Skip to main content
Erschienen in: Angiogenesis 1/2019

16.07.2018 | Original Paper

Cellular self-assembly into 3D microtissues enhances the angiogenic activity and functional neovascularization capacity of human cardiopoietic stem cells

verfasst von: Petra Wolint, Annina Bopp, Anna Woloszyk, Yinghua Tian, Olivera Evrova, Monika Hilbe, Pietro Giovanoli, Maurizio Calcagni, Simon P. Hoerstrup, Johanna Buschmann, Maximilian Y. Emmert

Erschienen in: Angiogenesis | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

While cell therapy has been proposed as next-generation therapy to treat the diseased heart, current strategies display only limited clinical efficacy. Besides the ongoing quest for the ideal cell type, in particular the very low retention rate of single-cell (SC) suspensions after delivery remains a major problem. To improve cellular retention, cellular self-assembly into 3D microtissues (MTs) prior to transplantation has emerged as an encouraging alternative. Importantly, 3D-MTs have also been reported to enhance the angiogenic activity and neovascularization potential of stem cells. Therefore, here using the chorioallantoic membrane (CAM) assay we comprehensively evaluate the impact of cell format (SCs versus 3D-MTs) on the angiogenic potential of human cardiopoietic stem cells, a promising second-generation cell type for cardiac repair. Biodegradable collagen scaffolds were seeded with human cardiopoietic stem cells, either as SCs or as 3D-MTs generated by using a modified hanging drop method. Thereafter, seeded scaffolds were placed on the CAM of living chicken embryos and analyzed for their perfusion capacity in vivo using magnetic resonance imaging assessment which was then linked to a longitudinal histomorphometric ex vivo analysis comprising blood vessel density and characteristics such as shape and size. Cellular self-assembly into 3D-MTs led to a significant increase of vessel density mainly driven by a higher number of neo-capillary formation. In contrast, SC-seeded scaffolds displayed a higher frequency of larger neo-vessels resulting in an overall 1.76-fold higher total vessel area (TVA). Importantly, despite that larger TVA in SC-seeded group, the mean perfusion capacity (MPC) was comparable between groups, therefore suggesting functional superiority together with an enhanced perfusion efficacy of the neo-vessels in 3D-MT-seeded scaffolds. This was further underlined by a 1.64-fold higher perfusion ratio when relating MPC to TVA. Our study shows that cellular self-assembly of human cardiopoietic stem cells into 3D-MTs substantially enhances their overall angiogenic potential and their functional neovascularization capacity. Hence, the concept of 3D-MTs may be considered to increase the therapeutic efficacy of future cell therapy concepts.
Literatur
1.
Zurück zum Zitat Nelson TJ, Behfar A, Terzic A (2008) Strategies for therapeutic repair: the “R(3)” regenerative medicine paradigm. Clin Transl Sci 1:168–171CrossRefPubMedPubMedCentral Nelson TJ, Behfar A, Terzic A (2008) Strategies for therapeutic repair: the “R(3)” regenerative medicine paradigm. Clin Transl Sci 1:168–171CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Tsukamoto A, Abbot SE, Kadyk LC, DeWitt ND, Schaffer DV, Wertheim JA, Whittlesey KJ, Werner MJ (2016) Challenging regeneration to transform medicine. Stem Cells Transl Med 5:1–7CrossRefPubMed Tsukamoto A, Abbot SE, Kadyk LC, DeWitt ND, Schaffer DV, Wertheim JA, Whittlesey KJ, Werner MJ (2016) Challenging regeneration to transform medicine. Stem Cells Transl Med 5:1–7CrossRefPubMed
4.
5.
Zurück zum Zitat Cambria E, Pasqualini FS, Wolint P, Gunter J, Steiger J, Bopp A, Hoerstrup SP, Emmert MY (2017) Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med 2:17CrossRefPubMedPubMedCentral Cambria E, Pasqualini FS, Wolint P, Gunter J, Steiger J, Bopp A, Hoerstrup SP, Emmert MY (2017) Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. NPJ Regen Med 2:17CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Behfar A, Terzic A (2014) Stem cell in the rough: repair quotient mined out of a bone marrow niche. Circ Res 115:814–816CrossRefPubMed Behfar A, Terzic A (2014) Stem cell in the rough: repair quotient mined out of a bone marrow niche. Circ Res 115:814–816CrossRefPubMed
7.
