Skip to main content
Erschienen in: Journal of Experimental & Clinical Cancer Research 1/2022

Open Access 01.12.2022 | Review

Cellular senescence in cancer: clinical detection and prognostic implications

verfasst von: Andreas Domen, Christophe Deben, Jasper Verswyvel, Tal Flieswasser, Hans Prenen, Marc Peeters, Filip Lardon, An Wouters

Erschienen in: Journal of Experimental & Clinical Cancer Research | Ausgabe 1/2022

Abstract

Cellular senescence is a state of stable cell-cycle arrest with secretory features in response to cellular stress. Historically, it has been considered as an endogenous evolutionary homeostatic mechanism to eliminate damaged cells, including damaged cells which are at risk of malignant transformation, thereby protecting against cancer. However, accumulation of senescent cells can cause long-term detrimental effects, mainly through the senescence-associated secretory phenotype, and paradoxically contribute to age-related diseases including cancer. Besides its role as tumor suppressor, cellular senescence is increasingly being recognized as an in vivo response in cancer patients to various anticancer therapies. Its role in cancer is ambiguous and even controversial, and senescence has recently been promoted as an emerging hallmark of cancer because of its hallmark-promoting capabilities. In addition, the prognostic implications of cellular senescence have been underappreciated due to the challenging detection and sparse in and ex vivo evidence of cellular senescence in cancer patients, which is only now catching up. In this review, we highlight the approaches and current challenges of in and ex vivo detection of cellular senescence in cancer patients, and we discuss the prognostic implications of cellular senescence based on in and ex vivo evidence in cancer patients.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CDK
Cyclin-dependent kinase
CRC
Colorectal cancer
IL
Interleukin
NK
Natural killer
OIS
Oncogene-induced senescence
SA-β-Gal
Senescence-associated beta-galactosidase
SASP
Senescence-associated secretory phenotype
TIS
Therapy-induced senescence
TME
Tumor microenvironment

Background

Cellular senescence in cancer

Cellular senescence is a cell state characterized by four interdependent hallmarks: (i) a durable and generally irreversible cell-cycle arrest; (ii) a senescence-associated secretory phenotype (SASP); (iii) macromolecular damage; and (iv) an altered metabolism [1]. Apart from the involvement in physiological processes, such as developmentally-programmed senescence [2, 3], tissue repair and wound healing [4, 5], cellular senescence is mainly a cellular stress response designed to eliminate damaged cells [6], and it is induced by numerous damage-inducing triggers, including ageing, DNA damage, reactive oxygen species, activation of oncogenes or inactivation of tumor-suppressor genes and inflammatory cytokines [1, 7].
Senescence was first described in vitro in human fetal diploid cell strains by Hayflick and Moorhead in 1961 to explain the finite lifespan of normal human cells as these do not proliferate indefinitely [8]. This phenomenon was already linked to cancer early on [9], as most cancer cells acquire the potential for unlimited cellular division and gain an infinite lifespan. During the following decades, the hypothesis that cellular senescence is an evolutionary homeostatic mechanism designed to irreversibly limit cell proliferation of damaged cells, which are at risk of malignant transformation, and to protect against cancer became more broadly accepted [10, 11]. However, the beneficial effect of cellular senescence in the context of (pre)malignant transformation rather results from the broader biological purpose of senescence, as an important mechanism, next to apoptosis, to eliminate many kinds of damaged cells in physiological and pathological processes, in order to maintain tissue homeostasis [6]. During normal embryogenic development, cellular senescence is a programmed mechanism that plays instructive roles [3], promotes tissue remodeling [2], and is also involved in tissue repair and wound healing [4, 5]. Cellular senescence is also considered as a crucial endogenous tumor suppressor mechanism. In this context, senescent cells have been identified in non-malignant and premalignant tissues in human tumor xenograft models such as lung adenomas [12], human benign melanocytic nevi [13], benign prostatic hyperplasia (BPH) [14], colon adenoma [1517], precancerous urinary bladder [17] and intraepithelial prostatic neoplasia (PIN) [18] specimens. Oncogene-induced senescence (OIS) (i.e., senescence as a response to the activation of an oncogene or inactivation of a tumor-suppressor gene [19]) in transgenic mice has shown to suppress tumorigenesis of T cell lymphoma [20], prostate cancer [21], melanoma [22], lung adenocarcinoma [23] and pancreatic ductal adenocarcinoma [24]. This clearly marks the benefit of the senescence-associated growth arrest for preventing the expansion of pre- or fully malignant cells.
In fact, the idea that senescence only has a net positive effect on suppressing tumor growth was contradicted by the findings that senescent malignant [25] as well as non-malignant cells [2629] are capable of driving tumor growth. Senescent cells stay metabolically active and can secrete a plethora of largely pro-inflammatory cytokines, chemokines, growth factors and matrix-remodeling proteases, collectively known as the SASP [30], capable of creating a protumorigenic microenvironment and driving tumorigenesis [31, 32]. Due to their genomic instability and the possibility to acquire additional mutations, cancer cells can also override the senescence-associated cell-cycle arrest and escape from the non-proliferative compartment [3337]. Hence, the generally irreversible senescence-associated cell-cycle arrest is not necessary terminal for senescent cancer cells [1]. In addition, both non-malignant senescent cells and premalignant cells accumulate with ageing [38] due to an impaired clearing of senescent cells by the immune system over time [6] and accumulating oncogenic mutations acquired throughout life [39, 40], respectively. As such, the possibility of both occurring and interacting in close proximity increases in late life [38]. When this occurs, the SASP of non-malignant senescent cells can drive tumorigenesis of premalignant cells [38] opposing the net beneficial effect of senescent cells as a regulator of tissue homeostasis and tumor suppressor, paradoxically contributing to cancer development [38]. Besides its role as tumor suppressor, cellular senescence is increasingly being recognized as an in vivo response in cancer patients to various anticancer therapies (i.e., therapy-induced senescence (TIS) [41, 42]).
Taken together, the role of cellular senescence in cancer is ambiguous and even controversial, and senescence has recently been promoted as an emerging hallmark of cancer because of its hallmark-promoting capabilities [43]. In addition, the prognostic implications have been underappreciated due to the challenging detection and sparse in vivo and ex vivo evidence in cancer patients, which is only now catching up.
In this review, we first highlight the approaches and current challenges of ex and in vivo detection of cellular senescence in cancer patients. Next, we provide a comprehensive overview of available data regarding senescence in cancer patients, and discuss the prognostic implications of both OIS and TIS based on ex and in vivo evidence of cancer patients with solid tumors. Finally, we propose a simplified model for the observed differential prognostic outcomes of OIS and TIS in cancer patients.

Main text

Detection of cellular senescence in cancer patients

Identification and quantification of senescent cells in cancer patients in a clinical context is a challenging task since there are no specific and universal markers for senescent cells yet [1, 44]. Nonetheless, as an emerging hallmark of cancer [43], ex and in vivo evidence for cellular senescence residing in human tissue has gained more attention in the last decade [1] and efforts are made to accurately detect senescent cells in cancer patients. Below, we provide an overview of the different (pre)clinical approaches to detect cellular senescence in human tissue, pointing out the advantages and difficulties to implement these as clinical tools for the diagnosis and follow-up on cellular senescence in the context of a cancer patient.

Ex vivo detection in patient tissue samples

The best known and most widely used marker of cellular senescence is enhanced activity of acidic lysosomal β-galactosidase in senescent cells [45, 46], as lysosomes increase in number and size when cells become senescent [47]. The senescence-associated beta-galactosidase (SA-β-Gal) activity is often considered the gold standard for identifying senescent cells, despite SA-β-Gal activity was reported as a non-universal marker for cellular senescence [48]. Although absent in most proliferating and quiescent cells [44], SA-β-Gal activity is expressed in certain cell types (i.e., macrophages [49], bone marrow cells [50], melanocytes and sebaceous and eccrine gland cells [48]) and in vitro cells under certain cell culture conditions (i.e., confluence and serum starvation [5153]) independent of a senescent cell state. Also, SA-β-Gal is not essential for senescence as cells can become senescent without expressing SA-β-Gal [54]. Of note, SA-β-Gal detection is only possible in fresh snap-frozen tissue samples [45], thus hampering its use in a clinical context.
To overcome the disadvantages of SA-β-Gal as marker for senescence, a biotin-linked Sudan Black B (SBB) analogue was designed to detect lipofuscin accumulation in senescent cells [45]. Lipofuscin is a non-degradable aggregate of oxidized lipids and proteins [55], that accumulate in lysosomes of senescent cells due to senescence-related lysosomal malfunction, and is considered a hallmark of cellular senescence [1, 56]. In contrast to the enzymatic SA-β-Gal activity, lipofuscin is preserved in fixed materials [51]. As such, detection of cellular senescence is feasible in formalin-fixed paraffin-embedded (FFPE) archival tissue samples using the SSB histochemical stain [45]. The interpretation of the assay requires some experience, as lipofuscin aggregates can be very small and background dirt can be wrongly interpreted as positive SBB-positive lipofuscin aggregates, comprising the overall sensitivity [45]. Interestingly, endogenous lipofuscin is linked to chronic liver disease and can be detected by autofluorescence in biopsied samples of human liver tissue [57]. As such, autofluorescence of lipofuscin in the context of cellular senescence could potentially be exploited to detect senescence in patient samples.
Other commonly used markers of cellular senescence are the cell cycle inhibitors p16INK4a and p21WAF1/Cip1, as most senescence-inducing triggers lead to the activation of the cell cycle inhibitor pathways p53/p21WAF1/Cip1 and/or p16INK4a [7] (Fig. 2). While p21WAF1/Cip1 expression occurs early after senescence induction and is reversible upon tumor suppressor protein p53 inactivation, p16INK4A expression is frequently induced late after senescence induction and is irreversible upon p53 inactivation [44, 58, 59]. p21WAF1/Cip1 expression is therefore more likely to represent early cellular senescence, whereas p16INK4a expression represents a more established and durable senescence response [44]. However, p21WAF1/Cip1 can be expressed by non-senescent cells in case of DNA-damage [60] and the genes encoding for p21WAF1/Cip1 and p16INK4a (i.e., CDKN1A and CDKN2A, respectively) were not identified within the core transcriptome signature of senescent cells [61].
The senescence-associated cell cycle arrest, which occurs in G1 and possibly in G2 phase of the cell cycle [62], is marked by the absence of the proliferation marker Ki67 [1]. However, Ki67 is also absent in other cell states with a temporarily and durable cell-cycle withdrawal in G0, such as quiescence and terminally differentiated cells, respectively. 5-ethynyl-2′-deoxyuridine (EdU) is another proliferation markers and a thymidine analog that, when administered to cells, can incorporate into DNA during replication [44]. Unfortunately, EdU is not applicable for ex vivo tissue samples as active proliferation is required after biopsy.
As SA-β-Gal activity [56], p16INK4a and p21WAF1/Cip1 expression [60] and absence of Ki67 expression [63] are neither specific nor universal for cellular senescence, the International Cell Senescence Association [1] and others [44] recommend combining different markers for the detection of cellular senescence with the highest accuracy. However, combining all the markers in the same tissue sample is not yet possible without incurring artifactual false positives or negatives [44]. Therefore, current senescence validation in patient tissue samples can be determined either in snap-frozen samples using a sequential staining for SA-β-Gal and Ki67 on independent sequential and adjacent sections, or in FFPE tissue samples using a double-staining for lipofuscin and/or Ki67, p21WAF1/Cip1 or p16INK4a combined with a sole staining of the remaining markers (Ki67, p21WAF1/Cip1 or p16INK4a) on sequential and adjacent Sects [44]. Additional immunohistochemical confirmation can be achieved by detection of components of senescence-associated heterochromatin foci (SAHF), including histone variant macroH2A [64], di- or trimethylated lysine 9 histone H3 (H3K9me2/3), heterochromatin protein (HP) 1 α, β and γ [64, 65] and high mobility group A (HMGA) proteins [64, 66, 67], and DNA damage foci such as phosphorylated H2AX (γH2AX) [68] (Fig. 1).
Using flow-cytometry, senescent cells can be identified and quantified on single-cell level by combining SA-β-Gal activity with staining of molecular markers for cellular senescence (e.g., γH2AX) and absence of Ki67 and/or high mobility group box 1 (HMGB1) protein [69]. Recently, a preliminary proof of concept method was developed to detect senescent cells with imaging flow cytometry based on measuring autofluorescence and morphological parameters, and on applying recent artificial-intelligence (AI) and machine learning (ML) tools [70], potentially facilitating cellular senescence detection without a multi-marker strategy.
Indirect markers of cellular senescence such as messenger RNA (mRNA) expression of p16INK4a, p21WAF1/Cip1 and lamin B1 (i.e., a nuclear lamina component and downregulated in case of senescence [71]), and selected senescence core genes can be determined by reverse transcription–polymerase chain reaction (RT-PCR) [44] (Fig. 1). However, both flow-cytometry and RT-PCR techniques require tissue dissociation and case-specific control samples, and do not provide any spatial information on senescent cells residing in the tissue, limiting their clinical utility for solid tumors. Although various senescence core genes have been determined [72], the senescent phenotype is dynamic and heterogeneous and depends on the tissue of origin and senescence-inducing trigger [7277]. It is currently unclear which specific core genes should be included in order to confirm cellular senescence in a disease- and tissue-specific context [44]. Recently, using machine learning, a gene expression classifier (SENCAN classifier) was developed for the detection of senescence in cancer samples. Using transcriptome data as input, the SENCAN classifier was able to classify whether cancer cells are senescent or not. Unfortunately, whereas the SENCAN classifier is able to accurately detect senescence in many cancer cells in vitro, its accuracy to detect senescence in in vivo cancer samples is still unclear [76].
Of note, uPAR was recently identified as a cell surface protein that is broadly and specifically upregulated in senescent cells of mice using RNA-sequencing datasets derived from three independent and robust mouse models of OIS as well as TIS [78]. uPAR is involved in many intracellular signaling pathways that promote cell motility, invasion, proliferation and survival [79] and is expressed by tumor and stromal cells in a wide variety of human cancers where its expression frequently indicates poor prognosis [79]. In this context, uPAR expression and secretion (i.e., soluable uPAR) could be an interesting biomarker of senescence in cancer patients detected by immunohistochemistry, flow-cytometry or enzyme-linked immunosorbent assay (ELISA) [78] (Fig. 1).

Ex vivo detection in patient fluids

Detection of tumor-specific circulating material in patient fluids by means of liquid biopsy is an emerging field in oncology, with important clinical implications for personalized medicine [80]. In contrast to surgical or biopsy tissue samples, liquid biopsies are not subject to sampling bias, tumor heterogeneity and can be obtained repeatedly to monitor the evolution of the molecular profile of the tumor which may cause drug resistance [81]. However, the detection of cellular senescence via liquid biopsy in patient blood or urine requires specific senescence-associated circulating material including proteomes, extracellular vesicles (EVs) and circulating cell-free DNA (cfDNA).
First, SASP proteins can be measured by mass spectrometry or immunoassays (ELISA, western blot) in patient plasma [44, 74]. A proteomic atlas of core SASP secreted proteins originating from multiple senescence inducers and cell types was recently determined [74], enabling senescence detection by the presence of core SASP proteins, such as growth/differentiation factor 15 (GDF15), matrix metalloproteinase-1 (MMP1), stanniocalcin-1 (STC1), tissue inhibitor of metalloproteinases 1 and 2 (TIMP1 and TIMP2) [44] (Fig. 1). However, several of these core soluble SASP proteins have also been identified as biomarkers of human disease [75] and are positively associated with age, frailty and adverse post-surgery outcomes [82]. For example, GDF15, MMP1 and STC1 have been identified as a biomarker for cardiovascular disease [83], several cancers [84] and for Alzheimer’s disease [85], respectively. SASP biomarkers currently lack sensitivity to detect and attribute senescence in patient plasma to specific pathologies, including cancer [75]. However, SASP protein profiles differ among cell type, senescence-inducing trigger and interval after senescence induction [62, 74, 75], as well as age category [82] as senescent cells accumulate with increasing age [6]. By determining disease-, tissue-, and inducer-specific SASP factors as well as robust core SASP factors secreted by senescent cells in multiple contexts [75], it will become possible to attribute the secretion of certain SASP factors to the presence of senescent cells in patients in the near future.
Next to SASP proteins, senescent cells of human origin (i.e., foreskin primary [86], normal lung [87] and diploid [88] fibroblasts, prostate [87, 89], hepatocellular [87] and triple negative breast [90] cancer cells, retinal pigment epithelial cells [88] and human chondrocytes [91]) are capable of releasing EVs in patient fluids such as blood and urine [92]. (Fig. 1). EVs are small, lipid-bilayer enclosed, cell-derived particles that bear surface molecules that allow them to target recipient cells and contain transmembrane and enclosing cytosolic proteins and RNA [75, 93]. Once internalized, EVs release their content into the cytosol modifying the physiological state of the recipient cell [93] and enabling cell communication with neighboring as well as distant cells. As for SASP proteins, EV production and content drastically differ in physiological [94] and pathological [92] conditions, making EVs an additional interesting source of disease biomarkers. EVs of senescent cells are capable of transmitting paracrine senescence to neighboring cells [86, 91], contain chemotherapy and key proteins involved in cell proliferation after chemotherapeutic challenge [90] and can even promote cancer cell proliferation [88]. Interestingly, protein content of EVs secreted by senescent cells differs from secreted SASP proteins [74, 86], suggesting that SASP and EVs do not act as surrogate biomarkers and have different clinical significance and value [75]. However, as for SASP proteins, it is still unclear how EVs secreted by senescent cells exactly behave in physiologic and disease-specific contexts, and to what extend they depend on age, tissue and senescence-inducing trigger [75].
Detection and analysis of cfDNA by means of next-generation sequencing, digital droplet polymerase chain reaction, exome or whole-genome sequencing [95] could be a third appealing strategy to detect and monitor the senescence burden in cancer patients. Senescent cells exhibit a DNA methylation pattern of promoter hypermethylation mainly involving metabolic regulators, whereas transformed cells exhibit a DNA methylation pattern of promoter hypermethylation involving primarily pro-survival and developmental genes [96] (Fig. 1). Also, using a machine learning based approach trained with different early passage and senescent cells, a DNA methylation fingerprint of cellular senescence (DNAmSen) was developed and validated in clinical patient samples, such as whole blood and skin tissue [97]. With this approach, clear and robust correlations were found between the patient’s age and DNAmSen present in the corresponding sample. Interestingly, also elevated DNAmSen were observed in lung samples from patients with COPD and lung cancer compared to those of healthy controls [97]. Not surprisingly, the release of cfDNA is affected by type of treatment and timing from treatment exposure, and also heavily depend on the cellular response to treatment. Of note, it is thought that blocks the release of cfDNA whereas apoptosis and necrosis are key contributor of its release [98].

In vivo detection in patients

Currently, there is no established method to detect cellular senescence in vivo in patients. Detection can be achieved by chromogenic [99, 100] or fluorogenic [101107] probes, preferentially hydrolyzed by SA-β-Gal, resulting in color- or fluorescence-enhanced senescent cells. Chromogenic [108] or fluorogenic [109] probes hydrolyzed by other lysosomal hydrolases overexpressed in senescent cells, such as α-L-fucosidase [110], can be used as well. Nanoparticles containing fluorescent dyes and probes have been developed that selectively release their content when the cap of the nanoparticle is hydrolyzed by SA-β-Gal after endocytosis [111113], or by interaction with CD9 receptors [114] or β2 microglobulin [115], both preferentially expressed by senescent cells. Due to low tissue penetrance and autofluorescence the clinical use of these fluorescent probes and nanoparticles may be limited in patients [116]. An alternative method could be the detection of endogenous lipofuscin as endogenous lipofuscin, next to ex vivo in patient samples, can also be monitored in vivo and non-invasively via imaging, as has been shown in mice with chronic liver disease [57].
It should be noted that all these approaches were validated only in vitro or in vivo in mice and its use in patients should be further investigated. Currently, there is one first-in-human trial in cancer patients evaluating the safety and imaging characteristics of a novel senescence-specific radiotracer [18F]FPyGal (i.e., a radioactive form of SA-β-Gal) that can be tracked non-invasively in the body through positron emission tomography (PET) imaging (SenPET; NCT04536454) [117] (Fig. 1). Whether this strategy is sufficient to detect all senescent cells [118] due to the aforementioned limitations of SA-β-Gal as a specific marker of senescence has yet to be determined.

