arabinofuranosyl-2-fluoroadenine, a metabolically stable analog of 9-β-D-arabinofuranosyladenine. Biochem Pharmacol 1977; 26: 2193–6PubMedCrossRef
18.
Zurück zum Zitat Plunkett W, Alexander L, Chubb S, et al. Comparison of the toxicity and metabolism of 9-β-D-arabinofuranosyl-2-fluoroadenine and 9-β-D-arabinofuranosyladenine in human lymphoblastoid cells. Cancer Res 1980; 40: 2349–55PubMed Plunkett W, Alexander L, Chubb S, et al. Comparison of the toxicity and metabolism of 9-β-D-arabinofuranosyl-2-fluoroadenine and 9-β-D-arabinofuranosyladenine in human lymphoblastoid cells. Cancer Res 1980; 40: 2349–55PubMed
19.
Zurück zum Zitat Huang P, Plunkett W. Action of 9-β-D-arabinofuranosyl-2-fluoroadenine on RNA metabolism. Mol Pharmacol 1991; 39: 449–55PubMed Huang P, Plunkett W. Action of 9-β-D-arabinofuranosyl-2-fluoroadenine on RNA metabolism. Mol Pharmacol 1991; 39: 449–55PubMed
20.
Zurück zum Zitat Spriggs D, Robbins G, Mitchell T, et al. Incorporation of 9-β-D-arabinofuranosyl-2-fluoroadenine into HL-60 cellular RNA and DNA. Biochem Pharmacol 1986; 35: 247–52PubMedCrossRef Spriggs D, Robbins G, Mitchell T, et al. Incorporation of 9-β-D-arabinofuranosyl-2-fluoroadenine into HL-60 cellular RNA and DNA. Biochem Pharmacol 1986; 35: 247–52PubMedCrossRef
21.
Zurück zum Zitat Huang P, Sandoval A, Van Den Neste E, et al. Inhibition of RNA transcription: a biochemical mechanism of fludarabine-in-duced apoptosis in chronic lymphocytic leukemia cells. Leukemia 2000; 14: 1405–13PubMedCrossRef Huang P, Sandoval A, Van Den Neste E, et al. Inhibition of RNA transcription: a biochemical mechanism of fludarabine-in-duced apoptosis in chronic lymphocytic leukemia cells. Leukemia 2000; 14: 1405–13PubMedCrossRef
22.
Zurück zum Zitat Plunkett W, Huang P, Gandhi V Metabolism and action of fludarabine phosphate. Semin Oncol 1990; 17 (5 Suppl. 8): 3–17PubMed Plunkett W, Huang P, Gandhi V Metabolism and action of fludarabine phosphate. Semin Oncol 1990; 17 (5 Suppl. 8): 3–17PubMed
23.
Zurück zum Zitat Huang P, Chubb S, Plunkett W. Termination of DNA synthesis by 9-β-D-arabinofuranosyl-2-fluoroadenine: a mechanism for cytotoxicity. J Biol Chem 1990; 265: 16617–25PubMed Huang P, Chubb S, Plunkett W. Termination of DNA synthesis by 9-β-D-arabinofuranosyl-2-fluoroadenine: a mechanism for cytotoxicity. J Biol Chem 1990; 265: 16617–25PubMed
24.
Zurück zum Zitat Plunkett W, Saunders PP. Metabolism and action of purine nucleoside analogs. Pharmacol Ther 1991; 49: 2339–68CrossRef Plunkett W, Saunders PP. Metabolism and action of purine nucleoside analogs. Pharmacol Ther 1991; 49: 2339–68CrossRef
25.
Zurück zum Zitat Parker WB, Bapat AR, Shen J-X, et al. Interaction of 2-halogenated dATP analogs (F, Cl, and Br) with human DNA polymerases, DNA primase and ribonucleotide reductase. Mol Pharmacol 1988; 34: 485–91PubMed Parker WB, Bapat AR, Shen J-X, et al. Interaction of 2-halogenated dATP analogs (F, Cl, and Br) with human DNA polymerases, DNA primase and ribonucleotide reductase. Mol Pharmacol 1988; 34: 485–91PubMed
26.