Zurück zum Zitat Gyongyosi M, Wojakowski W, Lemarchand P, Lunde K, Tendera M, Bartunek J, Marban E, Assmus B, Henry TD, Traverse JH, Moye LA, Surder D, Corti R, Huikuri H, Miettinen J, Wohrle J, Obradovic S, Roncalli J, Malliaras K, Pokushalov E, Romanov A, Kastrup J, Bergmann MW, Atsma DE, Diederichsen A, Edes I, Benedek I, Benedek T, Pejkov H, Nyolczas N, Pavo N, Bergler-Klein J, Pavo IJ, Sylven C, Berti S, Navarese EP, Maurer G, Investigators A (2015) Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 116:1346–1360CrossRefPubMedPubMedCentral Gyongyosi M, Wojakowski W, Lemarchand P, Lunde K, Tendera M, Bartunek J, Marban E, Assmus B, Henry TD, Traverse JH, Moye LA, Surder D, Corti R, Huikuri H, Miettinen J, Wohrle J, Obradovic S, Roncalli J, Malliaras K, Pokushalov E, Romanov A, Kastrup J, Bergmann MW, Atsma DE, Diederichsen A, Edes I, Benedek I, Benedek T, Pejkov H, Nyolczas N, Pavo N, Bergler-Klein J, Pavo IJ, Sylven C, Berti S, Navarese EP, Maurer G, Investigators A (2015) Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 116:1346–1360CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Marban E, Malliaras K (2012) Mixed results for bone marrow-derived cell therapy for ischemic heart disease. JAMA 308:2405–2406CrossRefPubMed Marban E, Malliaras K (2012) Mixed results for bone marrow-derived cell therapy for ischemic heart disease. JAMA 308:2405–2406CrossRefPubMed
9.
Zurück zum Zitat Behfar A, Faustino RS, Arrell DK, Dzeja PP, Perez-Terzic C, Terzic A (2008) Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 45:523–529CrossRefPubMedPubMedCentral Behfar A, Faustino RS, Arrell DK, Dzeja PP, Perez-Terzic C, Terzic A (2008) Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol 45:523–529CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, Gaussin V, Homsy C, Bartunek J, Terzic A (2010) Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 56:721–734CrossRefPubMedPubMedCentral Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, Gaussin V, Homsy C, Bartunek J, Terzic A (2010) Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 56:721–734CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A (2013) Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61:2329–2338CrossRefPubMed Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A (2013) Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61:2329–2338CrossRefPubMed
13.
Zurück zum Zitat Bartunek J, Davison B, Sherman W, Povsic T, Henry TD, Gersh B, Metra M, Filippatos G, Hajjar R, Behfar A, Homsy C, Cotter G, Wijns W, Tendera M, Terzic A (2016) Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design. Eur J Heart Fail 18:160–168CrossRefPubMed Bartunek J, Davison B, Sherman W, Povsic T, Henry TD, Gersh B, Metra M, Filippatos G, Hajjar R, Behfar A, Homsy C, Cotter G, Wijns W, Tendera M, Terzic A (2016) Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial design. Eur J Heart Fail 18:160–168CrossRefPubMed
14.