Prognostic implications of cellular senescence in cancer patients

Senescence is considered to exert beneficial effects by halting cancer development and promoting survival in early life, but it is proposed to have detrimental effects later in life when senescent cells accumulate due to ageing and/or inappropriate removal [32, 38, 119]. Based on preclinical cancer research, these antagonistically pleiotropic effects of senescence are thought to be highly dependent on the type of cancer and senescence trigger [30, 32, 62]. The prognostic implications of cellular senescence in cancer are therefore often unpredictable primarily due to the dual role of the SASP [32].

Senescence burden

The senescence-associated cell cycle arrest is considered fundamentally tumor-suppressive and the induction occurs through the involvement of different signaling and downstream cell cycle inhibitor pathways. Genotoxic stress induced by anticancer therapies results in a DNA-damage response (DDR) which leads to p53 and p21WAF1/Cip1 activation whereas oncogenic signaling and tumor suppressor inactivation results in downstream activation of both p53/p21WAF1/Cip1 and p16INK4a via participation of the DDR and the Ras-Raf-MEK-ERK, PI3K/AKT/mTOR and p38/MAPK signaling pathways [6, 7, 62]. As such, TIS is primarily induced through p53/p21WAF1/Cip1 pathway activation whereas OIS is induced through either p53/p21WAF1/Cip1 and/or p16INK4a pathway activation (Fig. 2A). Upregulation of functional tumor suppressor proteins p53, p21WAF1/Cip1 and p16INK4a inhibit downstream cyclin-dependent kinase (CDK)—cyclin complexes, such as CDK2—cyclin E and CDK CDK4/6—cyclin D, preventing phosphorylation of the retinoblastoma protein [7]. Hyperphosphorylation of this tumor suppressor protein blocks S-phase entry [120] and is responsible for the induction of senescence [6] (Fig. 2A). Of note, despite tumor suppressor proteins p53, p21WAF1/Cip1 and/or p16INK4a are primarily involved in TIS and OIS (Table 1), senescence can be induced [121] as well as bypassed [7, 16, 122124] independent of p53/p21WAF/Cip1 and/or p16INK4a pathway activation and inactivation/abrogation, respectively. Also, p21WAF1/Cip1 can be activated by pathways that are independent of p53 [125].
Table 1
Prognostic implications of OIS and TIS based on available ex and in vivo evidence of cancer patients with solid tumors according to cancer type and senescence trigger
Malignancy
Sample specification
Senescence markera
Type of senescenceb
Prognostic implication
Reference
NSCLC
Resected NSCLC
Lipofuscin
CS
High expression associated with worse OS
[126]
p21WAF1/Cip1, cyclin E and Ki67
[127]
Resected NSCLC SCC
p21WAF1/Cip1
Positive expression associated with improved survival
[128]
Resected NSCLC AC / SCC
Reduced expression in stage III compared to stage I or II
NSCLC SCC
p16INK4a
High expression associated with improved OS
[129]
Resected NSCLC AC / SCC
Loss of expression associated with worse OS
[130]
macroH2A1.1
Low expression associated with worse DFS
[131]
Resected NSCLC AC
Tumoral senescence signature (lipofuscin, p16INK4a, p21WAF1/Cip1 and Ki67c)
Tumoral senescence signature associated with worse DFS and OS
[132]
Resected NSCLC AC / SCC / other histology
TIS: platinum-based CT with or without RT
Evidence of TIS as treatment outcome
NSCLC AC
Senescence-related gene signature: FOXM1, HJURP, PKM, PTTG1 and TACC3
CS
High expression associated with:
- disease progression and worse OS
- immune-suppressive and protumorigenic TME
- high expression of immune checkpoint genes and TMB levels
[133]
Senescence marker genes: VPS26A and LANCL1
High expression associated with decreased survival
[134]
NSCLC AC
Senescence marker genes: VAMP3, STX4 and ARMX3
High expression associated with increased survival
NSCLC AC / SCC
Senescence marker genes: NTAL, DEP1 and B2MG
High expression associated with mixed survival outcomes depending on histology
Resected NSCLC
SA-β-Gal and CDK1
TIS: CB/PTX
Expression demonstrates TIS as treatment outcome
[37]
SA-β-Gal
TIS: CB/PTX or CRTd
Expression associated with worse OS
[135]
NSCLC AC
CS gene score
CS
Lower CS gene score in primary tumors compared to adjacent normal solid tissue
[136]
NSCLC SCC
Malignant pleural mesothelioma
Resected MPM
SA-β-Gal, p21WAF1/Cip1 and PAI1 and mRNA p21WAF1/Cip1 and PAI1
TIS: platinum-based CT
- Increased expression after neoadjuvant CT
- Stable disease associated with PAI1 expression, time-to-progression and worse OS
[137]
Breast cancer
Breast cancer
Senescence marker gene panel: DEP1, NTAL, EBP50, STX4, VAMP3, ARMX3, B2MG, LANCL1, VPS26A and PLD3
CS
High expression associated with increased OS
[134]
CS gene score
Lower score in primary tumors compared to adjacent normal solid tissue
[136]
Resected primary invasive ductal carcinoma
p16INK4a and p53
Expression associated with worse DFS and OS
[138]
Resected breast cancer
p16INK4a
Overexpression associated with unfavorable prognostic indicators (high grading, negative estrogen receptor status, inverse progesterone receptor status and high Ki67 expression) and indicative of a more undifferentiated malignant phenotype
[139]
p21WAF1/Cip1 and p53
Low p21WAF1/Cip1 expression along with p53 overexpression associated with short DFS and OS, suggesting p53 overexpression reflects complete abrogation of p53 function
[140]
p21WAF1/Cip1
Expression associated with worse DFS and OS
[141143]
Early breast cancer
uPA-PAI1
- High levels associated with worse DFS
- Patients with high levels benefit more strongly from adjuvant CT
[144, 145]
Resected triple negative breast cancer
macroH2A1.1 mRNA ratio
High ratio associated with worse DFS
[146]
Resected breast cancer
SA-β-Gal
TIS: CP/DOX/5-FU
Expression demonstrated TIS as treatment outcome
[147]
p21WAF1/Cip1, p27Kip1, p53 and cyclin D3
TIS: CP/MTX/5-FU or ECX/DOC
[148]
p21WAF1/Cip1, H3K9Me3 and lamin B1c
TIS: DOC/DOX/CP, PTX/DOX/CP, DOX/CP, DOC/CP, 5-FU/EPX/CP or 5-FU/EPX/CP followed by DOC
[149]
mRNA of p16INK4a, p21WAF1/Cip1 and CCNA1
TIS: EPX/CP
- High expression demonstrated TIS as treatment outcome
- Persistent senescent cells evaded immune clearance
[150]
Lipofuscin
CS
Expression present in TME
[151]
TIS: CTd
Cervical, uterine, UCEC and ovarian cancer
Normal cervical epithelium
p16INK4a, p21WAF1/Cip1, p15INK4a and p14ARF
OIS
Almost completely negative expression
[152, 153]
Cervical dysplastic and SCC
Overexpression
Normal cervical epithelium, CIN and cervical carcinoma
p21WAF1/Cip1
Higher expression in cervical carcinoma compared to normal cervical epithelium and CIN
[154]
Expression associated with advanced stage
[155]
Cervical AC
Expression associated with favorable prognosis
[156]
Cervical SCC
CS gene score
CS
Positively correlated with PD-L1 protein expression and T cell cytotoxicity
[136]
UCEC
Lower score in primary tumors compared to adjacent normal solid tissue
Resected pEOC
SA-β-Gal
Expression demonstrated spontaneous CS
[157]
p21WAF1/Cip1 and p53
Low p21WAF1/Cip1 expression along with p53 overexpression associated with higher recurrence rate, suggesting p53 overexpression reflects complete abrogation of p53 function
[158]
Resected HGSOC
SA-β-Gal and γH2AX
Higher expression in older patients
[159]
Resected OC
p53, p16INK4a and pRb
Negative or high p53, high p16INK4a and reduced pRb expression associated with worse OS
[160]
Primary OC
SA-β-Gal, p16INK4a, H1-β and Ki67c
Identification of senescent CAFs adjacent to epithelial ovarian cancer cells suggested to promote ovarian cancer tumorigenesis
[161]
Normal ovary, primary OC, metastasis of OC, recurrent OC
p21WAF1/Cip1
- Expression gradually increased from normal ovary through primary OC, metastasis of OC and recurrent OC
- Expression associated with decreased time-to-progression
[162]
Advanced-stage serous OC and suboptimally debulked OC
Senescence marker genes: VAMP3, ARMCX3 and B2MG
CS/TISd
High expression associated with decreased survival
[134]
Senescence marker genes: EBP50 and NTAL
High expression associated with increased survival
Resected HGSOC
p16INK4a and lamin B1c
TIS: CB/PTX
High expression associated with improved 5-year OS
[163]
Esophageal cancer
Precursor and ESCC lesions
Dec1
OIS
Expression demonstrated OIS as tumor-suppressive mechanism
[164]
Resected ESCC
Low expression:
- correlated with poor clinicopathological parameters (i.e., T-stage, lymph node metastasis and pathological TNM-stage)
- associated with worse DFS
p16INK4a, p21WAF1/Cip1, pRb, Bax protein and cyclin D1
Combined high expression and low cyclin D1 expression associated with improved OS
[165]
Normal tissue, precursor lesions and ESCC
p16INK4a, p14ARF and p15INK4b
Increased expression in ESCC and in poorly differentiated specimens with lymph node metastasis, suggesting involvement of CS in cancer progression
[166]
p21WAF1/Cip1
- Expression frequently found in precursor lesions and invasive ESCC compared to normal tissue
- High expression associated with worse OS in curatively treated ESCC
[167]
EC
Senescence gene signature: ADH1B, IL1A, SERPINE1, SPARC, EZH2 and TNFAIP2
Enriched senescence gene signature in noncancerous cells of TME associated with improved OS
[168]
ESCC
CS gene score
CS
Lower score in primary tumors compared to adjacent normal solid tissue
[136]
Gastric cancer
Resected gastric cancer
Senescence gene signature: ADH1B, IL1A, SERPINE1, SPARC, EZH2 and TNFAIP2
CS
Enriched senescence gene signature in noncancerous cells of TME associated with:
- improved DFS and OS
- related to MSI, higher TMB and improved benefit from immunotherapy
[168]
Senescore based on proteins ADH1B, IL1A, SERPINE1, SPARC, EZH2 and TNFAIP2
High-senescore protein expression associated with improved OS
Gastric AC
CS gene score
Lower score in primary tumors compared to adjacent normal solid tissue
[136]
Gastric cancer
p21WAF1/Cip1 and mRNA of p21WAF1/Cip1
Increased expression associated with improved OS
[169]
Primary gastric adenocarcinoma
p21WAF1/Cip1 and p53
Low p21WAF1/Cip1 expression along with p53 overexpression associated with more aggressive tumoral characteristics, higher recurrence rate and poorer survival, suggesting p53 overexpression reflects complete abrogation of p53 function
[170]
Colorectal cancer
KRAS and BRAF mutated benign serrated polyps
SA-β-Gal, p16INK4a and Ki67c
OIS
- Expression demonstrated OIS
- OIS increased with degree of dysplasia
[171, 172]
Colon adenoma
SA-β-Gal, p16INK4a, p53, HP1α, HP1γ, H3K9me3 and Ki67c
Expression demonstrated OIS as tumor-suppressive mechanism
[1517]
Dysplastic aberrant crypt foci and adenomas
p21WAF1/Cip1
Lower expression suggesting dysregulated expression of cell-cycle controlling genes in tumorigenesis of CRC
[173]
Early invasive colorectal carcinoma
SA-β-Gal, p16INK4a, p53, HP1α, HP1γ, H3K9me3 and Ki67c
Reduced or lost expression demonstrated loss of OIS
[15, 17, 171, 172]
Resected primary CRC
p21WAF1/Cip1, NTAL, ARMCX3, EBP50 and γH2AX
CS
- Absent and extensive expression associated with negative prognosis, moderate expression with best prognosis
- Distance between senescent cells and CD8+ T cells and a higher % CD8+ T cells near senescent cells linked to increased DSS and PFS, suggesting tumor-suppressive potential of CS is determined by TME and immune cell-mediated elimination of senescent tumor cells
[174]
p16INK4a and Ki67c
- Intratumoral senescence (high p16INK4a and low Ki67) associated with reduced T cell infiltrates and low-grade inflammatory cell infiltrate
- Low p16INK4a expression associated with decreased survival
[175]
CRC
Senescence marker genes: VPS26A, ARMCX3 and B2MG
High expression associated with decreased survival
[134]
Senescence marker genes: NTAL
High expression associated with increased survival
Senescence gene signature: ADH1B, IL1A, SERPINE1, SPARC, EZH2 and TNFAIP2
Enriched senescence gene signature in noncancerous cells of TME associated with improved OS
[168]
Metastasized CRC
p-ERK, HP1γ and PAI1
TIS: 5-FU/leucovorin
- Expression demonstrated TIS
- TIS associated with longer PFS
[176]
Resected CRC
SA-β-Gal and
mRNA of p21WAF1/Cip1, p16INK4a and IL-8
TIS: 5-FU and concomitant RT
- Increased expression demonstrated TIS
- TIS increased rectal cancer invasiveness by upregulation of EMT related genes
[177]
CRC
p21WAF1/Cip1
TIS: bevacizumab-based CT
- Increased expression demonstrated TIS
- TIS associated with longer PFS
[178]
CRC AC
CS
Decreased expression associated with higher Dukes stage, metastasis and worse survival
[179]
CRC
Downregulation and negative expression associated with MSI
[180, 181]
Decreased expression associated with lymph node and/or liver metastasis and worse survival
[182, 183]
p53
Absent expression associated with MSI
[181]
CRC AC
CS gene score
Lower score in primary tumors compared to adjacent normal solid tissue
[136]
Rectal AC
Rectal cancer
p21WAF1/Cip1
TIS: concurrent CRT (5-FU alone or with OXP)
Increased expression demonstrated TIS of inflammatory CAFs with a pronounced stromal response
[184]
Senescence gene signature
PC caused by cancer of the appendix, colon, rectosigmoid or rectum
SA-β-Gal, p16INK4a, p21WAF1/Cip1, H3K9me3 and Ki67c
OIS
- Increased expression demonstrated that PC is characterized by senescent tumor cells, and showed features of stemness
- Low or absent SA-β-Gal expression in primary tumor and liver metastasis samples compared to high SA-β-Gal expression in PC samples, suggesting that the peritoneal cavity is a metastatic niche that induces senescence, whereas no signs of senescence induction within the metastatic environment of the liver
- Absent SA-β-Gal expression in TILs of primary tumor and liver metastasis samples compared to elevated SA-β-Gal expression in TILs of PC samples, suggesting that senescent PC cells induce senescence in TILs
[185]
Senescence-associated and SASP genes
Upregulated in PC compared to primary tumor samples, and have a distinct SASP, demonstrating that senescent PC with stem cell-like features express a unique SASP
Pancreatic cancer
Resected PanIN and PDAC
p16INK4a and Ki67c
OIS
High expression in low-grade PanINs, no expression in PDAC
[186]
p21WAF1/Cip1
Expression increased with increasing grade of malignancy, demonstrating that aberrant cell cycle regulatory genes may be important in early development and progression of PanIN
[187]
Precursor lesions (acinar to ductal metaplasia), PanINs and PDAC
SA-β-Gal
Expression only in precursor lesions (acinar to ductal metaplasia) and PanINs, no expression in PDAC
[188]
Normal pancreas, pancreatitis and PDAC
SIN3B
- Absent or low expression in control pancreas and PDAC
- Strong expression in pancreatitis and PanINs and correlated with IL-1α
[189]
Hepatocellular carcinoma
Cirrhosis, dysplasia and HCC
Senescence-related genes: FAM38D, ATAD2, TOP2A, CCNE2, CRNDE, EPCAM, TMEM27, TFPI2, FOS, NAT2, GPR128, CYP39A1, FAM134B, SDCBP2 and MUM1L1
CS
Increased expression in liver cirrhosis, dysplasia being a transitional state to HCC and HCC that displayed immortal gene expression phenotypes
[190]
Chronic hepatitis C and cirrhosis
SA-β-Gal
Expression correlated with fibrosis progression in cirrhosis and chronic hepatitis C, suggesting CS predispose to HCC development
[191, 192]
p21WAF1/Cip1
Expression higher in cirrhosis compared to chronic hepatitis and associated with HCC development, suggesting p21WAF1/Cip1-related tumorigenesis in HCC
[193]
Biliary cirrhosis
p21WAF1/Cip1/Ki67c ratio
Increased expression ratios
[194]
Cirrhosis and HCC
p21WAF1/Cip1 and p16INK4a
Increased expression in cirrhosis, strongly reduced in HCC
[195]
Normal, chronic hepatitis C and HCC
SA-β-Gal
- Expression gradually increased from normal through chronic hepatitis C samples and HCC
- Expression in non-tumoral liver tissue correlated with HCC in surrounding liver
[192]
HCC
CS gene score
Lower score in primary tumors compared to adjacent normal solid tissue
[136]
Peritumoral HCC tissue
Senescence-related gene signature: FAM38D, ATAD2, TOP2A, CCNE2, CRNDE, EPCAM, TMEM27, TFPI2, FOS, NAT2, GPR128, CYP39A1, FAM134B, SDCBP2 and MUM1L1
OIS
Presence associated with:
- early recurrence and poor survival
- associated with chemokine (CCL2, CCL5 and CXCL11) and myeloid-specific gene expression and depletion in NK cell-specific gene activity
[196]
p16INK4a and p21WAF1/Cip1
Expression correlated with increased presence of CCR2 + myeloid cells
HCC
Senescence-related genes: LRP4, OPRK1, PRAC2, N4BP3, GAL, CORO2B, FZD7, SEPTIN3, SMOX, EPO, MSC, GLP1R, HOXC6, PAPPA2, STK39, DLGAP5, THEM64, UNC5B, SLC16A11, CDH1, PRR15L, CCDC146, FAM117A, SLC2A4, CD2 and STAT4
High senescence score:
- negatively correlated with the infiltration level of immunostimulating cells (plasma cells, CD8 T cells, activated CD4 memory T cells, gamma delta T cells and M1 macrophages) and positively correlated with the infiltration of immune-suppressive cells (memory B cells, naive CD4 T cells, M0 macrophages, M2 macrophages and eosinophils)
- negatively correlated with the expression levels of immune checkpoint related genes (i.e., CD274, LAG3, PDCD1L,
SIGLE and TIFIT) and lower response rate to immunotherapy
- related to immune dessert subtype of HCC
- associated with worse survival
[197]
Senescence marker protein 30
- Decreased expression in adjacent non-tumor tissue, larger tumor size and enhanced TMN-stage
- Decreased expression associated with worse OS
[198]
Cholangiocarcinoma
Premalignant bile duct adenomas, ductular reactions and CCA
p16INK4a
OIS
Expression in most premalignant bile duct adenomas and ductular reactions whereas barely expression in CCA, demonstrating OIS as tumor-suppressive mechanism
[199201]
CCA
CS gene score
CS
Lower score in primary tumors compared to adjacent normal solid tissue
[136]
Prostate cancer
Prostate IN