Zurück zum Zitat Tseng WC, Derse D, Cheng Y-C, et al. In vitro activity of 9-β-D-arabinofuranosyl-2-fluoroadenine and the biochemical actions of its triphosphate on DNA polymerases and ribonucleotide reductase from HeLa cells. Mol Pharmacol 1982; 21: 474–7PubMed Tseng WC, Derse D, Cheng Y-C, et al. In vitro activity of 9-β-D-arabinofuranosyl-2-fluoroadenine and the biochemical actions of its triphosphate on DNA polymerases and ribonucleotide reductase from HeLa cells. Mol Pharmacol 1982; 21: 474–7PubMed
27.
Zurück zum Zitat White L, Shaddix SC, Brockman RW, et al. Comparison of the actions of 9-β-D-arabinofuranosyl-2-fluoroadenine and 9-β-D-arabinofuranosyladenine on target enzymes from mouse tumor cells. Cancer Res 1982; 42: 2260–4PubMed White L, Shaddix SC, Brockman RW, et al. Comparison of the actions of 9-β-D-arabinofuranosyl-2-fluoroadenine and 9-β-D-arabinofuranosyladenine on target enzymes from mouse tumor cells. Cancer Res 1982; 42: 2260–4PubMed
28.
Zurück zum Zitat Seymour JF, Huang P, Plunkett W, et al. Influence of fludarabine on pharmacokinetics and pharmacodynamics of cytarabine: implications for a continuous infusion schedule. Clin Cancer Res 1996; 2: 653–8PubMed Seymour JF, Huang P, Plunkett W, et al. Influence of fludarabine on pharmacokinetics and pharmacodynamics of cytarabine: implications for a continuous infusion schedule. Clin Cancer Res 1996; 2: 653–8PubMed
29.
Zurück zum Zitat Gandhi V, Plunkett W. Modulation of arabinosylnucleoside metabolism by arabinosylnucleotides in human leukemia cells. Cancer Res 1988; 48: 329–34PubMed Gandhi V, Plunkett W. Modulation of arabinosylnucleoside metabolism by arabinosylnucleotides in human leukemia cells. Cancer Res 1988; 48: 329–34PubMed
30.
Zurück zum Zitat Gandhi V, Estey E, Keating MJ, et al. Fludarabine potentiates metabolism of arabinosylcytosine in patients with acute myelogenous leukemia during therapy. J Clin Oncol 1993; 11: 116–24PubMed Gandhi V, Estey E, Keating MJ, et al. Fludarabine potentiates metabolism of arabinosylcytosine in patients with acute myelogenous leukemia during therapy. J Clin Oncol 1993; 11: 116–24PubMed
31.
Zurück zum Zitat Gandhi V, Huang P, Chapman A, et al. Incorporation of fludarabine and arabinosylcytosine 5′-triphosphates by DNA polymerase α: affinity, interaction, and consequences. Clin Cancer Res 1997; 3: 1347–55PubMed Gandhi V, Huang P, Chapman A, et al. Incorporation of fludarabine and arabinosylcytosine 5′-triphosphates by DNA polymerase α: affinity, interaction, and consequences. Clin Cancer Res 1997; 3: 1347–55PubMed
32.
Zurück zum Zitat Catapano CV, Perrino FW, Fernandes DJ. Primer RNA chain termination induced by 9-beta-D-arabinofuranosyl-2-fluoro-adenine 5′-triphosphate: a mechanism for DNA synthesis inhibition. J Biol Chem 1993; 268: 7179–85PubMed Catapano CV, Perrino FW, Fernandes DJ. Primer RNA chain termination induced by 9-beta-D-arabinofuranosyl-2-fluoro-adenine 5′-triphosphate: a mechanism for DNA synthesis inhibition. J Biol Chem 1993; 268: 7179–85PubMed
33.
Zurück zum Zitat Parker W, Cheng, Y-C. Inhibition of DNA primase by nucleoside triphosphates and their arabinofuranosyl analogs. Mol Pharmacol 1987; 31: 146–51PubMed Parker W, Cheng, Y-C. Inhibition of DNA primase by nucleoside triphosphates and their arabinofuranosyl analogs. Mol Pharmacol 1987; 31: 146–51PubMed
34.