Zurück zum Zitat Bartunek J, Terzic A, Davison BA, Filippatos GS, Radovanovic S, Beleslin B, Merkely B, Musialek P, Wojakowski W, Andreka P, Horvath IG, Katz A, Dolatabadi D, El Nakadi B, Arandjelovic A, Edes I, Seferovic PM, Obradovic S, Vanderheyden M, Jagic N, Petrov I, Atar S, Halabi M, Gelev VL, Shochat MK, Kasprzak JD, Sanz-Ruiz R, Heyndrickx GR, Nyolczas N, Legrand V, Guedes A, Heyse A, Moccetti T, Fernandez-Aviles F, Jimenez-Quevedo P, Bayes-Genis A, Hernandez-Garcia JM, Ribichini F, Gruchala M, Waldman SA, Teerlink JR, Gersh BJ, Povsic TJ, Henry TD, Metra M, Hajjar RJ, Tendera M, Behfar A, Alexandre B, Seron A, Stough WG, Sherman W, Cotter G, Wijns W, CHART Program (2017) Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J 38:648–660CrossRefPubMed Bartunek J, Terzic A, Davison BA, Filippatos GS, Radovanovic S, Beleslin B, Merkely B, Musialek P, Wojakowski W, Andreka P, Horvath IG, Katz A, Dolatabadi D, El Nakadi B, Arandjelovic A, Edes I, Seferovic PM, Obradovic S, Vanderheyden M, Jagic N, Petrov I, Atar S, Halabi M, Gelev VL, Shochat MK, Kasprzak JD, Sanz-Ruiz R, Heyndrickx GR, Nyolczas N, Legrand V, Guedes A, Heyse A, Moccetti T, Fernandez-Aviles F, Jimenez-Quevedo P, Bayes-Genis A, Hernandez-Garcia JM, Ribichini F, Gruchala M, Waldman SA, Teerlink JR, Gersh BJ, Povsic TJ, Henry TD, Metra M, Hajjar RJ, Tendera M, Behfar A, Alexandre B, Seron A, Stough WG, Sherman W, Cotter G, Wijns W, CHART Program (2017) Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J 38:648–660CrossRefPubMed
15.
Zurück zum Zitat Emmert MY, Wolint P, Jakab A, Sheehy SP, Pasqualini FS, Nguyen TD, Hilbe M, Seifert B, Weber B, Brokopp CE, Macejovska D, Caliskan E, von Eckardstein A, Schwartlander R, Vogel V, Falk V, Parker KK, Gyongyosi M, Hoerstrup SP (2017) Safety and efficacy of cardiopoietic stem cells in the treatment of post-infarction left-ventricular dysfunction—from cardioprotection to functional repair in a translational pig infarction model. Biomaterials 122:48–62CrossRefPubMed Emmert MY, Wolint P, Jakab A, Sheehy SP, Pasqualini FS, Nguyen TD, Hilbe M, Seifert B, Weber B, Brokopp CE, Macejovska D, Caliskan E, von Eckardstein A, Schwartlander R, Vogel V, Falk V, Parker KK, Gyongyosi M, Hoerstrup SP (2017) Safety and efficacy of cardiopoietic stem cells in the treatment of post-infarction left-ventricular dysfunction—from cardioprotection to functional repair in a translational pig infarction model. Biomaterials 122:48–62CrossRefPubMed
17.
Zurück zum Zitat Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D (2015) Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning 8:81–101PubMedPubMedCentral Alrefai MT, Murali D, Paul A, Ridwan KM, Connell JM, Shum-Tim D (2015) Cardiac tissue engineering and regeneration using cell-based therapy. Stem Cells Cloning 8:81–101PubMedPubMedCentral
18.
Zurück zum Zitat Radisic M, Christman KL (2013) Materials science and tissue engineering: repairing the heart. Mayo Clin Proc 88:884–898CrossRefPubMed Radisic M, Christman KL (2013) Materials science and tissue engineering: repairing the heart. Mayo Clin Proc 88:884–898CrossRefPubMed
19.
Zurück zum Zitat Haraguchi Y, Shimizu T, Yamato M, Okano T (2012) Concise review: cell therapy and tissue engineering for cardiovascular disease. Stem Cells Transl Med 1:136–141CrossRefPubMedPubMedCentral Haraguchi Y, Shimizu T, Yamato M, Okano T (2012) Concise review: cell therapy and tissue engineering for cardiovascular disease. Stem Cells Transl Med 1:136–141CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Gunter J, Wolint P, Bopp A, Steiger J, Cambria E, Hoerstrup SP, Emmert MY (2016) Microtissues in cardiovascular medicine: regenerative potential based on a 3D microenvironment. Stem Cells Int 9098523 Gunter J, Wolint P, Bopp A, Steiger J, Cambria E, Hoerstrup SP, Emmert MY (2016) Microtissues in cardiovascular medicine: regenerative potential based on a 3D microenvironment. Stem Cells Int 9098523
21.
Zurück zum Zitat Alajati A, Laib AM, Weber H, Boos AM, Bartol A, Ikenberg K, Korff T, Zentgraf H, Obodozie C, Graeser R, Christian S, Finkenzeller G, Stark GB, Heroult M, Augustin HG (2008) Spheroid-based engineering of a human vasculature in mice. Nat Methods 5:439–445CrossRefPubMed Alajati A, Laib AM, Weber H, Boos AM, Bartol A, Ikenberg K, Korff T, Zentgraf H, Obodozie C, Graeser R, Christian S, Finkenzeller G, Stark GB, Heroult M, Augustin HG (2008) Spheroid-based engineering of a human vasculature in mice. Nat Methods 5:439–445CrossRefPubMed
22.