SA-β-Gal and CXCR2
CS
Expression demonstrates CS as tumor-suppressive mechanism
[122]
BPH and prostate IN
SA-β-Gal, HP1α and HP1γ
[14, 18]
Primary prostate cancer
GLB1
Expression associated with:
- favorable clinicopathologic features (T stage and non-metastatic samples)
- improved prostate specific antigen-free survival
[202]
Resected prostate cancer
TIS: ADTd
Increased expression in tissues undergoing ADT longer than 5 months and in clinically more favorable intermediate grade cancers, demonstrating TIS as treatment outcome
[203]
GLB1, HP1γ and Ki67c
Increased expression suggests TIS might be responsible for incomplete tumor regression
[204]
mRNA of p16INK4a and p21WAF1/Cip1
TIS: MIT
Increased expression and expression of a SASP (increased mRNA levels encoding IL-6, IL-8, GM-CSF, GRO-α, IGFBP-2, and IL-1β), demonstrating TIS with SASP expression as treatment outcome
[73]
mRNA of p16INK4a, p21WAF1/Cip1 and CCNA1
TIS: MIT and MIT/DOC
- High expression demonstrated TIS as treatment outcome
- Persistent senescent cells evaded immune clearance
[150]
p21WAF1/Cip1
CS
Increased expression associated with high Gleason score and worse survival
[205, 206]
TIS: ADTd
- Increased expression associated with p53 accumulation after ADT, suggesting TIS as treatment outcome
- Increased expression associated with worse survival
[206]
Prostate AC
CS gene score
CS
- Lower score in primary tumors compared to adjacent normal solid tissue
- Positively correlated with PD-L1 protein expression and T cell cytotoxicity
- High score associated with improved PFS and OS
- Lower score associated with higher Gleason score, T and N stages
- Predicted active immune response and better prognosis
[136]
Bladder cancer
Precancerous and cancerous urinary bladder
p16INK4a, HP1α, HP1γ and H3K9me3
OIS
Expression demonstrated OIS as tumor-suppressive mechanism in precancerous and cancerous lesions
[17]
Radical cystectomy or transurethral resection
p16INK4a, p21WAF1/Cip1, p53 and pRb
Aberrant individual and/or combined expression associated with recurrence and worse OS
[207]
Transitional cell carcinoma
p21WAF1/Cip1
- Expression associated with worse DFS and OS in superficial lesions
- Loss of expression associated with worse DFS and OS in invasive lesions when accompanied by p53 accumulation
[208]
Bladder urothelial carcinoma
CS gene score
CS
Lower score in primary tumors compared to adjacent normal solid tissue
[136]
Skin cancer
Human benign naevi
SA-β-Gal and p16INK4a
OIS
Increased expression demonstrated p16INK4a-dependent OIS as tumor-suppressive mechanism
[13, 209]
Dermal neurofibroma
[210]
Dysplastic naevi and radial early melanoma
p16INK4a, p53 and p21WAF1/Cip1
Less p16INK4a expression and some p53 and p21WAF1/Cip1 expression demonstrated p53-dependent OIS as tumor-suppressive mechanism
[209]
Advanced melanoma
No p16INK4a and p21WAF1/Cip1 expression in advanced melanomas demonstrated escape from p16INK4a-dependent and/or p53-dependent OIS
Benign melanocytic and dysplastic naevi, in situ, invasive and metastatic melanoma
p16INK4a
Expression gradually decreased with increasing grade of malignancy
[211, 212]
Primary melanoma
No association with DFS or OS
[212]
Cutaneous malignant melanoma
Loss of expression correlated with tumor cell proliferation, thicker lesions and invasive stage
[213, 214]
Vertical growth phase melanoma
Loss of expression associated increased tumor cell proliferation and poor prognosis
[215]
Aggressive nodular malignant melanoma
Loss of expression associated with recurrent disease
[216]
Melanoma
CS gene score
CS
- Positively correlated with PD-L1 protein expression and T cell cytotoxicity
- Exhibited higher AUCs than the TIDE score for predicting immunotherapy response
[136]
Basal cell carcinoma
CS gene scores of malignant cells from non-responders significantly decreased after treatment whereas posttreatment CS scores significantly increased in ICB responders
Merkel cell carcinoma
Thyroid cancer
Early-stage papillary thyroid microcarcinoma, PTC and anaplastic thyroid carcinoma
p16INK4a, p21WAF1/Cip1 and IGFBP7
OIS
Expression gradually decreased with increasing grade of malignancy indicating involvement of OIS in thyroid carcinogenesis
[217]
V600EBRAF PTC
SA-β-Gal and p16INK4a
Expression next to proliferating cancer cells demonstrating OIS and cells escaping from OIS co-exist in V600EBRAF PTC
[218]
(V600EBRAF) PTC
SA-β-Gal, p16INK4a, and Ki67c and mRNA of p16INK4a
- Senescent tumor cells frequently present at invasive borders with features of collective invasion and high invasive ability with expression of a SASP
- Senescent tumor cells existed during lymphovascular invasion and metastasis
- Increased expression of CXCL12 in presence of senescent tumor cells in collective invasion area and diffuse CXCR4 expression in all PTC, demonstrating senescent tumor cell involvement in collective invasion and metastasis of PTC
[219]
Bone and soft tissue tumors
High grade sarcoma
p16INK4a
OIS
Decreased expression
[220]
Dedifferentiated liposarcoma, synovial sarcoma and leiomyosarcoma
Decreased expression associated with reduced survival indicating p16INK4a-dependent OIS as tumor-suppressive mechanism
Liposarcoma
Senescence marker genes: VPS26A and VAMP3
High expression associated with increased survival
[134]
Senescence marker genes: STX4
High expression associated with decreased survival
Osteosarcoma
Aging-/senescence-induced gene risk score
High score associated with:
- worse OS
- higher copy number variation score, implying a higher degree of tumor cell malignancy
- immune cold tumors: lack of innate immune activation of infiltrating immune cells, less infiltration of antigen presenting cells, high TIDE score and T cell rejection
- higher exhaustion and T cell proliferation scores
- enriched MIF, CLEC and VEGF signaling pathway which are involved in osteosarcoma growth and metastasis and blood vessel growth
[221]
Renal cell carcinoma
Primary RCC
p400
OIS
Decreased expression associated with advanced tumor stage, higher grade of malignancy, regional lymph node metastasis and poor prognosis
[222]
RCC
SA-β-Gal, p53, Dec1, Ki67c and Raf-1c
TIS: sunitinib
Increased expression demonstrates TIS as treatment outcome
[223]
CS gene score
CS
- Lower score in primary tumors compared to adjacent normal solid tissue
- Exhibited higher AUCs than the TIDE score for predicting immunotherapy response
[136]
KIRP
Brain malignancies
PA
SA-β-Gal, p16INK4a, p53 and Ki67c
OIS
Identification of OIS responsible for slow growth pattern, lack of progression to higher-grade tumors and high OS
[224]
Senescence-associated genes: CDKN2A, CDKN1A, CEBPB, GADD45A, and IGFBP7
SASP factors: FGF2, IL-15, CSF3, VEGFA, IL-17A, CCL2, CXCL8, CSF2, CCL3, IFNγ, IL-6, IL-13, CCL11 and IL-1β
High expression and upregulation of SASP associated with favorable PFS, demonstrating OIS is regulated by SASP
[225]
High-grade tumors and adult LGG
CDKN2A and TP53
Homogeneous deletion of CDKN2A and secondary alterations of CDKN2A and TP53 more common
[226228]
IDH-mutant and lower grade (WHO grade II-III) astrocytoma
Absence of mutations associated with increased survival
[229, 230]
ACP
p21WAF1/Cip1, p53, GLB1, γH2AX, phosphor-DNA-PKc and Ki67c
Identification of senescent cells harboring molecular signature of OIS and SASP, demonstrating OIS and SASP drive cell transformation and tumor initiation
[231]
SASP factors: IL-1β, IL-6, IL-8, IL-10, IL-18, TNFα and IFNγ
Identification of SASP, demonstrating OIS and SASP drive cell transformation and tumor initiation
[232]
Medulloblastoma
CDKN2A and p53 pathway
Frequent CDKN2A promoter methylation and p53 pathway mutations, demonstrating OIS escape underlies tumor progression
[233235]
Low-grade diffuse astrocytoma
p16INK4a and pRb
Loss of expression associated with shorter survival
[236]
Glioma
Senescence score based on senescence-associated genes: CCL2, CCL7, CDKN1A, COPG, CSF2RB, CXCL1, ICAM-1, IGFBP-3, IL-6, IL-8, SAA4, TNFRSF-11B, TNFSF-11 and TP53
CS
Senescence score:
- associated with poor prognosis
- correlated with older age
- increases with WHO histological grade (lowest values for low-grade astrocytomas (WHO II), higher values for anaplastic astrocytomas (WHO III) and highest values for glioblastomas (WHO IV) and gliosarcomas), linking senescence-associated gene signature to disease progression
[237]
SA-β-Gal and Ki67c
Identification of senescent cells
[238]
Senescence gene signature: ANXA5, APOE, CD151, CDKN1A, CDKN2A, CDKN2B, CTSB, CTSD, CTSL, CTSZ, EMP3, FTH1, LFITM3, LGFBP2, LGFBP3, LAMP1, LAMP2, LGALS1, MT1, OCIAD2, PDLIM4, RBP1, S100A11, SEP11, SDC4, SPARC, TIMP1, TM4SF1, TMSB4X, TNC and TNFRSF12A
Senescence gene signature associated with shorter survival
Normal and reactive brain tissue and glioma
p21WAF1/Cip1
Increased expression in glioma compared to normal and reactive brain tissue, suggesting p21WAF1/Cip1-related tumorigenesis in glioma
[239]
Astrocytic glioma
Expression associated with worse DFS
[240]
Astrocytic and high-grade glioma
Senescence marker genes: NTAL and STX
High expression associated with decreased survival
[134]
Astrocytic and high-grade glioma and glioblastoma
Senescence marker genes: VPS26A, ARMCX3 and B2MG
High expression associated with increased survival
Glioblastoma multiforme
CS gene score
CS
Positively correlated with PD-L1 protein expression and T cell cytotoxicity
[136]
Head and neck cancer
Oropharyngeal SCC
p16INK4a
OIS
Expression associated with favorable prognosis regardless of HPV status
[241]
Laryngeal, hypopharyngeal or oral SCC
No prognostic value
[242]
Normal, benign hyperplastic skin and oral lesions
Negative expression
[243, 244]
dysplastic and carcinoma in situ skin and oral SCC
Heterogeneous expression
Advanced skin and oral SCC
Consistent expression at areas of microinvasion and at superficial margins
deeply invasive skin and oral SCC
Near to complete absent expression, demonstrating p16INK4a-dependent OIS as tumor-suppressive mechanism
Oral SCC
p16INK4a, p53, pRb and cyclin D1
- Loss of p16INK4a expression earliest event in tumorigenesis
- Deregulation of pRb and p53 associated with malignant transformation and adverse prognosis
[245]
Premalignant dysplastic and SCC of skin and oral epithelium and HNSCC
CDKN2A
High frequency of gene mutation, deletion and promoter silencing
[243, 246]
HNSCC
H3K9Me
- Identification of senescent cells in 67.1% of biopsies
- More senescent cells in tumor center compared to invasive front
- No prognostic impact
[247]
Senescence score based on senescence-associated genes: DUSP16, EHF, ITSN2, DUSP3, HDAC4, TXNIP, KL, MAP4KI, PIK3R5, YPEL3, CDKN2A, MAP2K7, PIAS4, POU5F1, EZH2, DGCR8, TYK2, BTG3, SOCS1, G6PD, TXN, DPY30, AURKA, PDCD10, PSMD14, FXR1, PCGF2, GAPDH, PSMB5, RSL1D1, IL1A, CDK6, LIMA1, CAV1, SERPINE1, HSPA5, NEK6, ASPH, MAP2K1, ACLY, TOP1
High-senescence score:
- associated with worse OS
- correlated to poor clinicopathological parameters (histologic grade, TNM-stage, T-stage and lymph node metastasis)
[248]
Pharyngeal and laryngeal HNSCC
p21WAF1/Cip1
High expression associated with poor OS
[249]
Oral SCC
[250]
Tonsillar SCC
Expression associated with favorable DSS
[251]
Laryngeal and oral HNSCC
Higher expression associated with improved OS in stage III patients
[252]
Minor salivary gland adenoid cystic carcinoma
p16INK4a and p21WAF1/Cip1
CS
Strong and intense p21WAF1/Cip1 expression and complete negative p16INK4a expression, suggesting transient senescence insufficient to maintain the senescence-associated cell cycle arrest, avoiding cell death by senescence and favoring tumor growth
[253]
HNSCC
H3K9Me
TIS: RT with or without 5-FU/CP or 5-FU/CB
- Less senescent cells in post-RCT samples
- No prognostic impact
[247]
mRNA of CXCR2 receptor and/or its ligands (CXCL1–3, CXCL5, CXCL7, and CXCL8)
TIS: CRTd
Increased expression associated with impaired DSS, demonstrating TIS and SASP production determines radioresistance
[254]
CS gene score
CS
Lower score in primary tumors compared to adjacent normal solid tissue
[136]
Thymic cancer
Thymic cancer
CS gene score
CS
Positively correlated with PD-L1 protein expression and T cell cytotoxicity
[136]
adetected by immunohistochemistry unless otherwise specified
bdefined as CS unless otherwise specified
cnegative marker of senescence
dnot further specified
5-FU 5-fluorouracil, AC Adenocarcinoma, ACP Adamantinomatous craniopharyngioma, ADT Androgen deprivation therapy, AUCs Areas under the curve, BPH Benign prostate hypertrophy, CAFs Cancer-associated fibroblasts, CB Carboplatin, CCA Cholangiocarcinoma, CIN Cervical intraepithelial neoplasia, CLEC C-type lectin-like, CP Cisplatin, CP Cyclophosphamide, CRC Colorectal cancer, CRT chemoradiotherapy, CS Cellular senescence, CT chemotherapy, DFS Disease-free survival, DOC Docetaxel, DOX Doxorubicin, DSS Disease-specific survival, EC Esophageal cancer, ECM Extracellular matrix, ECX Epirubicin, EMT Epithelial-mesenchymal transition, ESCC Esophageal squamous cell cancer, HCC Hepatocellular carcinoma, HGSOC High-grade serous ovarian cancer, HNSCC Head and neck squamous cell carcinoma, ICB Immune-checkpoint blockade, IN intraepithelial neoplasia, KIRP Kidney renal papillary carcinoma, LLG Low-grade glioma, MIF Macrophage migration inhibitory factor, MIT Mitoxantrone, MPM Malignant pleural mesothelioma, MSI Microsatellite instability, MTX Methotrexate, NSCLC Non-small cell lung cancer, OC Ovarian cancer, OIS Oncogene-induced senescence, OS Overall survival, OXP Oxaliplatin, PA Pilocytic astrocytoma, PanIN Pancreatic intraepithelial neoplasia, PC Peritoneal cancer, PD-L1 Programmed death-ligand 1, PDAC Pancreatic ductal adenocarcinoma, pEOC Primary epithelial ovarian cancer, PFS Progression-free survival, pRb Retinoblastoma protein, PTC Papillary thyroid cancer, PTX pPaclitaxel, RCC Renal cell carcinoma, RCT Radiochemotherapy, RT Radiotherapy, SASP Senescence-associated secretory phenotype, SCC Squamous cell carcinoma, SS Senescence signature, TIDE Tumor immune dysfunction and exclusion, TILs Tumor-infiltrating lymphocytes, TIS Therapy-induced senescence, TMB Tumor mutational burden, TME Tumor microenvironment, UCEC Uterine corpus endometrial carcinoma, VEGF Vascular endothelial growth factor, WHO World Health Organization
There is abundant ex and in vivo evidence in several tumor types that OIS acts as a tumor-suppressive mechanism preventing the expansion of pre- or fully malignant cells (Table 1). OIS is found in precursor lesions and in low TNM stage tumors with more favorable clinicopathologic features [13, 202, 209], whereas in full-blown malignant lesions OIS-related markers are often dysregulated or completely lost [173] and correlate with higher TNM stage tumors and poor clinicopathological parameters [136, 164, 211, 212] (Table 1). Tumor suppressor protein p16INK4a often comes forward as the main regulator for maintaining the OIS-associated cell cycle arrest which is considered to be more crucial for maintaining the senescence-associated cell cycle arrest whereas p53/p21WAF1/Cip1 pathway activation is more involved in the initiation of senescence [59]. Mutations, deletions, secondary alterations and/or promoter silencing of cellular control genes (i.e., TP53, CDKN1A and CDKN2A) encoding for tumor suppressor proteins p53, p21WAF1/Cip1 and p16INK4a may result in inadequate senescence induction or escape from senescence due to absent or dysfunctional cell cycle inhibitor pathway activation and absent or dysfunctional tumor suppressor proteins to induce or maintain OIS. Hence, dysregulated (i.e., decreased or overexpressed) expression or complete loss of tumor suppressor proteins p16INK4a, p21WAF1/Cip1 and p53 are often correlated with increasing grade of malignancy and tumor progression, and associated with a negative prognostic outcome [139, 140, 158, 170, 187, 205207, 213, 214, 236] (Table 1) (Fig. 2B).
However, in certain tumor types, the (abundant) presence of OIS or expression of senescence-associated markers is also linked to worse prognosis [132, 197, 221, 237, 238, 248]. Perhaps even more surprisingly, both absence and extensive presence of senescence in CRC was associated with negative prognosis whereas moderate presence was associated with the best prognosis [174], demonstrating that an extensive senescence burden can paradoxically impair clinical outcome in contrast to a moderate senescence burden.
Concerning TIS, evidence demonstrates that TIS is an in vivo relevant outcome of various anticancer therapies in several tumor types (Table 1). For example, in breast, colorectal and prostate cancer TIS was observed after neoadjuvant genotoxic chemotherapy [150, 177, 178] and antihormone therapy [204]. Therapy-induced senescent cells were identified in residual drug-resistant tumors [150] and in samples with partial or incomplete pathological response to neoadjuvant therapy [149], suggesting TIS might persist after neoadjuvant therapy [203] and is responsible for incomplete tumor regression [204]. The presence of TIS is however linked to contradictory clinical outcomes and is associated with worse [135, 137] as well as improved [163, 176, 178] prognosis depending on tumor type. For example, while in non-small cell lung cancer (NSCLC) TIS is associated with worse OS [135], in CRC a higher proportion of therapy-induced senescent cells after chemotherapy treatment was associated with a longer progression-free survival (PFS) compared to when the proportion of senescent tumor cells did not change before and after chemotherapy [178]. Thus, regardless of the type of cancer, the senescence burden of OIS and TIS seems to be an important determinant affecting the outcome in cancer patients.