Zurück zum Zitat Kamiya K, Huang P, Plunkett W. Inhibition of the 3′→5′ ex-onuclease of human DNA polymerase epsilon by fludarabineterminated DNA. J Biol Chem 1996; 271: 19428–35PubMedCrossRef Kamiya K, Huang P, Plunkett W. Inhibition of the 3′→5′ ex-onuclease of human DNA polymerase epsilon by fludarabineterminated DNA. J Biol Chem 1996; 271: 19428–35PubMedCrossRef
35.
36.
Zurück zum Zitat Yang S-W, Huang P, Plunkett W, et al. Dual mode of inhibition of purified DNA ligase I from human cells by 9-beta-D-arabinofuranosyl-2-fluoroadenine triphosphate. J Biol Chem 1992; 267: 2345–9PubMed Yang S-W, Huang P, Plunkett W, et al. Dual mode of inhibition of purified DNA ligase I from human cells by 9-beta-D-arabinofuranosyl-2-fluoroadenine triphosphate. J Biol Chem 1992; 267: 2345–9PubMed
37.
Zurück zum Zitat Huang P, Siciliano MJ, Plunkett W. Gene deletion, a mechanism of induced mutation by arabinofuranosyl-2-fluoroadenine. Mutat Res 1989; 210: 291–301PubMedCrossRef Huang P, Siciliano MJ, Plunkett W. Gene deletion, a mechanism of induced mutation by arabinofuranosyl-2-fluoroadenine. Mutat Res 1989; 210: 291–301PubMedCrossRef
38.
Zurück zum Zitat Huang P, Plunkett W Fludarabine- and gemcitabine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother Pharmacol 1995; 36: 181–8PubMedCrossRef Huang P, Plunkett W Fludarabine- and gemcitabine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother Pharmacol 1995; 36: 181–8PubMedCrossRef
39.
Zurück zum Zitat Huang P, Robertson LE, Wright S, et al. High molecular weight DNA fragmentation: a critical event in nucleoside analogueinduced apoptosis in leukemia cells. Clin Cancer Res 1995; 1: 1005–13PubMed Huang P, Robertson LE, Wright S, et al. High molecular weight DNA fragmentation: a critical event in nucleoside analogueinduced apoptosis in leukemia cells. Clin Cancer Res 1995; 1: 1005–13PubMed
40.
Zurück zum Zitat Huang P, Ballai K, Plunkett W. Biochemical characterization of the protein activity responsible for high molecular weight DNA fragmentation during drug-induced apoptosis. Cancer Res 1997; 57: 3407–14PubMed Huang P, Ballai K, Plunkett W. Biochemical characterization of the protein activity responsible for high molecular weight DNA fragmentation during drug-induced apoptosis. Cancer Res 1997; 57: 3407–14PubMed
41.
Zurück zum Zitat Liu X, Zou H, Slaughter C, et al. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997; 89: 175–84PubMedCrossRef Liu X, Zou H, Slaughter C, et al. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997; 89: 175–84PubMedCrossRef
42.
Zurück zum Zitat Leoni LM, Chao Q, Cottam HB. Induction of an apoptotic program in cell-free extracts by 2-chloro-2′-deoxyadenosine 5′-triphosphate and cytochrome c. Proc Natl Acad Sci U S A 1998; 95: 9567–71PubMedCrossRef Leoni LM, Chao Q, Cottam HB. Induction of an apoptotic program in cell-free extracts by 2-chloro-2′-deoxyadenosine 5′-triphosphate and cytochrome c. Proc Natl Acad Sci U S A 1998; 95: 9567–71PubMedCrossRef
43.
Zurück zum Zitat Genini D, Budihardjo I, Plunkett W, et al. Nucleotide requirement for the in vitro activation of Apaf-1-mediated caspase pathway. J Biol Chem 2000; 275: 29–34PubMedCrossRef Genini D, Budihardjo I, Plunkett W, et al. Nucleotide requirement for the in vitro activation of Apaf-1-mediated caspase pathway. J Biol Chem 2000; 275: 29–34PubMedCrossRef
44.