Zurück zum Zitat Bhang SH, Lee S, Shin JY, Lee TJ, Kim BS (2012) Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Eng A 18:2138–2147CrossRef Bhang SH, Lee S, Shin JY, Lee TJ, Kim BS (2012) Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization. Tissue Eng A 18:2138–2147CrossRef
23.
Zurück zum Zitat Lee GH, Lee JS, Wang X, Lee SH (2016) Bottom-up engineering of well-defined 3D microtissues using microplatforms and biomedical applications. Adv Healthc Mater 5:56–74CrossRefPubMed Lee GH, Lee JS, Wang X, Lee SH (2016) Bottom-up engineering of well-defined 3D microtissues using microplatforms and biomedical applications. Adv Healthc Mater 5:56–74CrossRefPubMed
24.
Zurück zum Zitat Metzger W, Sossong D, Bachle A, Putz N, Wennemuth G, Pohlemann T, Oberringer M (2011) The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13:1000–1012CrossRefPubMed Metzger W, Sossong D, Bachle A, Putz N, Wennemuth G, Pohlemann T, Oberringer M (2011) The liquid overlay technique is the key to formation of co-culture spheroids consisting of primary osteoblasts, fibroblasts and endothelial cells. Cytotherapy 13:1000–1012CrossRefPubMed
25.
Zurück zum Zitat Emmert MY, Wolint P, Wickboldt N, Gemayel G, Weber B, Brokopp CE, Boni A, Falk V, Bosman A, Jaconi ME, Hoerstrup SP (2013) Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials 34:6339–6354CrossRefPubMed Emmert MY, Wolint P, Wickboldt N, Gemayel G, Weber B, Brokopp CE, Boni A, Falk V, Bosman A, Jaconi ME, Hoerstrup SP (2013) Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies. Biomaterials 34:6339–6354CrossRefPubMed
26.
Zurück zum Zitat Emmert MY, Wolint P, Winklhofer S, Stolzmann P, Cesarovic N, Fleischmann T, Nguyen TD, Frauenfelder T, Boni R, Scherman J, Bettex D, Grunenfelder J, Schwartlander R, Vogel V, Gyongyosi M, Alkadhi H, Falk V, Hoerstrup SP (2013) Transcatheter based electromechanical mapping guided intramyocardial transplantation and in vivo tracking of human stem cell based three dimensional microtissues in the porcine heart. Biomaterials 34:2428–2441CrossRefPubMed Emmert MY, Wolint P, Winklhofer S, Stolzmann P, Cesarovic N, Fleischmann T, Nguyen TD, Frauenfelder T, Boni R, Scherman J, Bettex D, Grunenfelder J, Schwartlander R, Vogel V, Gyongyosi M, Alkadhi H, Falk V, Hoerstrup SP (2013) Transcatheter based electromechanical mapping guided intramyocardial transplantation and in vivo tracking of human stem cell based three dimensional microtissues in the porcine heart. Biomaterials 34:2428–2441CrossRefPubMed
27.
Zurück zum Zitat Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31:108–115CrossRefPubMed Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31:108–115CrossRefPubMed
28.
Zurück zum Zitat Cheng NC, Wang S, Young TH (2012) The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 33:1748–1758CrossRefPubMed Cheng NC, Wang S, Young TH (2012) The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials 33:1748–1758CrossRefPubMed
29.
Zurück zum Zitat Emmert MY, Hitchcock RW, Hoerstrup SP (2014) Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev 69–70:254–269CrossRefPubMed Emmert MY, Hitchcock RW, Hoerstrup SP (2014) Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev 69–70:254–269CrossRefPubMed
30.
Zurück zum Zitat Kim JH, Park IS, Park Y, Jung Y, Kim SH, Kim SH (2013) Therapeutic angiogenesis of three-dimensionally cultured adipose-derived stem cells in rat infarcted hearts. Cytotherapy 15:542–556CrossRefPubMed Kim JH, Park IS, Park Y, Jung Y, Kim SH, Kim SH (2013) Therapeutic angiogenesis of three-dimensionally cultured adipose-derived stem cells in rat infarcted hearts. Cytotherapy 15:542–556CrossRefPubMed
31.