Secretion, composition and time-dependent impact of SASP

Whereas the senescence-associated cell cycle arrest acts tumor-suppressive, SASP factors secreted by senescent cells can be both tumor-suppressive and tumor-promoting [255]. The main signaling pathways involved in SASP regulation include NF-κB, p38, mTOR, C/EBPβ and JAK2/STAT3 [16, 256260]. Interleukin (IL)-1α is secreted by oncogene-induced and therapy-induced senescent cells and initiates the production of key SASP proteins such as IL-6 and IL-8 through activation of NF-κB and C/EBPβ [62, 261]. The senescent phenotype is subsequently enforced autocrinally by IL-6 [16] and IL-8 [122] and transmitted paracrinally to neighboring cells by IL-1α [262], further enhancing the production of these SASP factors. Abundant SASP factors IL-6 and IL-8 have both anti-tumorigenic and pro-tumorigenic effects [263]. For example, both interleukins mediate the recruitment of macrophages, T cells and natural killer (NK) cells supporting immune surveillance and elimination of senescent cancer cells [32] but also create a chronic inflammatory TME driving cancer development [73] and attract myeloid derived suppressor cells that suppress T [264] and NK cells [196] and blocks IL-1α signaling, preventing paracrine senescence in neighboring cancer cells [265]. Next to pro-inflammatory cytokines, the SASP may consist of a variety of chemokines (e.g., CCL2 and CXCL1), angiogenic factors (e.g., VEGF), growth factors (e.g., HGF, PDGF, EGF and TGFα), matrix-remodeling enzymes (e.g., MMP1 and MMP3) and bioactive lipids [62, 263]. However, its composition is highly dynamic [263], complex and variable and depend on the cell type, senescence-inducing trigger and type of senescence [62, 74, 75], resulting in cancer-specific and context-dependent effective SASP levels. Besides its variable composition, the SASP is suggested to have a time-dependent impact [31]. Whereas the short term presence of SASP is suggested to be primarily tumor-suppressive, the long term presence of pro-inflammatory SASP factors can drive cancer [31, 32]. Thus, depending on the secretion, composition and the duration of its presence, the net effect of the SASP may be tumor-suppressive or tumor-promoting, thereby either enhancing or opposing the tumor-suppressive property of the senescence-associated cell cycle arrest.
Evidence from patients with various tumor types show that oncogene-induced senescent cells are capable of secreting a tumor-promoting and immune-suppressive SASP that is linked to impaired clinical outcome. NSCLC patients with an elevated senescence-related gene signature score overexpressed an immune-suppressive SASP and demonstrated decreased infiltration levels of cytotoxic T cells and NK cells and increased levels of immune-suppressive cells (i.e., neutrophils, cancer-associated fibroblasts, regulatory T cells, and resting NK cells), disease progression and worse OS [133]. The importance of the interaction between the SASP and immune surveillance of senescent tumor cells is further emphasized by the finding that, in CRC, both a lower average distance between senescent cells and T cells as well as a higher percentage of T cells near senescent cells were linked to improved survival, suggesting that the tumor-suppressive potential of cellular senescence is determined by the TME and immune cell-mediated elimination of senescent tumor cells [174]. The SASP of senescent cells can also direct neighboring cells and drive cell transformation and tumor initiation [231, 232] and mediate collective invasion and metastasis [219], as evidenced in adamantinomatous craniopharyngioma and papillary thyroid cancer. Also in precursor lesions of pancreatic ductal adenocarcinoma (PDAC) (i.e., pancreatitis and pancreatic intraepithelial neoplasias), a senescence-associated inflammatory SASP was linked to PDAC progression [189].
Increasing evidence demonstrates that also therapy-induced senescent cells can produce a tumor-promoting and immune-suppressive SASP that might impair clinical outcome. For example, in response to genotoxic chemotherapy, TIS and a protumorigenic SASP were observed in prostate cancer resection samples [73], and overexpression of SASP factor were associated with impaired outcome in head and neck squamous cell carcinoma patients [254] as early TIS and SASP production upon radiotherapy was demonstrated in a preclinical model. In an elucidative study, therapy-induced senescent cells of breast and prostate cancer patients were found to evade immune clearance by shedding of natural killer group 2D (NKG2D) ligands and paracrine suppression of NKG2D-receptor-mediated immunosurveillance [150]. Of importance, since TIS depends on p53/p21WAF1/Cip1 pathway activation (Fig. 2), the tumoral p53 status indirectly determines SASP production and outcome after treatment with senescence-inducing anticancer therapies. This was illustrated in an in vivo p53 wild-type breast cancer model where TIS was induced instead of cell death after chemotherapy treatment and resulted in minimal regression of the tumor and early relapse through the secretion of protumorigenic SASP [266]. Accordingly, breast cancer patients harboring a TP53 mutation showed an improved response to anthracycline-based chemotherapy [267, 268].
In contrast, abundant evidence links both OIS [165, 202] and TIS [163, 176, 178] to improved outcome (Table 1). In this scenario, it is conceivable that oncogene-induced and therapy-induced senescent cells secrete moderate to low effective SASP levels and/or secrete a SASP with a net tumor-suppressive and immune-promoting effect. For example, in pilocytic astrocytoma (PA), a low grade glioma and most common brain tumor in children, SASP factors were upregulated, and high levels of IL-1β and SASP expression were associated with favorable PFS [224]. The SASP was therefore suggested to regulate OIS in PA [225] and held responsible for the slow growth pattern, the lack of progression to higher-grade astrocytomas and the high OS of affected patients [224]. In addition, no oncogene-induced or therapy-induced senescent cells were identified in chemotherapy-naïve and neoadjuvant chemotherapy treated breast cancer samples, suggesting tumoral senescent cells either were already cleared by the immune system or bypassed senescence [151].

Senescence in the TME

There is mounting evidence that senescence also occurs in the TME and has prognostic implications. In gastric cancer, CRC and esophageal cancer patients, an enriched senescence gene signature in noncancerous cells, but not in cancerous cells, of the TME (e.g., endothelial cells, enteroendocrine cells, macrophages and fibroblasts) resulted in a longer disease-free survival and OS [168]. In contrast, identification of senescent cancer-associated fibroblasts (CAFs) adjacent to epithelial ovarian cancer cells in ovarian cancer specimens were suggested to promote ovarian cancer tumorigenesis [161]. The presence of a senescence-associated gene signature in peritumoral tissue of hepatocellular carcinoma (HCC) patients was also associated with early recurrence and poor survival as peritumoral OIS induced an accumulation of C–C chemokine receptor 2+ myeloid cells through secretion of C–C motif chemokine ligand 2, resulting in NK cell inhibition and enhanced HCC growth [196]. Interestingly, in a murine rectal cancer and patient-derived tumor organoids model, IL-1α was found to predispose inflammatory CAFs to p53-mediated TIS upon irradiation, which in turn resulted in chemoradiotherapy resistance and disease progression through the secretion of cytokines and extracellular matrix constituents supporting the invasion and metastasis of cancer cells and counteracting the irradiation-induced tumor cell death [184]. Consistently, the presence of inflammatory CAFs in pre-therapeutic patient biopsies resulted in poor chemoradiotherapy response and low IL-1α receptor antagonist serum levels, which enhances IL-1 signaling and predisposes inflammatory CAFs to TIS, correlated with poor prognosis in rectal cancer patients [184].
Hence, cellular senescence is not solely limited to cancerous cells but also occurs in cells of the TME as well as of the immune system [269].

Model for differential prognostic outcomes of OIS and TIS in cancer patients.

Evidence of several cancer types (presented in Table 1) suggests that the prognostic implications of OIS and TIS are highly context-dependent and primarily depend on the (i) the senescence burden; (ii) the secretion; and (iii) the composition of the SASP and/or duration of SASP presence. Therefore, in a simplified schematic model, we present different scenarios that could provide a rationale for the differential outcomes of cellular senescence observed in cancer patients, based on the interplay between these three factors, i.e., (i) the senescence burden (i.e., low, moderate or high); (ii) the secretion (i.e., low or high); and (iii) the composition of the SASP (i.e., net tumor-promoting and immune-suppressive or net tumor-suppressive and immune-promoting) and/or duration of SASP presence (i.e., short term or long term) (Fig. 3).
The senescence-associated cell cycle arrest is considered tumor-suppressive whereas the composition of the SASP and/or duration of SASP presence determines whether the senescence-associated cell cycle arrest is reinforced or opposed. The degree of SASP secretion and levels, which depend on the senescence burden, determines to which extent the senescence-associated cell cycle arrest is reinforced or opposed. As such, OIS and TIS can have tumor-suppressive and tumor-promoting properties (Fig. 3A-F).
The proposed model provides a rationale for the differential outcomes of OIS and TIS observed within the same cancer type, such as in [174], as well as between different types of cancer (Table 1). Accordingly, cancer cells originating from urinary systems, glands and soft tissues (e.g., prostate cancer, adenoid cystic carcinoma, RCC and melanoma) exhibited relatively higher cellular senescence gene scores than tumors originating from reproductive organs (e.g., breast cancer, cervical SCC and OC) [136], and were correlated with SASP factors and immune related genes, suggesting SASP-induced immune infiltration. The infiltration of immune cells varied however in a cancer-specific pattern [136], contributing to the context-dependency of the proposed model and the interplay between the senescence burden, the secretion and composition of the SASP.
Of note, as senescent cells can reinforce their senescent phenotype in an autocrine fashion [16, 122] and paracrinally transmit the senescent phenotype to adjacent malignant and non-malignant cells [262, 270], the tumoral senescence burden can increase over time resulting in altered tumoral repercussions (Fig. 3, vertical arrow hourglasses) in addition to the differential time-dependent impact of SASP (Fig. 3, horizontal arrow hourglasses). Thus, cellular senescence in cancer should be considered as a dynamic, rather than an irreversible, static condition [271], with antitumorigenic and protumorigenic features that can change over time.

Conclusion

Conclusions and future perspectives

Clinical evidence of cellular senescence in cancer patients has long been underestimated, in part due to the difficult detection, since currently no specific and universal markers for senescent cells exist. Historically, cellular senescence was primarily considered as an endogenous tumor suppressor mechanism halting the proliferation of damaged cells which are at risk of malignant transformation, thereby protecting against cancer. However, during the last two decades, a more nuanced view on the involvement of cellular senescence in tumorigenesis and response to therapy has emerged. Here, we provided a comprehensive overview on the prognostic implications of cellular senescence in cancer patients with solid tumors. Increasing clinical evidence add to the antagonistic pleiotropy of cellular senescence as differential prognostic outcomes, ranging from improved to impaired outcome, are demonstrated. In a simplified model we propose that the prognostic implications of OIS as well as TIS are highly context-dependent and primarily depend on the senescence burden, the secretion and the composition of the SASP and/or duration of SASP presence, thereby providing a rationale for the differential outcomes of OIS as well TIS observed within the same cancer type as well as between different types of cancer discussed in this review. However, (pre)clinical research is warranted to provide adequate evidence to further support this model, and to better comprehend when and how senescent cancer cells give rise to a beneficial or detrimental outcome.
The detection of cellular senescence in cancer patients can be achieved by various methods and using various markers. Despite clear algorithms to accurately assess and quantify senescent cells in vitro and in vivo [1, 44], a plethora of different senescence markers, single or combined with other markers, at different translational levels are currently used to demonstrate the presence of cellular senescence (Table 1). Hence, it is difficult to compare clinical data and to draw reliable conclusions regarding the prognostic implications of cellular senescence, as well as the implementation of emerging senolytics (i.e., targeted removal of senescent cells) [42, 78, 263, 271] and senomorphics that modify/suppress the SASP [32, 263, 272], underlining the need for a uniform and consistent application of recognized and validated markers of cellular senescence at different translational levels. Of note, as AI-based computational pathology is making its way into medicine and clinical practice [273], an AI-based detection of cellular senescence might potentially make multi-marker detection of senescent cells redundant in the near-future. Since the prognostic impact of senescence is mainly mediated by the SASP, extensive profiling of the SASP in specific disease contexts (i.e., organ- and trigger-specific (OIS versus TIS)), as well as the identification of biomarkers representing the senescence burden will be paramount [75]. Especially longitudinal monitoring of senescent cells and their SASP will be of particular interest, as preclinical models are not able to capture the beneficial or detrimental effects exhibited by senescent cells and the SASP over an extended period of time.
Since the TME, containing cancer-associated fibroblasts and infiltrating immune cells, is believed to be a major contributor to therapy resistance and disease progression [274], the interaction of TME with senescent cells as well as the SASP should be investigated more closely. This can be achieved using appropriate preclinical models that precisely recapitulate this complex heterogeneity, such as in vitro 3D culture technologies (e.g., organoids), thereby resembling a more physiological human cancer model [275]. Interestingly, by combining single-cell RNA-sequencing with spatial transcriptomics [276], it is feasible to map the location of distinct cell types and subpopulations in the TME and investigate the interaction of senescent cancer cells with the TME more in-depth.
As an emerging cancer hallmark, the involvement of cellular senescence in cancer is complex and highly context-dependent, exerting potential beneficial and/or detrimental effects. Therefore, senescence must be approached in a nuanced way regarding its repercussions in cancer. Only in this way it is possible to optimally exploit cellular senescence as an anticancer therapeutic strategy.