Zurück zum Zitat Malspeis L, Grever MR, Staubus AE, et al. Pharmacokinetics of 2-F-ara-A (9-beta-D-arabinofuranosyl-2-fluoroadenine) in cancer patients during the phase I clinical investigation of fludarabine phosphate. Sem Oncol 1990; 17 (5 Suppl. 8): 18–32 Malspeis L, Grever MR, Staubus AE, et al. Pharmacokinetics of 2-F-ara-A (9-beta-D-arabinofuranosyl-2-fluoroadenine) in cancer patients during the phase I clinical investigation of fludarabine phosphate. Sem Oncol 1990; 17 (5 Suppl. 8): 18–32
45.
Zurück zum Zitat Hutton JJ, Von Hoff DD, Kuhn J, et al. Phase I clinical investigation of 9-beta-D-arabinofuranosyl-2-fluoroadenine 5′-mono-phosphate (NSC 312887), a new purine antimetabolite. Cancer Res 1984; 44: 4183–6PubMed Hutton JJ, Von Hoff DD, Kuhn J, et al. Phase I clinical investigation of 9-beta-D-arabinofuranosyl-2-fluoroadenine 5′-mono-phosphate (NSC 312887), a new purine antimetabolite. Cancer Res 1984; 44: 4183–6PubMed
46.
Zurück zum Zitat Danhauser L, Plunkett W, Liliemark J, et al. Comparison between the plasma and intracellular pharmacology of 1-beta-D-arabinofuranosylcytosine and 9-beta-D-arabinofuranosyl-2-fluoroadenine 5′-monophosphate in patient with relapsed leukemia. Leukemia 1987; 1: 638–43PubMed Danhauser L, Plunkett W, Liliemark J, et al. Comparison between the plasma and intracellular pharmacology of 1-beta-D-arabinofuranosylcytosine and 9-beta-D-arabinofuranosyl-2-fluoroadenine 5′-monophosphate in patient with relapsed leukemia. Leukemia 1987; 1: 638–43PubMed
47.
Zurück zum Zitat Hersh MR, Kuhn J, Philips JL, et al. Pharmacokinetic study of fludarabine phosphate (NSC 312887). Cancer Chemother Pharmacol 1986; 17: 277–80PubMedCrossRef Hersh MR, Kuhn J, Philips JL, et al. Pharmacokinetic study of fludarabine phosphate (NSC 312887). Cancer Chemother Pharmacol 1986; 17: 277–80PubMedCrossRef
48.
Zurück zum Zitat Kemena A, Fernandez M, Bauman J, et al. A sensitive fluorescence assay for quantitation of fludarabine and metabolites in biological fluids. Clin Chim Acta 1991; 200: 95–106PubMedCrossRef Kemena A, Fernandez M, Bauman J, et al. A sensitive fluorescence assay for quantitation of fludarabine and metabolites in biological fluids. Clin Chim Acta 1991; 200: 95–106PubMedCrossRef
49.
Zurück zum Zitat Avramis VI, Champagne J, Sato J, et al. Pharmacology of fludarabine phosphate after a phase I/II trial by a loading bolus and continuous infusion in pediatric patients. Cancer Res 1990; 50: 7226–31PubMed Avramis VI, Champagne J, Sato J, et al. Pharmacology of fludarabine phosphate after a phase I/II trial by a loading bolus and continuous infusion in pediatric patients. Cancer Res 1990; 50: 7226–31PubMed
50.
Zurück zum Zitat Avramis VI, Wiersma S, Krailo MD, et al. Pharmacokinetic and pharmacodynamic studies of fludarabine and cytosine arabinoside administered as loading boluses followed by continuous infusions after a phase I/II study in pediatric patients with relapsed leukemias. Clin Cancer Res 1998; 4: 45–52PubMed Avramis VI, Wiersma S, Krailo MD, et al. Pharmacokinetic and pharmacodynamic studies of fludarabine and cytosine arabinoside administered as loading boluses followed by continuous infusions after a phase I/II study in pediatric patients with relapsed leukemias. Clin Cancer Res 1998; 4: 45–52PubMed
51.
Zurück zum Zitat Leiby JM, Grever MR, Staubus MR, et al. Phase I clinical investigation of fludarabine phosphate by a loading-dose and continuous infusion schedule. J Natl Cancer Inst 1988; 80: 447–9PubMedCrossRef Leiby JM, Grever MR, Staubus MR, et al. Phase I clinical investigation of fludarabine phosphate by a loading-dose and continuous infusion schedule. J Natl Cancer Inst 1988; 80: 447–9PubMedCrossRef
52.