Zurück zum Zitat Lee WY, Wei HJ, Lin WW, Yeh YC, Hwang SM, Wang JJ, Tsai MS, Chang Y, Sung HW (2011) Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ECM. Biomaterials 32:5558–5567CrossRefPubMed Lee WY, Wei HJ, Lin WW, Yeh YC, Hwang SM, Wang JJ, Tsai MS, Chang Y, Sung HW (2011) Enhancement of cell retention and functional benefits in myocardial infarction using human amniotic-fluid stem-cell bodies enriched with endogenous ECM. Biomaterials 32:5558–5567CrossRefPubMed
32.
Zurück zum Zitat Kapur SK, Wang X, Shang H, Yun S, Li X, Feng G, Khurgel M, Katz AJ (2012) Human adipose stem cells maintain proliferative, synthetic and multipotential properties when suspension cultured as self-assembling spheroids. Biofabrication 4:025004CrossRefPubMedPubMedCentral Kapur SK, Wang X, Shang H, Yun S, Li X, Feng G, Khurgel M, Katz AJ (2012) Human adipose stem cells maintain proliferative, synthetic and multipotential properties when suspension cultured as self-assembling spheroids. Biofabrication 4:025004CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Kelm JM, Ehler E, Nielsen LK, Schlatter S, Perriard JC, Fussenegger M (2004) Design of artificial myocardial microtissues. Tissue Eng 10:201–214CrossRefPubMed Kelm JM, Ehler E, Nielsen LK, Schlatter S, Perriard JC, Fussenegger M (2004) Design of artificial myocardial microtissues. Tissue Eng 10:201–214CrossRefPubMed
34.
Zurück zum Zitat Oltolina F, Zamperone A, Colangelo D, Gregoletto L, Reano S, Pietronave S, Merlin S, Talmon M, Novelli E, Diena M, Nicoletti C, Musaro A, Filigheddu N, Follenzi A, Prat M (2015) Human cardiac progenitor spheroids exhibit enhanced engraftment potential. PLoS ONE 10:e0137999CrossRefPubMedPubMedCentral Oltolina F, Zamperone A, Colangelo D, Gregoletto L, Reano S, Pietronave S, Merlin S, Talmon M, Novelli E, Diena M, Nicoletti C, Musaro A, Filigheddu N, Follenzi A, Prat M (2015) Human cardiac progenitor spheroids exhibit enhanced engraftment potential. PLoS ONE 10:e0137999CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Tseliou E, Pollan S, Malliaras K, Terrovitis J, Sun B, Galang G, Marban L, Luthringer D, Marban E (2013) Allogeneic cardiospheres safely boost cardiac function and attenuate adverse remodeling after myocardial infarction in immunologically mismatched rat strains. J Am Coll Cardiol 61:1108–1119CrossRefPubMed Tseliou E, Pollan S, Malliaras K, Terrovitis J, Sun B, Galang G, Marban L, Luthringer D, Marban E (2013) Allogeneic cardiospheres safely boost cardiac function and attenuate adverse remodeling after myocardial infarction in immunologically mismatched rat strains. J Am Coll Cardiol 61:1108–1119CrossRefPubMed
36.
Zurück zum Zitat Murphy KC, Fang SY, Leach JK (2014) Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 357:91–99CrossRefPubMedPubMedCentral Murphy KC, Fang SY, Leach JK (2014) Human mesenchymal stem cell spheroids in fibrin hydrogels exhibit improved cell survival and potential for bone healing. Cell Tissue Res 357:91–99CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Adair TH, Montani JP (2010) Angiogenesis assays. In: Sciences MCL (ed) Angiogenesis. Morgan & Claypool Publishers, San Rafael Adair TH, Montani JP (2010) Angiogenesis assays. In: Sciences MCL (ed) Angiogenesis. Morgan & Claypool Publishers, San Rafael
38.
39.
Zurück zum Zitat Ribatti D (2008) Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int Rev Cell Mol Bio 270:181–224CrossRef Ribatti D (2008) Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int Rev Cell Mol Bio 270:181–224CrossRef
40.