Acknowledgements

All figures were created with Biorender.com.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179(4):813–27.CrossRef Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179(4):813–27.CrossRef
2.
Zurück zum Zitat Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, et al. Programmed cell senescence during mammalian embryonic development. Cell. 2013;155(5):1104–18.CrossRef Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, et al. Programmed cell senescence during mammalian embryonic development. Cell. 2013;155(5):1104–18.CrossRef
3.
Zurück zum Zitat Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155(5):1119–30.CrossRef Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155(5):1119–30.CrossRef
4.
Zurück zum Zitat Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33.CrossRef Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31(6):722–33.CrossRef
5.
Zurück zum Zitat Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010;12(7):676–85.CrossRef Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010;12(7):676–85.CrossRef
6.
Zurück zum Zitat Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96.CrossRef Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96.CrossRef
7.
Zurück zum Zitat Paez-Ribes M, González-Gualda E, Doherty GJ, Muñoz-Espín D. Targeting senescent cells in translational medicine. EMBO Mol Med. 2019;11(12):e10234.CrossRef Paez-Ribes M, González-Gualda E, Doherty GJ, Muñoz-Espín D. Targeting senescent cells in translational medicine. EMBO Mol Med. 2019;11(12):e10234.CrossRef
8.
Zurück zum Zitat Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.CrossRef Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621.CrossRef
9.
Zurück zum Zitat Hayflick L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965;37:614–36.CrossRef Hayflick L. THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL STRAINS. Exp Cell Res. 1965;37:614–36.CrossRef
10.
Zurück zum Zitat O’Brien W, Stenman G, Sager R. Suppression of tumor growth by senescence in virally transformed human fibroblasts. Proc Natl Acad Sci. 1986;83(22):8659–63.CrossRef O’Brien W, Stenman G, Sager R. Suppression of tumor growth by senescence in virally transformed human fibroblasts. Proc Natl Acad Sci. 1986;83(22):8659–63.CrossRef
11.
Zurück zum Zitat Sager R. Senescence as a mode of tumor suppression. Environ Health Perspect. 1991;93:59–62.CrossRef Sager R. Senescence as a mode of tumor suppression. Environ Health Perspect. 1991;93:59–62.CrossRef
12.
Zurück zum Zitat Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, et al. Tumour biology: senescence in premalignant tumours. Nature. 2005;436(7051):642.CrossRef Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M, et al. Tumour biology: senescence in premalignant tumours. Nature. 2005;436(7051):642.CrossRef
13.
Zurück zum Zitat Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436(7051):720–4.CrossRef Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005;436(7051):720–4.CrossRef
14.
Zurück zum Zitat Choi J, Shendrik I, Peacocke M, Peehl D, Buttyan R, Ikeguchi EF, et al. Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia. Urology. 2000;56(1):160–6.CrossRef Choi J, Shendrik I, Peacocke M, Peehl D, Buttyan R, Ikeguchi EF, et al. Expression of senescence-associated beta-galactosidase in enlarged prostates from men with benign prostatic hyperplasia. Urology. 2000;56(1):160–6.CrossRef
15.
Zurück zum Zitat Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ, et al. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol. 2009;11(9):1135–42.CrossRef Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ, et al. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol. 2009;11(9):1135–42.CrossRef
16.
Zurück zum Zitat Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133(6):1019–31.CrossRef Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133(6):1019–31.CrossRef
17.
Zurück zum Zitat Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444(7119):633–7.CrossRef Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444(7119):633–7.CrossRef
18.
Zurück zum Zitat Majumder PK, Grisanzio C, O’Connell F, Barry M, Brito JM, Xu Q, et al. A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell. 2008;14(2):146–55.CrossRef Majumder PK, Grisanzio C, O’Connell F, Barry M, Brito JM, Xu Q, et al. A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell. 2008;14(2):146–55.CrossRef
19.
Zurück zum Zitat Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602.CrossRef Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602.CrossRef
20.
Zurück zum Zitat Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005;436(7051):660–5.CrossRef Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005;436(7051):660–5.CrossRef
21.
Zurück zum Zitat Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436(7051):725–30.CrossRef Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005;436(7051):725–30.CrossRef
22.
Zurück zum Zitat Goel VK, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T, et al. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene. 2009;28(23):2289–98.CrossRef Goel VK, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T, et al. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene. 2009;28(23):2289–98.CrossRef
23.
Zurück zum Zitat Dankort D, Filenova E, Collado M, Serrano M, Jones K, McMahon M. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 2007;21(4):379–84.CrossRef Dankort D, Filenova E, Collado M, Serrano M, Jones K, McMahon M. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 2007;21(4):379–84.CrossRef
24.
Zurück zum Zitat Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B, et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci U S A. 2010;107(1):246–51.CrossRef Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B, et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci U S A. 2010;107(1):246–51.CrossRef
25.
Zurück zum Zitat Guccini I, Revandkar A, D’Ambrosio M, Colucci M, Pasquini E, Mosole S, et al. Senescence Reprogramming by TIMP1 Deficiency Promotes Prostate Cancer Metastasis. Cancer Cell. 2021;39(1):68-82.e9.CrossRef Guccini I, Revandkar A, D’Ambrosio M, Colucci M, Pasquini E, Mosole S, et al. Senescence Reprogramming by TIMP1 Deficiency Promotes Prostate Cancer Metastasis. Cancer Cell. 2021;39(1):68-82.e9.CrossRef
26.
Zurück zum Zitat Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017;7(2):165–76.CrossRef Demaria M, O’Leary MN, Chang J, Shao L, Liu S, Alimirah F, et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017;7(2):165–76.CrossRef
27.
Zurück zum Zitat Coppé JP, Kauser K, Campisi J, Beauséjour CM. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem. 2006;281(40):29568–74.CrossRef Coppé JP, Kauser K, Campisi J, Beauséjour CM. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem. 2006;281(40):29568–74.CrossRef
28.
Zurück zum Zitat Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98(21):12072–7.CrossRef Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A. 2001;98(21):12072–7.CrossRef
29.
Zurück zum Zitat Liu D, Hornsby PJ. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 2007;67(7):3117–26.CrossRef Liu D, Hornsby PJ. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 2007;67(7):3117–26.CrossRef
30.
Zurück zum Zitat Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. 2019;19(8):439–53.CrossRef Faget DV, Ren Q, Stewart SA. Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer. 2019;19(8):439–53.CrossRef
31.
Zurück zum Zitat Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.CrossRef Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.CrossRef
32.
Zurück zum Zitat Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 2022;22(6):340–55.CrossRef Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 2022;22(6):340–55.CrossRef
33.
Zurück zum Zitat Galanos P, Vougas K, Walter D, Polyzos A, Maya-Mendoza A, Haagensen EJ, et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol. 2016;18(7):777–89.CrossRef Galanos P, Vougas K, Walter D, Polyzos A, Maya-Mendoza A, Haagensen EJ, et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol. 2016;18(7):777–89.CrossRef
34.
Zurück zum Zitat Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018;553(7686):96–100.CrossRef Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018;553(7686):96–100.CrossRef
35.
Zurück zum Zitat Patel PL, Suram A, Mirani N, Bischof O, Herbig U. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Proc Natl Acad Sci U S A. 2016;113(34):E5024–33.CrossRef Patel PL, Suram A, Mirani N, Bischof O, Herbig U. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Proc Natl Acad Sci U S A. 2016;113(34):E5024–33.CrossRef
36.
Zurück zum Zitat Saleh T, Tyutyunyk-Massey L, Gewirtz DA. Tumor Cell Escape from Therapy-Induced Senescence as a Model of Disease Recurrence after Dormancy. Can Res. 2019;79(6):1044–6.CrossRef Saleh T, Tyutyunyk-Massey L, Gewirtz DA. Tumor Cell Escape from Therapy-Induced Senescence as a Model of Disease Recurrence after Dormancy. Can Res. 2019;79(6):1044–6.CrossRef
37.
Zurück zum Zitat Roberson RS, Kussick SJ, Vallieres E, Chen SY, Wu DY. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res. 2005;65(7):2795–803.CrossRef Roberson RS, Kussick SJ, Vallieres E, Chen SY, Wu DY. Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res. 2005;65(7):2795–803.CrossRef
38.
Zurück zum Zitat Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–22.CrossRef Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120(4):513–22.CrossRef
39.
Zurück zum Zitat Laconi E, Marongiu F, DeGregori J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br J Cancer. 2020;122(7):943–52.CrossRef Laconi E, Marongiu F, DeGregori J. Cancer as a disease of old age: changing mutational and microenvironmental landscapes. Br J Cancer. 2020;122(7):943–52.CrossRef
40.
Zurück zum Zitat Chatsirisupachai K, Lesluyes T, Paraoan L, Van Loo P, de Magalhães JP. An integrative analysis of the age-associated multi-omic landscape across cancers. Nat Commun. 2021;12(1):2345.CrossRef Chatsirisupachai K, Lesluyes T, Paraoan L, Van Loo P, de Magalhães JP. An integrative analysis of the age-associated multi-omic landscape across cancers. Nat Commun. 2021;12(1):2345.CrossRef
41.
Zurück zum Zitat Ewald JA, Desotelle JA, Wilding G, Jarrard DF. Therapy-induced senescence in cancer. J Natl Cancer Inst. 2010;102(20):1536–46.CrossRef Ewald JA, Desotelle JA, Wilding G, Jarrard DF. Therapy-induced senescence in cancer. J Natl Cancer Inst. 2010;102(20):1536–46.CrossRef
42.
Zurück zum Zitat Wang B, Kohli J, Demaria M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer. 2020;6(10):838–57.CrossRef Wang B, Kohli J, Demaria M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer. 2020;6(10):838–57.CrossRef
43.
Zurück zum Zitat Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31–46.CrossRef Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31–46.CrossRef
44.
Zurück zum Zitat Kohli J, Wang B, Brandenburg SM, Basisty N, Evangelou K, Varela-Eirin M, et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat Protoc. 2021;16(5):2471–98.CrossRef Kohli J, Wang B, Brandenburg SM, Basisty N, Evangelou K, Varela-Eirin M, et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat Protoc. 2021;16(5):2471–98.CrossRef
45.
Zurück zum Zitat Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas D, Muñoz-Espín D, et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell. 2017;16(1):192–7.CrossRef Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas D, Muñoz-Espín D, et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell. 2017;16(1):192–7.CrossRef
46.
Zurück zum Zitat Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4(12):1798–806.CrossRef Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009;4(12):1798–806.CrossRef
47.
Zurück zum Zitat Robbins E, Levine EM, Eagle H. Morphologic changes accompanying senescence of cultured human diploid cells. J Exp Med. 1970;131(6):1211–22.CrossRef Robbins E, Levine EM, Eagle H. Morphologic changes accompanying senescence of cultured human diploid cells. J Exp Med. 1970;131(6):1211–22.CrossRef
48.
Zurück zum Zitat Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7.CrossRef Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7.CrossRef
49.
Zurück zum Zitat Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, et al. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY). 2017;9(8):1867–84.CrossRef Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, et al. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY). 2017;9(8):1867–84.CrossRef
50.
Zurück zum Zitat Kopp HG, Hooper AT, Shmelkov SV, Rafii S. Beta-galactosidase staining on bone marrow. The osteoclast pitfall Histol Histopathol. 2007;22(9):971–6. Kopp HG, Hooper AT, Shmelkov SV, Rafii S. Beta-galactosidase staining on bone marrow. The osteoclast pitfall Histol Histopathol. 2007;22(9):971–6.
51.
Zurück zum Zitat Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY). 2013;5(1):37–50.CrossRef Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY). 2013;5(1):37–50.CrossRef
52.
Zurück zum Zitat Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res. 2000;257(1):162–71.CrossRef Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res. 2000;257(1):162–71.CrossRef
53.
Zurück zum Zitat Yang NC, Hu ML. The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2005;40(10):813–9.CrossRef Yang NC, Hu ML. The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2005;40(10):813–9.CrossRef
54.
Zurück zum Zitat Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5(2):187–95.CrossRef Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell. 2006;5(2):187–95.CrossRef
55.
Zurück zum Zitat Jung T, Bader N, Grune T. Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci. 2007;1119:97–111.CrossRef Jung T, Bader N, Grune T. Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci. 2007;1119:97–111.CrossRef
56.
Zurück zum Zitat Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018;28(6):436–53.CrossRef Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018;28(6):436–53.CrossRef
57.
Zurück zum Zitat Saif M, Kwanten WJ, Carr JA, Chen IX, Posada JM, Srivastava A, et al. Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin. Nature Biomed Engineering. 2020;4(8):801–13.CrossRef Saif M, Kwanten WJ, Carr JA, Chen IX, Posada JM, Srivastava A, et al. Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin. Nature Biomed Engineering. 2020;4(8):801–13.CrossRef
58.
Zurück zum Zitat Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A. 1996;93(24):13742–7.CrossRef Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A. 1996;93(24):13742–7.CrossRef
59.
Zurück zum Zitat Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. Embo j. 2003;22(16):4212–22.CrossRef Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. Embo j. 2003;22(16):4212–22.CrossRef
60.
Zurück zum Zitat Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;42:63–71.CrossRef Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;42:63–71.CrossRef
61.
Zurück zum Zitat Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking Transcriptional Heterogeneity in Senescent Cells. Curr Biol. 2017;27(17):2652-60.e4.CrossRef Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking Transcriptional Heterogeneity in Senescent Cells. Curr Biol. 2017;27(17):2652-60.e4.CrossRef
62.
Zurück zum Zitat Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol. 2021;9:645593.CrossRef Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol. 2021;9:645593.CrossRef
63.
Zurück zum Zitat Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311–22.CrossRef Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol. 2000;182(3):311–22.CrossRef
64.
Zurück zum Zitat Sen P, Shah PP, Nativio R, Berger SL. Epigenetic Mechanisms of Longevity and Aging. Cell. 2016;166(4):822–39.CrossRef Sen P, Shah PP, Nativio R, Berger SL. Epigenetic Mechanisms of Longevity and Aging. Cell. 2016;166(4):822–39.CrossRef
65.
Zurück zum Zitat Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703–16.CrossRef Narita M, Nũnez S, Heard E, Narita M, Lin AW, Hearn SA, et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell. 2003;113(6):703–16.CrossRef
66.
Zurück zum Zitat Aird KM, Zhang R. Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol. 2013;965:185–96.CrossRef Aird KM, Zhang R. Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol. 2013;965:185–96.CrossRef
67.
Zurück zum Zitat Zhang R, Chen W, Adams PD. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol. 2007;27(6):2343–58.CrossRef Zhang R, Chen W, Adams PD. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol. 2007;27(6):2343–58.CrossRef
68.
Zurück zum Zitat Fagagna FDAD, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426(6963):194–8.CrossRef Fagagna FDAD, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426(6963):194–8.CrossRef
69.
Zurück zum Zitat Biran A, Zada L, Abou Karam P, Vadai E, Roitman L, Ovadya Y, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–71.CrossRef Biran A, Zada L, Abou Karam P, Vadai E, Roitman L, Ovadya Y, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–71.CrossRef
70.
Zurück zum Zitat Malavolta M, Giacconi R, Piacenza F, Strizzi S, Cardelli M, Bigossi G, et al. Simple Detection of Unstained Live Senescent Cells with Imaging Flow Cytometry. Cells. 2022;11(16):2506.CrossRef Malavolta M, Giacconi R, Piacenza F, Strizzi S, Cardelli M, Bigossi G, et al. Simple Detection of Unstained Live Senescent Cells with Imaging Flow Cytometry. Cells. 2022;11(16):2506.CrossRef
71.
Zurück zum Zitat Freund A, Laberge RM, Demaria M, Campisi J. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell. 2012;23(11):2066–75.CrossRef Freund A, Laberge RM, Demaria M, Campisi J. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell. 2012;23(11):2066–75.CrossRef
72.
Zurück zum Zitat Hernandez-Segura A, Rubingh R, Demaria M. Identification of stable senescence-associated reference genes. Aging Cell. 2019;18(2):e12911.CrossRef Hernandez-Segura A, Rubingh R, Demaria M. Identification of stable senescence-associated reference genes. Aging Cell. 2019;18(2):e12911.CrossRef
73.
Zurück zum Zitat Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.CrossRef Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6(12):2853–68.CrossRef
74.
Zurück zum Zitat Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020;18(1):e3000599.CrossRef Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020;18(1):e3000599.CrossRef
75.
Zurück zum Zitat Basisty N, Kale A, Patel S, Campisi J, Schilling B. The power of proteomics to monitor senescence-associated secretory phenotypes and beyond: toward clinical applications. Expert Rev Proteomics. 2020;17(4):297–308.CrossRef Basisty N, Kale A, Patel S, Campisi J, Schilling B. The power of proteomics to monitor senescence-associated secretory phenotypes and beyond: toward clinical applications. Expert Rev Proteomics. 2020;17(4):297–308.CrossRef
76.
Zurück zum Zitat Jochems F, Thijssen B, De Conti G, Jansen R, Pogacar Z, Groot K, et al. The Cancer SENESCopedia: A delineation of cancer cell senescence. Cell Rep. 2021;36(4):109441.CrossRef Jochems F, Thijssen B, De Conti G, Jansen R, Pogacar Z, Groot K, et al. The Cancer SENESCopedia: A delineation of cancer cell senescence. Cell Rep. 2021;36(4):109441.CrossRef
77.
Zurück zum Zitat Özcan S, Alessio N, Acar MB, Mert E, Omerli F, Peluso G, et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY). 2016;8(7):1316–29.CrossRef Özcan S, Alessio N, Acar MB, Mert E, Omerli F, Peluso G, et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY). 2016;8(7):1316–29.CrossRef
78.
Zurück zum Zitat Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583(7814):127–32.CrossRef Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583(7814):127–32.CrossRef