Zurück zum Zitat Kemena A, Keating MJ, Plunkett W. Plasma and cellular bioavailability of oral fludarabine [abstract]. Blood 1991; 78: 52a Kemena A, Keating MJ, Plunkett W. Plasma and cellular bioavailability of oral fludarabine [abstract]. Blood 1991; 78: 52a
53.
Zurück zum Zitat Kemena A, O’Brien S, Kantarjian H, et al. Phase II clinical trial of fludarabine in chronic lymphocytic leukemia on a weekly low-dose schedule. Leuk Lymphoma 1993; 10: 187–93PubMedCrossRef Kemena A, O’Brien S, Kantarjian H, et al. Phase II clinical trial of fludarabine in chronic lymphocytic leukemia on a weekly low-dose schedule. Leuk Lymphoma 1993; 10: 187–93PubMedCrossRef
54.
Zurück zum Zitat Robertson LE, O’Brien S, Kantarjian H, et al. A 3-day schedule of fludarabine in previously treated chronic lymphocytic leukemia. Leukemia 1995; 9: 1444–9PubMed Robertson LE, O’Brien S, Kantarjian H, et al. A 3-day schedule of fludarabine in previously treated chronic lymphocytic leukemia. Leukemia 1995; 9: 1444–9PubMed
55.
Zurück zum Zitat Ross SR, McTavish D, Faulds D. Fludarabine: a review of its pharmacological properties and therapeutic potential in malignancy. Drugs 1993; 45: 737–59PubMedCrossRef Ross SR, McTavish D, Faulds D. Fludarabine: a review of its pharmacological properties and therapeutic potential in malignancy. Drugs 1993; 45: 737–59PubMedCrossRef
56.
Zurück zum Zitat Plunkett W, Gandhi V. Cellular metabolism of nucleoside analogs in CLL: implications for drug development. In: Cheson B, editor. Chronic lymphocytic leukemia — scientific advances and clinical developments. New York: Marcel Dekker Inc, 1992: 197–219 Plunkett W, Gandhi V. Cellular metabolism of nucleoside analogs in CLL: implications for drug development. In: Cheson B, editor. Chronic lymphocytic leukemia — scientific advances and clinical developments. New York: Marcel Dekker Inc, 1992: 197–219
57.
Zurück zum Zitat Plunkett W, Gandhi V, Huang P, et al. Fludarabine: pharmacokinetics, mechanisms of action, and rationales for combination therapy. Semin Oncol 1993; 20 (5 Suppl. 7): 2–12PubMed Plunkett W, Gandhi V, Huang P, et al. Fludarabine: pharmacokinetics, mechanisms of action, and rationales for combination therapy. Semin Oncol 1993; 20 (5 Suppl. 7): 2–12PubMed
58.
Zurück zum Zitat Gandhi V, Kemena A, Keating MJ, et al. Fludarabine infusion potentiates arabinosylcytosine metabolism in lymphocytes of patients with chronic lymphocytic leukemia. Cancer Res 1992; 52: 897–903PubMed Gandhi V, Kemena A, Keating MJ, et al. Fludarabine infusion potentiates arabinosylcytosine metabolism in lymphocytes of patients with chronic lymphocytic leukemia. Cancer Res 1992; 52: 897–903PubMed
59.
Zurück zum Zitat Kemena A, Gandhi V, Shewach DS, et al. Inhibition of fludarabine metabolism by arabinosylcytosine during therapy. Cancer Chemother Pharmacol 1992; 31: 193–9PubMedCrossRef Kemena A, Gandhi V, Shewach DS, et al. Inhibition of fludarabine metabolism by arabinosylcytosine during therapy. Cancer Chemother Pharmacol 1992; 31: 193–9PubMedCrossRef
60.
Zurück zum Zitat Gandhi V, Kemena A, Keating MJ, et al. Cellular pharmacology of fludarabine triphosphate in chronic lymphocytic leukemia cells during fludarabine therapy. Leuk Lymphoma 1993; 10: 49–56PubMedCrossRef Gandhi V, Kemena A, Keating MJ, et al. Cellular pharmacology of fludarabine triphosphate in chronic lymphocytic leukemia cells during fludarabine therapy. Leuk Lymphoma 1993; 10: 49–56PubMedCrossRef
61.