Zurück zum Zitat Ribatti D, Vacca A, Roncali L, Dammacco F (1996) The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int J Dev Biol 40:1189–1197PubMed Ribatti D, Vacca A, Roncali L, Dammacco F (1996) The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int J Dev Biol 40:1189–1197PubMed
41.
Zurück zum Zitat Gokce G, Ozgurtas T, Sobaci G, Kucukevcilioglu M (2016) The effects of amphotericin B on angiogenesis in chick chorioallantoic membrane. Cutan Ocul Toxicol 35:92–96PubMed Gokce G, Ozgurtas T, Sobaci G, Kucukevcilioglu M (2016) The effects of amphotericin B on angiogenesis in chick chorioallantoic membrane. Cutan Ocul Toxicol 35:92–96PubMed
42.
Zurück zum Zitat Woloszyk A, Buschmann J, Waschkies C, Stadlinger B, Mitsiadis TA (2016) Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels. Front Physiol 7:140PubMedPubMedCentral Woloszyk A, Buschmann J, Waschkies C, Stadlinger B, Mitsiadis TA (2016) Human dental pulp stem cells and gingival fibroblasts seeded into silk fibroin scaffolds have the same ability in attracting vessels. Front Physiol 7:140PubMedPubMedCentral
43.
Zurück zum Zitat Borges J, Tegtmeier FT, Padron NT, Mueller MC, Lang EM, Stark GB (2003) Chorioallantoic membrane angiogenesis model for tissue engineering: a new twist on a classic model. Tissue Eng 9:441–450CrossRefPubMed Borges J, Tegtmeier FT, Padron NT, Mueller MC, Lang EM, Stark GB (2003) Chorioallantoic membrane angiogenesis model for tissue engineering: a new twist on a classic model. Tissue Eng 9:441–450CrossRefPubMed
44.
45.
Zurück zum Zitat Kivrak Pfiffner F, Waschkies C, Tian Y, Woloszyk A, Calcagni M, Giovanoli P, Rudin M, Buschmann J (2015) A new in vivo magnetic resonance imaging method to noninvasively monitor and quantify the perfusion capacity of three-dimensional biomaterials grown on the chorioallantoic membrane of chick embryos. Tissue Eng C 21:339–346CrossRef Kivrak Pfiffner F, Waschkies C, Tian Y, Woloszyk A, Calcagni M, Giovanoli P, Rudin M, Buschmann J (2015) A new in vivo magnetic resonance imaging method to noninvasively monitor and quantify the perfusion capacity of three-dimensional biomaterials grown on the chorioallantoic membrane of chick embryos. Tissue Eng C 21:339–346CrossRef
46.
Zurück zum Zitat Zuo Z, Syrovets T, Genze F, Abaei A, Ma G, Simmet T, Rasche V (2015) High-resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane. NMR Biomed 28:440–447CrossRefPubMed Zuo Z, Syrovets T, Genze F, Abaei A, Ma G, Simmet T, Rasche V (2015) High-resolution MRI analysis of breast cancer xenograft on the chick chorioallantoic membrane. NMR Biomed 28:440–447CrossRefPubMed
47.
Zurück zum Zitat GmbH M (2017) Optimaix scaffolds for cell culture research GmbH M (2017) Optimaix scaffolds for cell culture research
48.
Zurück zum Zitat Waschkies C, Nicholls F, Buschmann J (2015) Comparison of medetomidine, thiopental and ketamine/midazolam anesthesia in chick embryos for in ovo Magnetic Resonance Imaging free of motion artifacts. Sci Rep 5:15536CrossRefPubMedPubMedCentral Waschkies C, Nicholls F, Buschmann J (2015) Comparison of medetomidine, thiopental and ketamine/midazolam anesthesia in chick embryos for in ovo Magnetic Resonance Imaging free of motion artifacts. Sci Rep 5:15536CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83:173–180CrossRefPubMed Kelm JM, Timmins NE, Brown CJ, Fussenegger M, Nielsen LK (2003) Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng 83:173–180CrossRefPubMed
50.
Zurück zum Zitat Kastellorizios M, Papadimitrakopoulos F, Burgess DJ (2015) Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. J Controlled Release 214:103–111CrossRef Kastellorizios M, Papadimitrakopoulos F, Burgess DJ (2015) Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. J Controlled Release 214:103–111CrossRef
51.