79.
Zurück zum Zitat Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11(1):23–36.CrossRef Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol. 2010;11(1):23–36.CrossRef
80.
Zurück zum Zitat Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021;11(4):858–73.CrossRef Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021;11(4):858–73.CrossRef
81.
Zurück zum Zitat Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.CrossRef Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.CrossRef
82.
Zurück zum Zitat Schafer MJ, Zhang X, Kumar A, Atkinson EJ, Zhu Y, Jachim S, et al. The senescence-associated secretome as an indicator of age and medical risk. JCI Insight. 2020;5(12). Schafer MJ, Zhang X, Kumar A, Atkinson EJ, Zhu Y, Jachim S, et al. The senescence-associated secretome as an indicator of age and medical risk. JCI Insight. 2020;5(12).
83.
Zurück zum Zitat Wollert KC, Kempf T, Wallentin L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin Chem. 2017;63(1):140–51.CrossRef Wollert KC, Kempf T, Wallentin L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin Chem. 2017;63(1):140–51.CrossRef
84.
Zurück zum Zitat Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol. 2009;27(31):5287–97.CrossRef Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol. 2009;27(31):5287–97.CrossRef
85.
Zurück zum Zitat Shahim P, Blennow K, Johansson P, Svensson J, Lista S, Hampel H, et al. Cerebrospinal Fluid Stanniocalcin-1 as a Biomarker for Alzheimer’s Disease and Other Neurodegenerative Disorders. Neuromolecular Med. 2017;19(1):154–60.CrossRef Shahim P, Blennow K, Johansson P, Svensson J, Lista S, Hampel H, et al. Cerebrospinal Fluid Stanniocalcin-1 as a Biomarker for Alzheimer’s Disease and Other Neurodegenerative Disorders. Neuromolecular Med. 2017;19(1):154–60.CrossRef
86.
Zurück zum Zitat Borghesan M, Fafián-Labora J, Eleftheriadou O, Carpintero-Fernández P, Paez-Ribes M, Vizcay-Barrena G, et al. Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3. Cell Rep. 2019;27(13):3956-71.e6.CrossRef Borghesan M, Fafián-Labora J, Eleftheriadou O, Carpintero-Fernández P, Paez-Ribes M, Vizcay-Barrena G, et al. Small Extracellular Vesicles Are Key Regulators of Non-cell Autonomous Intercellular Communication in Senescence via the Interferon Protein IFITM3. Cell Rep. 2019;27(13):3956-71.e6.CrossRef
87.
Zurück zum Zitat Effenberger T, von der Heyde J, Bartsch K, Garbers C, Schulze-Osthoff K, Chalaris A, et al. Senescence-associated release of transmembrane proteins involves proteolytic processing by ADAM17 and microvesicle shedding. Faseb j. 2014;28(11):4847–56.CrossRef Effenberger T, von der Heyde J, Bartsch K, Garbers C, Schulze-Osthoff K, Chalaris A, et al. Senescence-associated release of transmembrane proteins involves proteolytic processing by ADAM17 and microvesicle shedding. Faseb j. 2014;28(11):4847–56.CrossRef
88.
Zurück zum Zitat Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun. 2017;8(1):15729.CrossRef Takasugi M, Okada R, Takahashi A, Virya Chen D, Watanabe S, Hara E. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun. 2017;8(1):15729.CrossRef
89.
Zurück zum Zitat Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008;68(19):7864–71.CrossRef Lehmann BD, Paine MS, Brooks AM, McCubrey JA, Renegar RH, Wang R, et al. Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 2008;68(19):7864–71.CrossRef
90.
Zurück zum Zitat Kavanagh EL, Lindsay S, Halasz M, Gubbins LC, Weiner-Gorzel K, Guang MHZ, et al. Protein and chemotherapy profiling of extracellular vesicles harvested from therapeutic induced senescent triple negative breast cancer cells. Oncogenesis. 2017;6(10):e388.CrossRef Kavanagh EL, Lindsay S, Halasz M, Gubbins LC, Weiner-Gorzel K, Guang MHZ, et al. Protein and chemotherapy profiling of extracellular vesicles harvested from therapeutic induced senescent triple negative breast cancer cells. Oncogenesis. 2017;6(10):e388.CrossRef
91.
Zurück zum Zitat Jeon OH, Wilson DR, Clement CC, Rathod S, Cherry C, Powell B, et al. Senescence cell–associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. JCI Insight. 2019;4(7). Jeon OH, Wilson DR, Clement CC, Rathod S, Cherry C, Powell B, et al. Senescence cell–associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. JCI Insight. 2019;4(7).
92.
Zurück zum Zitat Boukouris S, Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl. 2015;9(3–4):358–67.CrossRef Boukouris S, Mathivanan S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics Clin Appl. 2015;9(3–4):358–67.CrossRef
93.
Zurück zum Zitat Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164(6):1226–32.CrossRef Tkach M, Théry C. Communication by Extracellular Vesicles: Where We Are and Where We Need to Go. Cell. 2016;164(6):1226–32.CrossRef
94.
Zurück zum Zitat Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.CrossRef Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.CrossRef
95.
Zurück zum Zitat Peneder P, Stütz AM, Surdez D, Krumbholz M, Semper S, Chicard M, et al. Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden. Nat Commun. 2021;12(1):3230.CrossRef Peneder P, Stütz AM, Surdez D, Krumbholz M, Semper S, Chicard M, et al. Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden. Nat Commun. 2021;12(1):3230.CrossRef
96.
Zurück zum Zitat Xie W, Kagiampakis I, Pan L, Zhang YW, Murphy L, Tao Y, et al. DNA Methylation Patterns Separate Senescence from Transformation Potential and Indicate Cancer Risk. Cancer Cell. 2018;33(2):309-21.e5.CrossRef Xie W, Kagiampakis I, Pan L, Zhang YW, Murphy L, Tao Y, et al. DNA Methylation Patterns Separate Senescence from Transformation Potential and Indicate Cancer Risk. Cancer Cell. 2018;33(2):309-21.e5.CrossRef
97.
Zurück zum Zitat Levine ME, Leung D, Minteer C, Gonzalez J. A DNA Methylation Fingerprint of Cellular Senescence. bioRxiv. 2019:674580. Levine ME, Leung D, Minteer C, Gonzalez J. A DNA Methylation Fingerprint of Cellular Senescence. bioRxiv. 2019:674580.
98.
Zurück zum Zitat Rostami A, Lambie M, Yu CW, Stambolic V, Waldron JN, Bratman SV. Senescence, Necrosis, and Apoptosis Govern Circulating Cell-free DNA Release Kinetics. Cell Rep. 2020;31(13): 107830.CrossRef Rostami A, Lambie M, Yu CW, Stambolic V, Waldron JN, Bratman SV. Senescence, Necrosis, and Apoptosis Govern Circulating Cell-free DNA Release Kinetics. Cell Rep. 2020;31(13): 107830.CrossRef
99.
Zurück zum Zitat Aizawa K. Studien über Carbohydrasen, I. I. Die fermentative Hydrolyse des p-nitrophenol-β-galactoside. Enzymologia. 1939;6:321–4. Aizawa K. Studien über Carbohydrasen, I. I. Die fermentative Hydrolyse des p-nitrophenol-β-galactoside. Enzymologia. 1939;6:321–4.
100.
Zurück zum Zitat Horwitz JP, Chua J, Curby RJ, Tomson AJ, Da Rooge MA, Fisher BE, et al. Substrates for Cytochemical Demonstration of Enzyme Activity. I. Some Substituted 3-Indolyl-β-D-glycopyranosides1a. J Medicinal Chem. 1964;7(4):574–5.CrossRef Horwitz JP, Chua J, Curby RJ, Tomson AJ, Da Rooge MA, Fisher BE, et al. Substrates for Cytochemical Demonstration of Enzyme Activity. I. Some Substituted 3-Indolyl-β-D-glycopyranosides1a. J Medicinal Chem. 1964;7(4):574–5.CrossRef
101.
Zurück zum Zitat Rotman B. Measurement of activity of single molecules of beta-D-galactosidase. Proc Natl Acad Sci U S A. 1961;47(12):1981–91.CrossRef Rotman B. Measurement of activity of single molecules of beta-D-galactosidase. Proc Natl Acad Sci U S A. 1961;47(12):1981–91.CrossRef
102.
Zurück zum Zitat Rotman B, Zderic JA, Edelstein M. Fluorogenic substrates for beta-D-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc Natl Acad Sci U S A. 1963;50(1):1–6.CrossRef Rotman B, Zderic JA, Edelstein M. Fluorogenic substrates for beta-D-galactosidases and phosphatases derived from flurescein (3,6-dihydroxyfluoran) and its monomethylether. Proc Natl Acad Sci U S A. 1963;50(1):1–6.CrossRef
103.
Zurück zum Zitat Strachan R, Wood J, Hirschmann R. Synthesis and Properties of 4-Methyl-2-oxo-1,2-benzopyran-7-yl β-D-Galactoside (Galactoside of 4-Methylumbelliferone). J Org Chem. 1962;27(3):1074–5.CrossRef Strachan R, Wood J, Hirschmann R. Synthesis and Properties of 4-Methyl-2-oxo-1,2-benzopyran-7-yl β-D-Galactoside (Galactoside of 4-Methylumbelliferone). J Org Chem. 1962;27(3):1074–5.CrossRef
104.
Zurück zum Zitat Zhang J, Li C, Dutta C, Fang M, Zhang S, Tiwari A, et al. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells. Anal Chim Acta. 2017;968:97–104.CrossRef Zhang J, Li C, Dutta C, Fang M, Zhang S, Tiwari A, et al. A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells. Anal Chim Acta. 2017;968:97–104.CrossRef
105.
Zurück zum Zitat Lozano-Torres B, Galiana I, Rovira M, Garrido E, Chaib S, Bernardos A, et al. An OFF-ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo. J Am Chem Soc. 2017;139(26):8808–11.CrossRef Lozano-Torres B, Galiana I, Rovira M, Garrido E, Chaib S, Bernardos A, et al. An OFF-ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo. J Am Chem Soc. 2017;139(26):8808–11.CrossRef
106.
Zurück zum Zitat Wang Y, Liu J, Ma X, Cui C, Deenik PR, Henderson PKP, et al. Real-time imaging of senescence in tumors with DNA damage. Sci Rep. 2019;9(1):2102.CrossRef Wang Y, Liu J, Ma X, Cui C, Deenik PR, Henderson PKP, et al. Real-time imaging of senescence in tumors with DNA damage. Sci Rep. 2019;9(1):2102.CrossRef
107.
Zurück zum Zitat Lee HW, Heo CH, Sen D, Byun HO, Kwak IH, Yoon G, et al. Ratiometric two-photon fluorescent probe for quantitative detection of β-galactosidase activity in senescent cells. Anal Chem. 2014;86(20):10001–5.CrossRef Lee HW, Heo CH, Sen D, Byun HO, Kwak IH, Yoon G, et al. Ratiometric two-photon fluorescent probe for quantitative detection of β-galactosidase activity in senescent cells. Anal Chem. 2014;86(20):10001–5.CrossRef
108.
Zurück zum Zitat Esterly JR, Standen AC, Pearson B. The histochemical demonstration of intestinal beta-D-fucosidase with 5-bromo-4-chloroindole-3-yl-beta-D-fucopyranoside. J Histochem Cytochem. 1967;15(8):470–4.CrossRef Esterly JR, Standen AC, Pearson B. The histochemical demonstration of intestinal beta-D-fucosidase with 5-bromo-4-chloroindole-3-yl-beta-D-fucopyranoside. J Histochem Cytochem. 1967;15(8):470–4.CrossRef
109.
Zurück zum Zitat Rushton AR, Dawson G. Glycosphinoglipid beta-galactosidases of cultured mammalian cells. Characterization of the enzymes from mouse cell line lmtk and human Lesch-Nyhan fibroblasts. Biochim Biophys Acta. 1975;388(1):92–105.CrossRef Rushton AR, Dawson G. Glycosphinoglipid beta-galactosidases of cultured mammalian cells. Characterization of the enzymes from mouse cell line lmtk and human Lesch-Nyhan fibroblasts. Biochim Biophys Acta. 1975;388(1):92–105.CrossRef
110.
Zurück zum Zitat Hildebrand DG, Lehle S, Borst A, Haferkamp S, Essmann F, Schulze-Osthoff K. α-Fucosidase as a novel convenient biomarker for cellular senescence. Cell Cycle. 2013;12(12):1922–7.CrossRef Hildebrand DG, Lehle S, Borst A, Haferkamp S, Essmann F, Schulze-Osthoff K. α-Fucosidase as a novel convenient biomarker for cellular senescence. Cell Cycle. 2013;12(12):1922–7.CrossRef
111.
Zurück zum Zitat Agostini A, Mondragón L, Bernardos A, Martínez-Máñez R, Marcos MD, Sancenón F, et al. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chem Int Ed Engl. 2012;51(42):10556–60.CrossRef Agostini A, Mondragón L, Bernardos A, Martínez-Máñez R, Marcos MD, Sancenón F, et al. Targeted cargo delivery in senescent cells using capped mesoporous silica nanoparticles. Angew Chem Int Ed Engl. 2012;51(42):10556–60.CrossRef
112.
Zurück zum Zitat Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M, et al. A versatile drug delivery system targeting senescent cells. EMBO Mol Med. 2018;10(9). Muñoz-Espín D, Rovira M, Galiana I, Giménez C, Lozano-Torres B, Paez-Ribes M, et al. A versatile drug delivery system targeting senescent cells. EMBO Mol Med. 2018;10(9).
113.
Zurück zum Zitat Lozano-Torres B, Blandez JF, Galiana I, García-Fernández A, Alfonso M, Marcos MD, et al. Real-Time In Vivo Detection of Cellular Senescence through the Controlled Release of the NIR Fluorescent Dye Nile Blue. Angew Chem Int Ed Engl. 2020;59(35):15152–6.CrossRef Lozano-Torres B, Blandez JF, Galiana I, García-Fernández A, Alfonso M, Marcos MD, et al. Real-Time In Vivo Detection of Cellular Senescence through the Controlled Release of the NIR Fluorescent Dye Nile Blue. Angew Chem Int Ed Engl. 2020;59(35):15152–6.CrossRef
114.
Zurück zum Zitat Thapa RK, Nguyen HT, Jeong JH, Kim JR, Choi HG, Yong CS, et al. Progressive slowdown/prevention of cellular senescence by CD9-targeted delivery of rapamycin using lactose-wrapped calcium carbonate nanoparticles. Sci Rep. 2017;7:43299.CrossRef Thapa RK, Nguyen HT, Jeong JH, Kim JR, Choi HG, Yong CS, et al. Progressive slowdown/prevention of cellular senescence by CD9-targeted delivery of rapamycin using lactose-wrapped calcium carbonate nanoparticles. Sci Rep. 2017;7:43299.CrossRef
115.
Zurück zum Zitat Ekpenyong-Akiba AE, Canfarotta F, Abd HB, Poblocka M, Casulleras M, Castilla-Vallmanya L, et al. Detecting and targeting senescent cells using molecularly imprinted nanoparticles. Nanoscale Horizons. 2019;4(3):757–68.CrossRef Ekpenyong-Akiba AE, Canfarotta F, Abd HB, Poblocka M, Casulleras M, Castilla-Vallmanya L, et al. Detecting and targeting senescent cells using molecularly imprinted nanoparticles. Nanoscale Horizons. 2019;4(3):757–68.CrossRef
116.
Zurück zum Zitat Ou HL, Hoffmann R, González-López C, Doherty GJ, Korkola JE, Muñoz-Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol. 2021;15(10):2634–71.CrossRef Ou HL, Hoffmann R, González-López C, Doherty GJ, Korkola JE, Muñoz-Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol. 2021;15(10):2634–71.CrossRef
117.
Zurück zum Zitat Krueger MA, Cotton JM, Zhou B, Wolter K, Schwenck J, Kuehn A, et al. Abstract 1146: [18F]FPyGal: A novel ß-galactosidase specific PET tracer for in vivo imaging of tumor senescence. Cancer Research. 2019;79(13_Supplement):1146.CrossRef Krueger MA, Cotton JM, Zhou B, Wolter K, Schwenck J, Kuehn A, et al. Abstract 1146: [18F]FPyGal: A novel ß-galactosidase specific PET tracer for in vivo imaging of tumor senescence. Cancer Research. 2019;79(13_Supplement):1146.CrossRef
119.
Zurück zum Zitat Campisi J. Aging, tumor suppression and cancer: high wire-act! Mech Ageing Dev. 2005;126(1):51–8.CrossRef Campisi J. Aging, tumor suppression and cancer: high wire-act! Mech Ageing Dev. 2005;126(1):51–8.CrossRef
120.
Zurück zum Zitat Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220–7.CrossRef Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220–7.CrossRef
121.
Zurück zum Zitat Prieur A, Besnard E, Babled A, Lemaitre JM. p53 and p16(INK4A) independent induction of senescence by chromatin-dependent alteration of S-phase progression. Nat Commun. 2011;2:473.CrossRef Prieur A, Besnard E, Babled A, Lemaitre JM. p53 and p16(INK4A) independent induction of senescence by chromatin-dependent alteration of S-phase progression. Nat Commun. 2011;2:473.CrossRef
122.
Zurück zum Zitat Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006–18.CrossRef Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006–18.CrossRef
123.
Zurück zum Zitat Dietrich N, Bracken AP, Trinh E, Schjerling CK, Koseki H, Rappsilber J, et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. Embo j. 2007;26(6):1637–48.CrossRef Dietrich N, Bracken AP, Trinh E, Schjerling CK, Koseki H, Rappsilber J, et al. Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. Embo j. 2007;26(6):1637–48.CrossRef
124.
Zurück zum Zitat Pellegrini G, Dellambra E, Paterna P, Golisano O, Traverso CE, Rama P, et al. Telomerase activity is sufficient to bypass replicative senescence in human limbal and conjunctival but not corneal keratinocytes. Eur J Cell Biol. 2004;83(11–12):691–700.CrossRef Pellegrini G, Dellambra E, Paterna P, Golisano O, Traverso CE, Rama P, et al. Telomerase activity is sufficient to bypass replicative senescence in human limbal and conjunctival but not corneal keratinocytes. Eur J Cell Biol. 2004;83(11–12):691–700.CrossRef
125.
Zurück zum Zitat Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9(6):400–14.CrossRef Abbas T, Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9(6):400–14.CrossRef
126.
Zurück zum Zitat Giatromanolaki A, Kouroupi M, Balaska K, Koukourakis MI. A Novel Lipofuscin-detecting Marker of Senescence Relates With Hypoxia, Dysregulated Autophagy and With Poor Prognosis in Non-small-cell-lung Cancer. In Vivo. 2020;34(6):3187–93.CrossRef Giatromanolaki A, Kouroupi M, Balaska K, Koukourakis MI. A Novel Lipofuscin-detecting Marker of Senescence Relates With Hypoxia, Dysregulated Autophagy and With Poor Prognosis in Non-small-cell-lung Cancer. In Vivo. 2020;34(6):3187–93.CrossRef
127.
Zurück zum Zitat Dosaka-Akita H, Hommura F, Mishina T, Ogura S, Shimizu M, Katoh H, et al. A risk-stratification model of non-small cell lung cancers using cyclin E, Ki-67, and ras p21: different roles of G1 cyclins in cell proliferation and prognosis. Cancer Res. 2001;61(6):2500–4. Dosaka-Akita H, Hommura F, Mishina T, Ogura S, Shimizu M, Katoh H, et al. A risk-stratification model of non-small cell lung cancers using cyclin E, Ki-67, and ras p21: different roles of G1 cyclins in cell proliferation and prognosis. Cancer Res. 2001;61(6):2500–4.
128.
Zurück zum Zitat Komiya T, Hosono Y, Hirashima T, Masuda N, Yasumitsu T, Nakagawa K, et al. p21 expression as a predictor for favorable prognosis in squamous cell carcinoma of the lung. Clin Cancer Res. 1997;3(10):1831–5. Komiya T, Hosono Y, Hirashima T, Masuda N, Yasumitsu T, Nakagawa K, et al. p21 expression as a predictor for favorable prognosis in squamous cell carcinoma of the lung. Clin Cancer Res. 1997;3(10):1831–5.
129.
Zurück zum Zitat Tong J, Sun X, Cheng H, Zhao D, Ma J, Zhen Q, et al. Expression of p16 in non-small cell lung cancer and its prognostic significance: a meta-analysis of published literatures. Lung Cancer. 2011;74(2):155–63.CrossRef Tong J, Sun X, Cheng H, Zhao D, Ma J, Zhen Q, et al. Expression of p16 in non-small cell lung cancer and its prognostic significance: a meta-analysis of published literatures. Lung Cancer. 2011;74(2):155–63.CrossRef
130.
Zurück zum Zitat Sterlacci W, Tzankov A, Veits L, Zelger B, Bihl MP, Foerster A, et al. A comprehensive analysis of p16 expression, gene status, and promoter hypermethylation in surgically resected non-small cell lung carcinomas. J Thorac Oncol. 2011;6(10):1649–57.CrossRef Sterlacci W, Tzankov A, Veits L, Zelger B, Bihl MP, Foerster A, et al. A comprehensive analysis of p16 expression, gene status, and promoter hypermethylation in surgically resected non-small cell lung carcinomas. J Thorac Oncol. 2011;6(10):1649–57.CrossRef
131.
Zurück zum Zitat Sporn JC, Kustatscher G, Hothorn T, Collado M, Serrano M, Muley T, et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene. 2009;28(38):3423–8.CrossRef Sporn JC, Kustatscher G, Hothorn T, Collado M, Serrano M, Muley T, et al. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene. 2009;28(38):3423–8.CrossRef
132.
Zurück zum Zitat Domen A, Deben C, De Pauw I, Hermans C, Lambrechts H, Verswyvel J, Siozopoulou V, Pauwels P, Demaria M, van de Wiel M, Janssens A, Hendriks JMH, Van Schil P, Vermorken JB, Vandamme T, Prenen H, Peeters M, Lardon F, Wouters A. Prognostic implications of cellular senescence in resected non-small cell lung cancer. Transl Lung Cancer Res. 2022;11(8):1526-39. https://doi.org/10.21037/tlcr-22-192. Domen A, Deben C, De Pauw I, Hermans C, Lambrechts H, Verswyvel J, Siozopoulou V, Pauwels P, Demaria M, van de Wiel M, Janssens A, Hendriks JMH, Van Schil P, Vermorken JB, Vandamme T, Prenen H, Peeters M, Lardon F, Wouters A. Prognostic implications of cellular senescence in resected non-small cell lung cancer. Transl Lung Cancer Res. 2022;11(8):1526-39. https://​doi.​org/​10.​21037/​tlcr-22-192.