Zurück zum Zitat Keating MJ, O’Brien S, Kantarjian H, et al. Long-term follow-up of patients with chronic lymphocytic leukemia treated with fludarabine as a single agent. Blood 1993; 81: 2878–84PubMed Keating MJ, O’Brien S, Kantarjian H, et al. Long-term follow-up of patients with chronic lymphocytic leukemia treated with fludarabine as a single agent. Blood 1993; 81: 2878–84PubMed
62.
Zurück zum Zitat Keating MJ, O’Brien S, Lerner S, et al. Long-term follow-up of patients with chronic lymphocytic leukemia (CLL) receiving fludarabine regimens as initial therapy. Blood 1998; 92: 1165–71PubMed Keating MJ, O’Brien S, Lerner S, et al. Long-term follow-up of patients with chronic lymphocytic leukemia (CLL) receiving fludarabine regimens as initial therapy. Blood 1998; 92: 1165–71PubMed
63.
Zurück zum Zitat Gandhi V, Estey E, Keating MJ, et al. Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelogenous leukemia: pharmacokinetic, pharmacodynamic, and molecular interactions. Blood 1996; 87: 156–64 Gandhi V, Estey E, Keating MJ, et al. Chlorodeoxyadenosine and arabinosylcytosine in patients with acute myelogenous leukemia: pharmacokinetic, pharmacodynamic, and molecular interactions. Blood 1996; 87: 156–64
64.
Zurück zum Zitat Gandhi V, Plunkett W, Kantarjian H, et al. Cellular pharmacodynamics and plasma pharmacokinetics of parenterally infused hydroxyurea during phase I clinical trial in chronic myelogenous leukemia. J Clin Oncol 1998; 16: 2321–31PubMed Gandhi V, Plunkett W, Kantarjian H, et al. Cellular pharmacodynamics and plasma pharmacokinetics of parenterally infused hydroxyurea during phase I clinical trial in chronic myelogenous leukemia. J Clin Oncol 1998; 16: 2321–31PubMed
65.
Zurück zum Zitat Gandhi V, Estey E, Du M, et al. Minimum dose of fludarabine for maximal modulation of arabinosylcytosine triphosphate in human leukemia blasts during therapy. Clin Cancer Res 1997; 3: 1539–45PubMed Gandhi V, Estey E, Du M, et al. Minimum dose of fludarabine for maximal modulation of arabinosylcytosine triphosphate in human leukemia blasts during therapy. Clin Cancer Res 1997; 3: 1539–45PubMed
66.
Zurück zum Zitat Malspeis L, Staubus AE, Lyon ME, et al. Oral bioavailability of 2-F-ara-A from fludarabine phosphate capsules in dogs [abstract]. Proc Am Assoc Cancer Res 1989; 30: 534 Malspeis L, Staubus AE, Lyon ME, et al. Oral bioavailability of 2-F-ara-A from fludarabine phosphate capsules in dogs [abstract]. Proc Am Assoc Cancer Res 1989; 30: 534
67.
Zurück zum Zitat Foran JM, Oscier D, Orchard J, et al. A pharmacokinetic study of single doses of oral fludarabine phosphate. J Clin Oncol 1999; 17: 1574–9PubMed Foran JM, Oscier D, Orchard J, et al. A pharmacokinetic study of single doses of oral fludarabine phosphate. J Clin Oncol 1999; 17: 1574–9PubMed
68.
Zurück zum Zitat Boogaerts MA, Van Hoof A, Catovsky D, et al. Activity of oral fludarabine phosphate in previously treated chronic lymphocytic leukemia. J Clin Oncol 2001; 19: 4252–8PubMed Boogaerts MA, Van Hoof A, Catovsky D, et al. Activity of oral fludarabine phosphate in previously treated chronic lymphocytic leukemia. J Clin Oncol 2001; 19: 4252–8PubMed
Metadaten
Titel
Cellular and Clinical Pharmacology of Fludarabine
verfasst von
Dr Varsha Gandhi
William Plunkett
Publikationsdatum
01.02.2002
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 2/2002
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200241020-00002

Weitere Artikel der Ausgabe 2/2002

Clinical Pharmacokinetics 2/2002 Zur Ausgabe