Zurück zum Zitat Dondossola E, Holzapfel BM, Alexander S, Filippini S, Hutmacher DW, Friedl P (2016) Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat Biomed Eng 1 Dondossola E, Holzapfel BM, Alexander S, Filippini S, Hutmacher DW, Friedl P (2016) Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat Biomed Eng 1
52.
Zurück zum Zitat Logsdon EA, Finley SD, Popel AS, Mac Gabhann F (2014) A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 18:1491–1508CrossRefPubMed Logsdon EA, Finley SD, Popel AS, Mac Gabhann F (2014) A systems biology view of blood vessel growth and remodelling. J Cell Mol Med 18:1491–1508CrossRefPubMed
53.
Zurück zum Zitat Silvestre JS, Levy BI, Tedgui A (2008) Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovasc Res 78:201–202CrossRefPubMed Silvestre JS, Levy BI, Tedgui A (2008) Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovasc Res 78:201–202CrossRefPubMed
54.
Zurück zum Zitat Cambria E, Steiger J, Gunter J, Bopp A, Wolint P, Hoerstrup SP, Emmert MY (2016) Cardiac regenerative medicine: the potential of a new generation of stem cells. Transfus Med Hemother 43:275–281CrossRefPubMedPubMedCentral Cambria E, Steiger J, Gunter J, Bopp A, Wolint P, Hoerstrup SP, Emmert MY (2016) Cardiac regenerative medicine: the potential of a new generation of stem cells. Transfus Med Hemother 43:275–281CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Teerlink JR, Metra M, Filippatos GS, Davison BA, Bartunek J, Terzic A, Gersh BJ, Povsic TJ, Henry TD, Alexandre B, Homsy C, Edwards C, Seron A, Wijns W, Cotter G, Investigators C (2017) Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: results from the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) study. Eur J Heart Fail 19:1520–1529CrossRefPubMed Teerlink JR, Metra M, Filippatos GS, Davison BA, Bartunek J, Terzic A, Gersh BJ, Povsic TJ, Henry TD, Alexandre B, Homsy C, Edwards C, Seron A, Wijns W, Cotter G, Investigators C (2017) Benefit of cardiopoietic mesenchymal stem cell therapy on left ventricular remodelling: results from the Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) study. Eur J Heart Fail 19:1520–1529CrossRefPubMed
57.
Zurück zum Zitat Vilahur G, Onate B, Cubedo J, Bejar MT, Arderiu G, Pena E, Casani L, Gutierrez M, Capdevila A, Pons-Llado G, Carreras F, Hidalgo A, Badimon L (2017) Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther 8:52CrossRefPubMedPubMedCentral Vilahur G, Onate B, Cubedo J, Bejar MT, Arderiu G, Pena E, Casani L, Gutierrez M, Capdevila A, Pons-Llado G, Carreras F, Hidalgo A, Badimon L (2017) Allogenic adipose-derived stem cell therapy overcomes ischemia-induced microvessel rarefaction in the myocardium: systems biology study. Stem Cell Res Ther 8:52CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Ji ST, Kim H, Yun J, Chung JS, Kwon SM (2017) Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering. Stem Cells Int 2017:3945403PubMedPubMedCentral Ji ST, Kim H, Yun J, Chung JS, Kwon SM (2017) Promising therapeutic strategies for mesenchymal stem cell-based cardiovascular regeneration: from cell priming to tissue engineering. Stem Cells Int 2017:3945403PubMedPubMedCentral
59.
Zurück zum Zitat Spyridopoulos I, Arthur HM (2017) Microvessels of the heart: formation, regeneration, and dysfunction. Microcirculation. 24:e12338CrossRef Spyridopoulos I, Arthur HM (2017) Microvessels of the heart: formation, regeneration, and dysfunction. Microcirculation. 24:e12338CrossRef
60.
Zurück zum Zitat Zhang H, Zhu SJ, Wang W, Wei YJ, Hu SS (2008) Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther 15:40–48CrossRefPubMed Zhang H, Zhu SJ, Wang W, Wei YJ, Hu SS (2008) Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther 15:40–48CrossRefPubMed
61.