133.
Zurück zum Zitat Lin W, Wang X, Wang Z, Shao F, Yang Y, Cao Z, et al. Comprehensive Analysis Uncovers Prognostic and Immunogenic Characteristics of Cellular Senescence for Lung Adenocarcinoma. Frontiers Cell Dev Biol. 2021;9. Lin W, Wang X, Wang Z, Shao F, Yang Y, Cao Z, et al. Comprehensive Analysis Uncovers Prognostic and Immunogenic Characteristics of Cellular Senescence for Lung Adenocarcinoma. Frontiers Cell Dev Biol. 2021;9.
134.
Zurück zum Zitat Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A, et al. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 2014;5(11):e1528-e.CrossRef Althubiti M, Lezina L, Carrera S, Jukes-Jones R, Giblett SM, Antonov A, et al. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 2014;5(11):e1528-e.CrossRef
135.
Zurück zum Zitat Wang Q, Wu PC, Dong DZ, Ivanova I, Chu E, Zeliadt S, et al. Polyploidy road to therapy-induced cellular senescence and escape. Int J Cancer. 2013;132(7):1505–15.CrossRef Wang Q, Wu PC, Dong DZ, Ivanova I, Chu E, Zeliadt S, et al. Polyploidy road to therapy-induced cellular senescence and escape. Int J Cancer. 2013;132(7):1505–15.CrossRef
136.
Zurück zum Zitat Wang X, Ma L, Pei X, Wang H, Tang X, Pei JF, et al. Comprehensive assessment of cellular senescence in the tumor microenvironment. Brief Bioinform. 2022;23(3). Wang X, Ma L, Pei X, Wang H, Tang X, Pei JF, et al. Comprehensive assessment of cellular senescence in the tumor microenvironment. Brief Bioinform. 2022;23(3).
137.
Zurück zum Zitat Sidi R, Pasello G, Opitz I, Soltermann A, Tutic M, Rehrauer H, et al. Induction of senescence markers after neo-adjuvant chemotherapy of malignant pleural mesothelioma and association with clinical outcome: an exploratory analysis. Eur J Cancer. 2011;47(2):326–32.CrossRef Sidi R, Pasello G, Opitz I, Soltermann A, Tutic M, Rehrauer H, et al. Induction of senescence markers after neo-adjuvant chemotherapy of malignant pleural mesothelioma and association with clinical outcome: an exploratory analysis. Eur J Cancer. 2011;47(2):326–32.CrossRef
138.
Zurück zum Zitat Pare R, Soon PS, Shah A, Lee CS. Differential expression of senescence tumour markers and its implications on survival outcomes of breast cancer patients. PLoS ONE. 2019;14(4):e0214604.CrossRef Pare R, Soon PS, Shah A, Lee CS. Differential expression of senescence tumour markers and its implications on survival outcomes of breast cancer patients. PLoS ONE. 2019;14(4):e0214604.CrossRef
139.
Zurück zum Zitat Milde-Langosch K, Bamberger AM, Rieck G, Kelp B, Löning T. Overexpression of the p16 cell cycle inhibitor in breast cancer is associated with a more malignant phenotype. Breast Cancer Res Treat. 2001;67(1):61–70.CrossRef Milde-Langosch K, Bamberger AM, Rieck G, Kelp B, Löning T. Overexpression of the p16 cell cycle inhibitor in breast cancer is associated with a more malignant phenotype. Breast Cancer Res Treat. 2001;67(1):61–70.CrossRef
140.
Zurück zum Zitat Caffo O, Doglioni C, Veronese S, Bonzanini M, Marchetti A, Buttitta F, et al. Prognostic value of p21(WAF1) and p53 expression in breast carcinoma: an immunohistochemical study in 261 patients with long-term follow-up. Clin Cancer Res. 1996;2(9):1591–9. Caffo O, Doglioni C, Veronese S, Bonzanini M, Marchetti A, Buttitta F, et al. Prognostic value of p21(WAF1) and p53 expression in breast carcinoma: an immunohistochemical study in 261 patients with long-term follow-up. Clin Cancer Res. 1996;2(9):1591–9.
141.
Zurück zum Zitat Winters ZE, Hunt NC, Bradburn MJ, Royds JA, Turley H, Harris AL, et al. Subcellular localisation of cyclin B, Cdc2 and p21(WAF1/CIP1) in breast cancer association with prognosis. Eur J Cancer. 2001;37(18):2405–12.CrossRef Winters ZE, Hunt NC, Bradburn MJ, Royds JA, Turley H, Harris AL, et al. Subcellular localisation of cyclin B, Cdc2 and p21(WAF1/CIP1) in breast cancer association with prognosis. Eur J Cancer. 2001;37(18):2405–12.CrossRef
142.
Zurück zum Zitat Winters ZE, Leek RD, Bradburn MJ, Norbury CJ, Harris AL. Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/ neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res. 2003;5(6):R242–9.CrossRef Winters ZE, Leek RD, Bradburn MJ, Norbury CJ, Harris AL. Cytoplasmic p21WAF1/CIP1 expression is correlated with HER-2/ neu in breast cancer and is an independent predictor of prognosis. Breast Cancer Res. 2003;5(6):R242–9.CrossRef
143.
Zurück zum Zitat Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, et al. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res. 2004;10(11):3815–24.CrossRef Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y, et al. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res. 2004;10(11):3815–24.CrossRef
144.
Zurück zum Zitat Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(10):1674.CrossRef Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, et al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30(10):1674.CrossRef
145.
Zurück zum Zitat Harbeck N, Kates RE, Look MP, Meijer-Van Gelder ME, Klijn JG, Krüger A, et al. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n = 3424). Cancer Res. 2002;62(16):4617–22. Harbeck N, Kates RE, Look MP, Meijer-Van Gelder ME, Klijn JG, Krüger A, et al. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n = 3424). Cancer Res. 2002;62(16):4617–22.
146.
Zurück zum Zitat Lavigne AC, Castells M, Mermet J, Kocanova S, Dalvai M, Bystricky K. Increased macroH2A1.1 expression correlates with poor survival of triple-negative breast cancer patients. PLoS One. 2014;9(6):e98930.CrossRef Lavigne AC, Castells M, Mermet J, Kocanova S, Dalvai M, Bystricky K. Increased macroH2A1.1 expression correlates with poor survival of triple-negative breast cancer patients. PLoS One. 2014;9(6):e98930.CrossRef
147.
Zurück zum Zitat te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002;62(6):1876–83. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 2002;62(6):1876–83.
148.
Zurück zum Zitat Pohl G, Rudas M, Taucher S, Stranzl T, Steger GG, Jakesz R, et al. Expression of Cell Cycle Regulatory Proteins in Breast Carcinomas Before and After Preoperative Chemotherapy. Breast Cancer Res Treat. 2003;78(1):97–103.CrossRef Pohl G, Rudas M, Taucher S, Stranzl T, Steger GG, Jakesz R, et al. Expression of Cell Cycle Regulatory Proteins in Breast Carcinomas Before and After Preoperative Chemotherapy. Breast Cancer Res Treat. 2003;78(1):97–103.CrossRef
149.
Zurück zum Zitat Saleh T, Alhesa A, Al-Balas M, Abuelaish O, Mansour A, Awad H, et al. Expression of therapy-induced senescence markers in breast cancer samples upon incomplete response to neoadjuvant chemotherapy. Bioscience Reports. 2021;41(5). Saleh T, Alhesa A, Al-Balas M, Abuelaish O, Mansour A, Awad H, et al. Expression of therapy-induced senescence markers in breast cancer samples upon incomplete response to neoadjuvant chemotherapy. Bioscience Reports. 2021;41(5).
150.
Zurück zum Zitat Muñoz DP, Yannone SM, Daemen A, Sun Y, Vakar-Lopez F, Kawahara M, et al. Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight. 2019;5(14). Muñoz DP, Yannone SM, Daemen A, Sun Y, Vakar-Lopez F, Kawahara M, et al. Targetable mechanisms driving immunoevasion of persistent senescent cells link chemotherapy-resistant cancer to aging. JCI Insight. 2019;5(14).
151.
Zurück zum Zitat Sirinian C, Peroukidis S, Kriegsmann K, Chaniotis D, Koutras A, Kriegsmann M, et al. Cellular Senescence in Normal Mammary Gland and Breast Cancer. Implications Cancer Ther Genes. 2022;13(6):994. Sirinian C, Peroukidis S, Kriegsmann K, Chaniotis D, Koutras A, Kriegsmann M, et al. Cellular Senescence in Normal Mammary Gland and Breast Cancer. Implications Cancer Ther Genes. 2022;13(6):994.
152.
Zurück zum Zitat Feng W, Xiao J, Zhang Z, Rosen DG, Brown RE, Liu J, et al. Senescence and apoptosis in carcinogenesis of cervical squamous carcinoma. Mod Pathol. 2007;20(9):961–6.CrossRef Feng W, Xiao J, Zhang Z, Rosen DG, Brown RE, Liu J, et al. Senescence and apoptosis in carcinogenesis of cervical squamous carcinoma. Mod Pathol. 2007;20(9):961–6.CrossRef
153.
Zurück zum Zitat Zhang Y, Guo L, Xing P, Chen Y, Li F, Zhu W, et al. Increased expression of oncogene-induced senescence markers during cervical squamous cell cancer development. Int J Clin Exp Pathol. 2014;7(12):8911–6. Zhang Y, Guo L, Xing P, Chen Y, Li F, Zhu W, et al. Increased expression of oncogene-induced senescence markers during cervical squamous cell cancer development. Int J Clin Exp Pathol. 2014;7(12):8911–6.
154.
Zurück zum Zitat Bae DS, Cho SB, Kim YJ, Whang JD, Song SY, Park CS, et al. Aberrant expression of cyclin D1 is associated with poor prognosis in early stage cervical cancer of the uterus. Gynecol Oncol. 2001;81(3):341–7.CrossRef Bae DS, Cho SB, Kim YJ, Whang JD, Song SY, Park CS, et al. Aberrant expression of cyclin D1 is associated with poor prognosis in early stage cervical cancer of the uterus. Gynecol Oncol. 2001;81(3):341–7.CrossRef
155.
Zurück zum Zitat Cheung TH, Lo KW, Yu MM, Yim SF, Poon CS, Chung TK, et al. Aberrant expression of p21(WAF1/CIP1) and p27(KIP1) in cervical carcinoma. Cancer Lett. 2001;172(1):93–8.CrossRef Cheung TH, Lo KW, Yu MM, Yim SF, Poon CS, Chung TK, et al. Aberrant expression of p21(WAF1/CIP1) and p27(KIP1) in cervical carcinoma. Cancer Lett. 2001;172(1):93–8.CrossRef
156.
Zurück zum Zitat Lu X, Toki T, Konishi I, Nikaido T, Fujii S. Expression of p21WAF1/CIP1 in adenocarcinoma of the uterine cervix: a possible immunohistochemical marker of a favorable prognosis. Cancer. 1998;82(12):2409–17.CrossRef Lu X, Toki T, Konishi I, Nikaido T, Fujii S. Expression of p21WAF1/CIP1 in adenocarcinoma of the uterine cervix: a possible immunohistochemical marker of a favorable prognosis. Cancer. 1998;82(12):2409–17.CrossRef
157.
Zurück zum Zitat Pakuła M, Mały E, Uruski P, Witucka A, Bogucka M, Jaroszewska N, et al. Deciphering the Molecular Mechanism of Spontaneous Senescence in Primary Epithelial Ovarian Cancer Cells. Cancers. 2020;12(2):296.CrossRef Pakuła M, Mały E, Uruski P, Witucka A, Bogucka M, Jaroszewska N, et al. Deciphering the Molecular Mechanism of Spontaneous Senescence in Primary Epithelial Ovarian Cancer Cells. Cancers. 2020;12(2):296.CrossRef
158.
Zurück zum Zitat Anttila MA, Kosma VM, Hongxiu J, Puolakka J, Juhola M, Saarikoski S, et al. p21/WAF1 expression as related to p53, cell proliferation and prognosis in epithelial ovarian cancer. Br J Cancer. 1999;79(11):1870–8.CrossRef Anttila MA, Kosma VM, Hongxiu J, Puolakka J, Juhola M, Saarikoski S, et al. p21/WAF1 expression as related to p53, cell proliferation and prognosis in epithelial ovarian cancer. Br J Cancer. 1999;79(11):1870–8.CrossRef
159.
Zurück zum Zitat Uruski P, Mikuła-Pietrasik J, Naumowicz E, Kaźmierczak K, Gaiday AN, Królak J, et al. Patient-Specific Variables Determine the Extent of Cellular Senescence Biomarkers in Ovarian Tumors In Vivo. Biomedicines. 2021;9(4):330.CrossRef Uruski P, Mikuła-Pietrasik J, Naumowicz E, Kaźmierczak K, Gaiday AN, Królak J, et al. Patient-Specific Variables Determine the Extent of Cellular Senescence Biomarkers in Ovarian Tumors In Vivo. Biomedicines. 2021;9(4):330.CrossRef
160.
Zurück zum Zitat Dong Y, Walsh MD, McGuckin MA, Cummings MC, Gabrielli BG, Wright GR, et al. Reduced expression of retinoblastoma gene product (pRB) and high expression of p53 are associated with poor prognosis in ovarian cancer. Int J Cancer. 1997;74(4):407–15.CrossRef Dong Y, Walsh MD, McGuckin MA, Cummings MC, Gabrielli BG, Wright GR, et al. Reduced expression of retinoblastoma gene product (pRB) and high expression of p53 are associated with poor prognosis in ovarian cancer. Int J Cancer. 1997;74(4):407–15.CrossRef
161.
Zurück zum Zitat Yang G, Rosen DG, Zhang Z, Bast RC Jr, Mills GB, Colacino JA, et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci U S A. 2006;103(44):16472–7.CrossRef Yang G, Rosen DG, Zhang Z, Bast RC Jr, Mills GB, Colacino JA, et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci U S A. 2006;103(44):16472–7.CrossRef
162.
Zurück zum Zitat Ferrandina G, Stoler A, Fagotti A, Fanfani F, Sacco R, De Pasqua A, et al. p21WAF1/CIP1 protein expression in primary ovarian cancer. Int J Oncol. 2000;17(6):1231–5. Ferrandina G, Stoler A, Fagotti A, Fanfani F, Sacco R, De Pasqua A, et al. p21WAF1/CIP1 protein expression in primary ovarian cancer. Int J Oncol. 2000;17(6):1231–5.
163.
Zurück zum Zitat Calvo L, Cheng S, Skulimowski M, Clément I, Portelance L, Zhan Y, et al. Cellular senescence is a central response to cytotoxic chemotherapy in high-grade serous ovarian cancer. bioRxiv. 2018:425199. Calvo L, Cheng S, Skulimowski M, Clément I, Portelance L, Zhan Y, et al. Cellular senescence is a central response to cytotoxic chemotherapy in high-grade serous ovarian cancer. bioRxiv. 2018:425199.
164.
Zurück zum Zitat Xu Q, Ma P, Hu C, Chen L, Xue L, Wang Z, et al. Overexpression of the DEC1 protein induces senescence in vitro and is related to better survival in esophageal squamous cell carcinoma. PLoS ONE. 2012;7(7):e41862.CrossRef Xu Q, Ma P, Hu C, Chen L, Xue L, Wang Z, et al. Overexpression of the DEC1 protein induces senescence in vitro and is related to better survival in esophageal squamous cell carcinoma. PLoS ONE. 2012;7(7):e41862.CrossRef
165.
Zurück zum Zitat Güner D, Sturm I, Hemmati P, Hermann S, Hauptmann S, Wurm R, et al. Multigene analysis of Rb pathway and apoptosis control in esophageal squamous cell carcinoma identifies patients with good prognosis. Int J Cancer. 2003;103(4):445–54.CrossRef Güner D, Sturm I, Hemmati P, Hermann S, Hauptmann S, Wurm R, et al. Multigene analysis of Rb pathway and apoptosis control in esophageal squamous cell carcinoma identifies patients with good prognosis. Int J Cancer. 2003;103(4):445–54.CrossRef
166.
Zurück zum Zitat Bai P, Xiao X, Zou J, Cui L, Bui Nguyen TM, Liu J, et al. Expression of p14(ARF), p15(INK4b), p16(INK4a) and skp2 increases during esophageal squamous cell cancer progression. Exp Ther Med. 2012;3(6):1026–32.CrossRef Bai P, Xiao X, Zou J, Cui L, Bui Nguyen TM, Liu J, et al. Expression of p14(ARF), p15(INK4b), p16(INK4a) and skp2 increases during esophageal squamous cell cancer progression. Exp Ther Med. 2012;3(6):1026–32.CrossRef
167.
Zurück zum Zitat Sarbia M, Stahl M, zurHausen A, Zimmermann K, Wang L, Fink U, et al. Expression of p21WAF1 predicts outcome of esophageal cancer patients treated by surgery alone or by combined therapy modalities. Clin Cancer Res. 1998;4(11):2615–23. Sarbia M, Stahl M, zurHausen A, Zimmermann K, Wang L, Fink U, et al. Expression of p21WAF1 predicts outcome of esophageal cancer patients treated by surgery alone or by combined therapy modalities. Clin Cancer Res. 1998;4(11):2615–23.
168.
Zurück zum Zitat Zhou L, Niu Z, Wang Y, Zheng Y, Zhu Y, Wang C, et al. Senescence as a dictator of patient outcomes and therapeutic efficacies in human gastric cancer. Cell Death Discov. 2022;8(1):13.CrossRef Zhou L, Niu Z, Wang Y, Zheng Y, Zhu Y, Wang C, et al. Senescence as a dictator of patient outcomes and therapeutic efficacies in human gastric cancer. Cell Death Discov. 2022;8(1):13.CrossRef
169.
Zurück zum Zitat Aoyagi K, Koufuji K, Yano S, Murakami N, Miyagi M, Koga A, et al. The expression of p53, p21 and TGF beta 1 in gastric carcinoma. Kurume Med J. 2003;50(1–2):1–7.CrossRef Aoyagi K, Koufuji K, Yano S, Murakami N, Miyagi M, Koga A, et al. The expression of p53, p21 and TGF beta 1 in gastric carcinoma. Kurume Med J. 2003;50(1–2):1–7.CrossRef
170.
Zurück zum Zitat Ogawa M, Onoda N, Maeda K, Kato Y, Nakata B, Kang SM, et al. A combination analysis of p53 and p21 in gastric carcinoma as a strong indicator for prognosis. Int J Mol Med. 2001;7(5):479–83. Ogawa M, Onoda N, Maeda K, Kato Y, Nakata B, Kang SM, et al. A combination analysis of p53 and p21 in gastric carcinoma as a strong indicator for prognosis. Int J Mol Med. 2001;7(5):479–83.
171.
Zurück zum Zitat Bennecke M, Kriegl L, Bajbouj M, Retzlaff K, Robine S, Jung A, et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell. 2010;18(2):135–46.CrossRef Bennecke M, Kriegl L, Bajbouj M, Retzlaff K, Robine S, Jung A, et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell. 2010;18(2):135–46.CrossRef
172.
Zurück zum Zitat Kriegl L, Neumann J, Vieth M, Greten FR, Reu S, Jung A, et al. Up and downregulation of p16Ink4a expression in BRAF-mutated polyps/adenomas indicates a senescence barrier in the serrated route to colon cancer. Mod Pathol. 2011;24(7):1015–22.CrossRef Kriegl L, Neumann J, Vieth M, Greten FR, Reu S, Jung A, et al. Up and downregulation of p16Ink4a expression in BRAF-mutated polyps/adenomas indicates a senescence barrier in the serrated route to colon cancer. Mod Pathol. 2011;24(7):1015–22.CrossRef
173.
Zurück zum Zitat Polyak K, Hamilton SR, Vogelstein B, Kinzler KW. Early alteration of cell-cycle-regulated gene expression in colorectal neoplasia. Am J Pathol. 1996;149(2):381–7. Polyak K, Hamilton SR, Vogelstein B, Kinzler KW. Early alteration of cell-cycle-regulated gene expression in colorectal neoplasia. Am J Pathol. 1996;149(2):381–7.
174.
Zurück zum Zitat Kellers F, Fernandez A, Konukiewitz B, Schindeldecker M, Tagscherer KE, Heintz A, et al. Senescence-Associated Molecules and Tumor-Immune-Interactions as Prognostic Biomarkers in Colorectal Cancer. Front Med (Lausanne). 2022;9:865230.CrossRef Kellers F, Fernandez A, Konukiewitz B, Schindeldecker M, Tagscherer KE, Heintz A, et al. Senescence-Associated Molecules and Tumor-Immune-Interactions as Prognostic Biomarkers in Colorectal Cancer. Front Med (Lausanne). 2022;9:865230.CrossRef
175.
Zurück zum Zitat Roxburgh CS, Richards CH, MacDonald AI, Powell AG, McGlynn LM, McMillan DC, et al. The in situ local immune response, tumour senescence and proliferation in colorectal cancer. Br J Cancer. 2013;109(8):2207–16.CrossRef Roxburgh CS, Richards CH, MacDonald AI, Powell AG, McGlynn LM, McMillan DC, et al. The in situ local immune response, tumour senescence and proliferation in colorectal cancer. Br J Cancer. 2013;109(8):2207–16.CrossRef
176.
Zurück zum Zitat Haugstetter AM, Loddenkemper C, Lenze D, Gröne J, Standfuß C, Petersen I, et al. Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br J Cancer. 2010;103(4):505–9.CrossRef Haugstetter AM, Loddenkemper C, Lenze D, Gröne J, Standfuß C, Petersen I, et al. Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br J Cancer. 2010;103(4):505–9.CrossRef
177.
Zurück zum Zitat Tato-Costa J, Casimiro S, Pacheco T, Pires R, Fernandes A, Alho I, et al. Therapy-Induced Cellular Senescence Induces Epithelial-to-Mesenchymal Transition and Increases Invasiveness in Rectal Cancer. Clin Colorectal Cancer. 2016;15(2):170-8.e3.CrossRef Tato-Costa J, Casimiro S, Pacheco T, Pires R, Fernandes A, Alho I, et al. Therapy-Induced Cellular Senescence Induces Epithelial-to-Mesenchymal Transition and Increases Invasiveness in Rectal Cancer. Clin Colorectal Cancer. 2016;15(2):170-8.e3.CrossRef
178.
Zurück zum Zitat Foersch S, Sperka T, Lindner C, Taut A, Rudolph KL, Breier G, et al. VEGFR2 Signaling Prevents Colorectal Cancer Cell Senescence to Promote Tumorigenesis in Mice With Colitis. Gastroenterology. 2015;149(1):177-89.e10.CrossRef Foersch S, Sperka T, Lindner C, Taut A, Rudolph KL, Breier G, et al. VEGFR2 Signaling Prevents Colorectal Cancer Cell Senescence to Promote Tumorigenesis in Mice With Colitis. Gastroenterology. 2015;149(1):177-89.e10.CrossRef
179.