Zurück zum Zitat Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ (2014) Cell therapy for cardiac repair—lessons from clinical trials. Nat Rev Cardiol 11:232–246CrossRefPubMed Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ (2014) Cell therapy for cardiac repair—lessons from clinical trials. Nat Rev Cardiol 11:232–246CrossRefPubMed
62.
Zurück zum Zitat Behfar A, Terzic A (2006) Derivation of a cardiopoietic population from human mesenchymal stem cells yields cardiac progeny. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S78–S82CrossRefPubMed Behfar A, Terzic A (2006) Derivation of a cardiopoietic population from human mesenchymal stem cells yields cardiac progeny. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S78–S82CrossRefPubMed
63.
Zurück zum Zitat Birchler A, Berger M, Jaggin V, Lopes T, Etzrodt M, Misun PM, Pena-Francesch M, Schroeder T, Hierlemann A, Frey O (2016) Seamless combination of fluorescence-activated cell sorting and hanging-drop networks for individual handling and culturing of stem cells and microtissue spheroids. Anal Chem 88:1222–1229CrossRefPubMedPubMedCentral Birchler A, Berger M, Jaggin V, Lopes T, Etzrodt M, Misun PM, Pena-Francesch M, Schroeder T, Hierlemann A, Frey O (2016) Seamless combination of fluorescence-activated cell sorting and hanging-drop networks for individual handling and culturing of stem cells and microtissue spheroids. Anal Chem 88:1222–1229CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Declercq HA, De Caluwe T, Krysko O, Bachert C, Cornelissen MJ (2013) Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments. Biomaterials 34:1004–1017CrossRefPubMed Declercq HA, De Caluwe T, Krysko O, Bachert C, Cornelissen MJ (2013) Bone grafts engineered from human adipose-derived stem cells in dynamic 3D-environments. Biomaterials 34:1004–1017CrossRefPubMed
65.
Zurück zum Zitat Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C (2014) Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J Dent Res 93:1296–1303CrossRefPubMedPubMedCentral Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C (2014) Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J Dent Res 93:1296–1303CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Laschke MW, Schank TE, Scheuer C, Kleer S, Schuler S, Metzger W, Eglin D, Alini M, Menger MD (2013) Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Acta Biomater 9:6876–6884CrossRefPubMed Laschke MW, Schank TE, Scheuer C, Kleer S, Schuler S, Metzger W, Eglin D, Alini M, Menger MD (2013) Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Acta Biomater 9:6876–6884CrossRefPubMed
67.
Zurück zum Zitat Jakob W, Jentzsch KD, Mauersberger B, Heder G (1978) The chick embryo choriallantoic membrane as a bioassay for angiogenesis factors: reactions induced by carrier materials. Exp Pathol 15:241–249 Jakob W, Jentzsch KD, Mauersberger B, Heder G (1978) The chick embryo choriallantoic membrane as a bioassay for angiogenesis factors: reactions induced by carrier materials. Exp Pathol 15:241–249
68.
Zurück zum Zitat Ribatti D (2010) The chick embryo chorioallantoic membrane in the study of angiogenesis and metastasis concluding remarks. Springer, Dordrecht, pp 87–88CrossRef Ribatti D (2010) The chick embryo chorioallantoic membrane in the study of angiogenesis and metastasis concluding remarks. Springer, Dordrecht, pp 87–88CrossRef
69.
Zurück zum Zitat Spanelborowski K, Schnapper U, Heymer B (1988) The chick chorioallantoic membrane assay in the assessment of angiogenic factors. Biomed Res 9:253–260CrossRef Spanelborowski K, Schnapper U, Heymer B (1988) The chick chorioallantoic membrane assay in the assessment of angiogenic factors. Biomed Res 9:253–260CrossRef
Metadaten
Titel
Cellular self-assembly into 3D microtissues enhances the angiogenic activity and functional neovascularization capacity of human cardiopoietic stem cells
verfasst von
Petra Wolint
Annina Bopp
Anna Woloszyk
Yinghua Tian
Olivera Evrova
Monika Hilbe
Pietro Giovanoli
Maurizio Calcagni
Simon P. Hoerstrup
Johanna Buschmann
Maximilian Y. Emmert
Publikationsdatum
16.07.2018
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 1/2019
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-018-9635-4

Weitere Artikel der Ausgabe 1/2019

Angiogenesis 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.