Zurück zum Zitat Bukholm IK, Nesland JM. Protein expression of p53, p21 (WAF1/CIP1), bcl-2, Bax, cyclin D1 and pRb in human colon carcinomas. Virchows Arch. 2000;436(3):224–8.CrossRef Bukholm IK, Nesland JM. Protein expression of p53, p21 (WAF1/CIP1), bcl-2, Bax, cyclin D1 and pRb in human colon carcinomas. Virchows Arch. 2000;436(3):224–8.CrossRef
180.
Zurück zum Zitat Ogino S, Kawasaki T, Kirkner G, Ogawa A, Dorfman I, Loda M, et al. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer. J Pathol. 2006;210(2):147–54.CrossRef Ogino S, Kawasaki T, Kirkner G, Ogawa A, Dorfman I, Loda M, et al. Down-regulation of p21 (CDKN1A/CIP1) is inversely associated with microsatellite instability and CpG island methylator phenotype (CIMP) in colorectal cancer. J Pathol. 2006;210(2):147–54.CrossRef
181.
Zurück zum Zitat Edmonston TB, Cuesta KH, Burkholder S, Barusevicius A, Rose D, Kovatich AJ, et al. Colorectal carcinomas with high microsatellite instability: defining a distinct immunologic and molecular entity with respect to prognostic markers. Hum Pathol. 2000;31(12):1506–14.CrossRef Edmonston TB, Cuesta KH, Burkholder S, Barusevicius A, Rose D, Kovatich AJ, et al. Colorectal carcinomas with high microsatellite instability: defining a distinct immunologic and molecular entity with respect to prognostic markers. Hum Pathol. 2000;31(12):1506–14.CrossRef
182.
Zurück zum Zitat Zirbes TK, Baldus SE, Moenig SP, Nolden S, Kunze D, Shafizadeh ST, et al. Prognostic impact of p21/waf1/cip1 in colorectal cancer. Int J Cancer. 2000;89(1):14–8.CrossRef Zirbes TK, Baldus SE, Moenig SP, Nolden S, Kunze D, Shafizadeh ST, et al. Prognostic impact of p21/waf1/cip1 in colorectal cancer. Int J Cancer. 2000;89(1):14–8.CrossRef
183.
Zurück zum Zitat Mitomi H, Mori A, Kanazawa H, Nishiyama Y, Ihara A, Otani Y, et al. Venous invasion and down-regulation of p21(WAF1/CIP1) are associated with metastasis in colorectal carcinomas. Hepatogastroenterology. 2005;52(65):1421–6. Mitomi H, Mori A, Kanazawa H, Nishiyama Y, Ihara A, Otani Y, et al. Venous invasion and down-regulation of p21(WAF1/CIP1) are associated with metastasis in colorectal carcinomas. Hepatogastroenterology. 2005;52(65):1421–6.
184.
Zurück zum Zitat Nicolas AM, Pesic M, Engel E, Ziegler PK, Diefenhardt M, Kennel KB, et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell. 2022;40(2):168-84.e13.CrossRef Nicolas AM, Pesic M, Engel E, Ziegler PK, Diefenhardt M, Kennel KB, et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell. 2022;40(2):168-84.e13.CrossRef
185.
Zurück zum Zitat Braumüller H, Mauerer B, Berlin C, Plundrich D, Marbach P, Cauchy P, et al. Senescent Tumor Cells in the Peritoneal Carcinomatosis Drive Immunosenescence in the Tumor Microenvironment. Frontiers Immunol. 2022;13. Braumüller H, Mauerer B, Berlin C, Plundrich D, Marbach P, Cauchy P, et al. Senescent Tumor Cells in the Peritoneal Carcinomatosis Drive Immunosenescence in the Tumor Microenvironment. Frontiers Immunol. 2022;13.
186.
Zurück zum Zitat Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernández-Porras I, Cañamero M, et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell. 2011;19(6):728–39.CrossRef Guerra C, Collado M, Navas C, Schuhmacher AJ, Hernández-Porras I, Cañamero M, et al. Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell. 2011;19(6):728–39.CrossRef
187.
Zurück zum Zitat Biankin AV, Kench JG, Morey AL, Lee CS, Biankin SA, Head DR, et al. Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res. 2001;61(24):8830–7. Biankin AV, Kench JG, Morey AL, Lee CS, Biankin SA, Head DR, et al. Overexpression of p21(WAF1/CIP1) is an early event in the development of pancreatic intraepithelial neoplasia. Cancer Res. 2001;61(24):8830–7.
188.
Zurück zum Zitat Caldwell ME, DeNicola GM, Martins CP, Jacobetz MA, Maitra A, Hruban RH, et al. Cellular features of senescence during the evolution of human and murine ductal pancreatic cancer. Oncogene. 2012;31(12):1599–608.CrossRef Caldwell ME, DeNicola GM, Martins CP, Jacobetz MA, Maitra A, Hruban RH, et al. Cellular features of senescence during the evolution of human and murine ductal pancreatic cancer. Oncogene. 2012;31(12):1599–608.CrossRef
189.
Zurück zum Zitat Rielland M, Cantor DJ, Graveline R, Hajdu C, Mara L, Diaz Bde D, et al. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J Clin Invest. 2014;124(5):2125–35.CrossRef Rielland M, Cantor DJ, Graveline R, Hajdu C, Mara L, Diaz Bde D, et al. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J Clin Invest. 2014;124(5):2125–35.CrossRef
190.
Zurück zum Zitat Yildiz G, Arslan-Ergul A, Bagislar S, Konu O, Yuzugullu H, Gursoy-Yuzugullu O, et al. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis. PLoS ONE. 2013;8(5):e64016.CrossRef Yildiz G, Arslan-Ergul A, Bagislar S, Konu O, Yuzugullu H, Gursoy-Yuzugullu O, et al. Genome-wide transcriptional reorganization associated with senescence-to-immortality switch during human hepatocellular carcinogenesis. PLoS ONE. 2013;8(5):e64016.CrossRef
191.
Zurück zum Zitat Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. Faseb j. 2002;16(9):935–42.CrossRef Wiemann SU, Satyanarayana A, Tsahuridu M, Tillmann HL, Zender L, Klempnauer J, et al. Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. Faseb j. 2002;16(9):935–42.CrossRef
192.
Zurück zum Zitat Paradis V, Youssef N, Dargère D, Bâ N, Bonvoust F, Deschatrette J, et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol. 2001;32(3):327–32.CrossRef Paradis V, Youssef N, Dargère D, Bâ N, Bonvoust F, Deschatrette J, et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol. 2001;32(3):327–32.CrossRef
193.
Zurück zum Zitat Wagayama H, Shiraki K, Sugimoto K, Ito T, Fujikawa K, Yamanaka T, et al. High expression of p21WAF1/CIP1 is correlated with human hepatocellular carcinoma in patients with hepatitis C virus-associated chronic liver diseases. Hum Pathol. 2002;33(4):429–34.CrossRef Wagayama H, Shiraki K, Sugimoto K, Ito T, Fujikawa K, Yamanaka T, et al. High expression of p21WAF1/CIP1 is correlated with human hepatocellular carcinoma in patients with hepatitis C virus-associated chronic liver diseases. Hum Pathol. 2002;33(4):429–34.CrossRef
194.
Zurück zum Zitat Lunz JG 3rd, Tsuji H, Nozaki I, Murase N, Demetris AJ. An inhibitor of cyclin-dependent kinase, stress-induced p21Waf-1/Cip-1, mediates hepatocyte mito-inhibition during the evolution of cirrhosis. Hepatology. 2005;41(6):1262–71.CrossRef Lunz JG 3rd, Tsuji H, Nozaki I, Murase N, Demetris AJ. An inhibitor of cyclin-dependent kinase, stress-induced p21Waf-1/Cip-1, mediates hepatocyte mito-inhibition during the evolution of cirrhosis. Hepatology. 2005;41(6):1262–71.CrossRef
195.
Zurück zum Zitat Plentz RR, Park YN, Lechel A, Kim H, Nellessen F, Langkopf BH, et al. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology. 2007;45(4):968–76.CrossRef Plentz RR, Park YN, Lechel A, Kim H, Nellessen F, Langkopf BH, et al. Telomere shortening and inactivation of cell cycle checkpoints characterize human hepatocarcinogenesis. Hepatology. 2007;45(4):968–76.CrossRef
196.
Zurück zum Zitat Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, et al. Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell. 2016;30(4):533–47.CrossRef Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, et al. Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell. 2016;30(4):533–47.CrossRef
197.
Zurück zum Zitat Jiang Y, Luo K, Xu J, Shen X, Gao Y, Fu W, et al. Integrated Analysis Revealing the Senescence-Mediated Immune Heterogeneity of HCC and Construction of a Prognostic Model Based on Senescence-Related Non-Coding RNA Network. Frontiers Oncol. 2022;12. Jiang Y, Luo K, Xu J, Shen X, Gao Y, Fu W, et al. Integrated Analysis Revealing the Senescence-Mediated Immune Heterogeneity of HCC and Construction of a Prognostic Model Based on Senescence-Related Non-Coding RNA Network. Frontiers Oncol. 2022;12.
198.
Zurück zum Zitat Mo Z, Zheng S, Lv Z, Zhuang Y, Lan X, Wang F, et al. Senescence marker protein 30 (SMP30) serves as a potential prognostic indicator in hepatocellular carcinoma. Sci Rep. 2016;6(1):39376.CrossRef Mo Z, Zheng S, Lv Z, Zhuang Y, Lan X, Wang F, et al. Senescence marker protein 30 (SMP30) serves as a potential prognostic indicator in hepatocellular carcinoma. Sci Rep. 2016;6(1):39376.CrossRef
199.
Zurück zum Zitat Sasaki M, Nakanuma Y. Cellular senescence in biliary pathology. Special emphasis on expression of a polycomb group protein EZH2 and a senescent marker p16INK4a in bile ductular tumors and lesions. Histol Histopathol. 2015;30(3):267–75. Sasaki M, Nakanuma Y. Cellular senescence in biliary pathology. Special emphasis on expression of a polycomb group protein EZH2 and a senescent marker p16INK4a in bile ductular tumors and lesions. Histol Histopathol. 2015;30(3):267–75.
200.
Zurück zum Zitat Yamaguchi J, Sasaki M, Harada K, Zen Y, Sato Y, Ikeda H, et al. Papillary hyperplasia of the gallbladder in pancreaticobiliary maljunction represents a senescence-related lesion induced by lysolecithin. Lab Invest. 2009;89(9):1018–31.CrossRef Yamaguchi J, Sasaki M, Harada K, Zen Y, Sato Y, Ikeda H, et al. Papillary hyperplasia of the gallbladder in pancreaticobiliary maljunction represents a senescence-related lesion induced by lysolecithin. Lab Invest. 2009;89(9):1018–31.CrossRef
201.
Zurück zum Zitat Sasaki M, Yamaguchi J, Itatsu K, Ikeda H, Nakanuma Y. Over-expression of polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. J Pathol. 2008;215(2):175–83.CrossRef Sasaki M, Yamaguchi J, Itatsu K, Ikeda H, Nakanuma Y. Over-expression of polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. J Pathol. 2008;215(2):175–83.CrossRef
202.
Zurück zum Zitat Wagner J, Damaschke N, Yang B, Truong M, Guenther C, McCormick J, et al. Overexpression of the novel senescence marker β-galactosidase (GLB1) in prostate cancer predicts reduced PSA recurrence. PLoS ONE. 2015;10(4):e0124366.CrossRef Wagner J, Damaschke N, Yang B, Truong M, Guenther C, McCormick J, et al. Overexpression of the novel senescence marker β-galactosidase (GLB1) in prostate cancer predicts reduced PSA recurrence. PLoS ONE. 2015;10(4):e0124366.CrossRef
203.
Zurück zum Zitat Blute ML Jr, Damaschke N, Wagner J, Yang B, Gleave M, Fazli L, et al. Persistence of senescent prostate cancer cells following prolonged neoadjuvant androgen deprivation therapy. PLoS ONE. 2017;12(2):e0172048.CrossRef Blute ML Jr, Damaschke N, Wagner J, Yang B, Gleave M, Fazli L, et al. Persistence of senescent prostate cancer cells following prolonged neoadjuvant androgen deprivation therapy. PLoS ONE. 2017;12(2):e0172048.CrossRef
204.
Zurück zum Zitat Ewald JA, Desotelle JA, Church DR, Yang B, Huang W, Laurila TA, et al. Androgen deprivation induces senescence characteristics in prostate cancer cells in vitro and in vivo. Prostate. 2013;73(4):337–45.CrossRef Ewald JA, Desotelle JA, Church DR, Yang B, Huang W, Laurila TA, et al. Androgen deprivation induces senescence characteristics in prostate cancer cells in vitro and in vivo. Prostate. 2013;73(4):337–45.CrossRef
205.
Zurück zum Zitat Aaltomaa S, Lipponen P, Eskelinen M, Ala-Opas M, Kosma VM. Prognostic value and expression of p21(waf1/cip1) protein in prostate cancer. Prostate. 1999;39(1):8–15.CrossRef Aaltomaa S, Lipponen P, Eskelinen M, Ala-Opas M, Kosma VM. Prognostic value and expression of p21(waf1/cip1) protein in prostate cancer. Prostate. 1999;39(1):8–15.CrossRef
206.
Zurück zum Zitat Baretton GB, Klenk U, Diebold J, Schmeller N, Löhrs U. Proliferation- and apoptosis-associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAF1/CIP1 expression. Br J Cancer. 1999;80(3–4):546–55.CrossRef Baretton GB, Klenk U, Diebold J, Schmeller N, Löhrs U. Proliferation- and apoptosis-associated factors in advanced prostatic carcinomas before and after androgen deprivation therapy: prognostic significance of p21/WAF1/CIP1 expression. Br J Cancer. 1999;80(3–4):546–55.CrossRef
207.
Zurück zum Zitat Matsushita K, Cha EK, Matsumoto K, Baba S, Chromecki TF, Fajkovic H, et al. Immunohistochemical biomarkers for bladder cancer prognosis. Int J Urol. 2011;18(9):616–29. Matsushita K, Cha EK, Matsumoto K, Baba S, Chromecki TF, Fajkovic H, et al. Immunohistochemical biomarkers for bladder cancer prognosis. Int J Urol. 2011;18(9):616–29.
208.
Zurück zum Zitat Korkolopoulou P, Konstantinidou AE, Thomas-Tsagli E, Christodoulou P, Kapralos P, Davaris P. WAF1/p21 protein expression is an independent prognostic indicator in superficial and invasive bladder cancer. Appl Immunohistochem Mol Morphol. 2000;8(4):285–92. Korkolopoulou P, Konstantinidou AE, Thomas-Tsagli E, Christodoulou P, Kapralos P, Davaris P. WAF1/p21 protein expression is an independent prognostic indicator in superficial and invasive bladder cancer. Appl Immunohistochem Mol Morphol. 2000;8(4):285–92.
209.
Zurück zum Zitat Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer. 2006;95(4):496–505.CrossRef Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer. 2006;95(4):496–505.CrossRef
210.
Zurück zum Zitat Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, et al. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell. 2006;10(6):459–72.CrossRef Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM, et al. A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell. 2006;10(6):459–72.CrossRef
211.
Zurück zum Zitat Sparrow LE, Eldon MJ, English DR, Heenan PJ. p16 and p21WAF1 protein expression in melanocytic tumors by immunohistochemistry. Am J Dermatopathol. 1998;20(3):255–61.CrossRef Sparrow LE, Eldon MJ, English DR, Heenan PJ. p16 and p21WAF1 protein expression in melanocytic tumors by immunohistochemistry. Am J Dermatopathol. 1998;20(3):255–61.CrossRef
212.
Zurück zum Zitat Sanki A, Li W, Colman M, Karim RZ, Thompson JF, Scolyer RA. Reduced expression of p16 and p27 is correlated with tumour progression in cutaneous melanoma. Pathology. 2007;39(6):551–7.CrossRef Sanki A, Li W, Colman M, Karim RZ, Thompson JF, Scolyer RA. Reduced expression of p16 and p27 is correlated with tumour progression in cutaneous melanoma. Pathology. 2007;39(6):551–7.CrossRef
213.
Zurück zum Zitat Pavey SJ, Cummings MC, Whiteman DC, Castellano M, Walsh MD, Gabrielli BG, et al. Loss of p16 expression is associated with histological features of melanoma invasion. Melanoma Res. 2002;12(6):539–47.CrossRef Pavey SJ, Cummings MC, Whiteman DC, Castellano M, Walsh MD, Gabrielli BG, et al. Loss of p16 expression is associated with histological features of melanoma invasion. Melanoma Res. 2002;12(6):539–47.CrossRef
214.
Zurück zum Zitat Talve L, Sauroja I, Collan Y, Punnonen K, Ekfors T. Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage. Int J Cancer. 1997;74(3):255–9.CrossRef Talve L, Sauroja I, Collan Y, Punnonen K, Ekfors T. Loss of expression of the p16INK4/CDKN2 gene in cutaneous malignant melanoma correlates with tumor cell proliferation and invasive stage. Int J Cancer. 1997;74(3):255–9.CrossRef
215.
Zurück zum Zitat Straume O, Sviland L, Akslen LA. Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin Cancer Res. 2000;6(5):1845–53. Straume O, Sviland L, Akslen LA. Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma. Clin Cancer Res. 2000;6(5):1845–53.
216.
Zurück zum Zitat Straume O, Akslen LA. Alterations and prognostic significance of p16 and p53 protein expression in subgroups of cutaneous melanoma. Int J Cancer. 1997;74(5):535–9.CrossRef Straume O, Akslen LA. Alterations and prognostic significance of p16 and p53 protein expression in subgroups of cutaneous melanoma. Int J Cancer. 1997;74(5):535–9.CrossRef
217.
Zurück zum Zitat Vizioli MG, Possik PA, Tarantino E, Meissl K, Borrello MG, Miranda C, et al. Evidence of oncogene-induced senescence in thyroid carcinogenesis. Endocr Relat Cancer. 2011;18(6):743–57.CrossRef Vizioli MG, Possik PA, Tarantino E, Meissl K, Borrello MG, Miranda C, et al. Evidence of oncogene-induced senescence in thyroid carcinogenesis. Endocr Relat Cancer. 2011;18(6):743–57.CrossRef
218.
Zurück zum Zitat Kim YH, Choi YW, Han JH, Lee J, Soh EY, Park SH, et al. TSH signaling overcomes B-RafV600E-induced senescence in papillary thyroid carcinogenesis through regulation of DUSP6. Neoplasia. 2014;16(12):1107–20.CrossRef Kim YH, Choi YW, Han JH, Lee J, Soh EY, Park SH, et al. TSH signaling overcomes B-RafV600E-induced senescence in papillary thyroid carcinogenesis through regulation of DUSP6. Neoplasia. 2014;16(12):1107–20.CrossRef
219.
Zurück zum Zitat Kim YH, Choi YW, Lee J, Soh EY, Kim J-H, Park TJ. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun. 2017;8(1):15208.CrossRef Kim YH, Choi YW, Lee J, Soh EY, Kim J-H, Park TJ. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun. 2017;8(1):15208.CrossRef
220.
Zurück zum Zitat Knösel T, Altendorf-Hofmann A, Lindner L, Issels R, Hermeking H, Schuebbe G, et al. Loss of p16(INK4a) is associated with reduced patient survival in soft tissue tumours, and indicates a senescence barrier. J Clin Pathol. 2014;67(7):592–8.CrossRef Knösel T, Altendorf-Hofmann A, Lindner L, Issels R, Hermeking H, Schuebbe G, et al. Loss of p16(INK4a) is associated with reduced patient survival in soft tissue tumours, and indicates a senescence barrier. J Clin Pathol. 2014;67(7):592–8.CrossRef
221.
Zurück zum Zitat Lv Y, Wu L, Jian H, Zhang C, Lou Y, Kang Y, et al. Identification and characterization of aging/senescence-induced genes in osteosarcoma and predicting clinical prognosis. Frontiers Immunol. 2022;13. Lv Y, Wu L, Jian H, Zhang C, Lou Y, Kang Y, et al. Identification and characterization of aging/senescence-induced genes in osteosarcoma and predicting clinical prognosis. Frontiers Immunol. 2022;13.
222.
Zurück zum Zitat Macher-Goeppinger S, Bermejo JL, Schirmacher P, Pahernik S, Hohenfellner M, Roth W. Senescence-associated protein p400 is a prognostic marker in renal cell carcinoma. Oncol Rep. 2013;30(5):2245–53.CrossRef Macher-Goeppinger S, Bermejo JL, Schirmacher P, Pahernik S, Hohenfellner M, Roth W. Senescence-associated protein p400 is a prognostic marker in renal cell carcinoma. Oncol Rep. 2013;30(5):2245–53.CrossRef
223.
Zurück zum Zitat Zhu Y, Xu L, Zhang J, Hu X, Liu Y, Yin H, et al. Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells. Cancer Sci. 2013;104(8):1052–61.CrossRef Zhu Y, Xu L, Zhang J, Hu X, Liu Y, Yin H, et al. Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells. Cancer Sci. 2013;104(8):1052–61.CrossRef
224.
Zurück zum Zitat Jacob K, Quang-Khuong D-A, Jones DTW, Witt H, Lambert S, Albrecht S, et al. Genetic Aberrations Leading to MAPK Pathway Activation Mediate Oncogene-Induced Senescence in Sporadic Pilocytic Astrocytomas. Clin Cancer Res. 2011;17(14):4650–60.CrossRef Jacob K, Quang-Khuong D-A, Jones DTW, Witt H, Lambert S, Albrecht S, et al. Genetic Aberrations Leading to MAPK Pathway Activation Mediate Oncogene-Induced Senescence in Sporadic Pilocytic Astrocytomas. Clin Cancer Res. 2011;17(14):4650–60.CrossRef
225.
Zurück zum Zitat Buhl JL, Selt F, Hielscher T, Guiho R, Ecker J, Sahm F, et al. The Senescence-associated Secretory Phenotype Mediates Oncogene-induced Senescence in Pediatric Pilocytic Astrocytoma. Clin Cancer Res. 2019;25(6):1851–66.CrossRef Buhl JL, Selt F, Hielscher T, Guiho R, Ecker J, Sahm F, et al. The Senescence-associated Secretory Phenotype Mediates Oncogene-induced Senescence in Pediatric Pilocytic Astrocytoma. Clin Cancer Res. 2019;25(6):1851–66.CrossRef
226.
Zurück zum Zitat Schiffman JD, Hodgson JG, VandenBerg SR, Flaherty P, Polley M-YC, Yu M, et al. Oncogenic BRAF Mutation with CDKN2A Inactivation Is Characteristic of a Subset of Pediatric Malignant Astrocytomas. Cancer Res. 2010;70(2):512–9.CrossRef Schiffman JD, Hodgson JG, VandenBerg SR, Flaherty P, Polley M-YC, Yu M, et al. Oncogenic BRAF Mutation with CDKN2A Inactivation Is Characteristic of a Subset of Pediatric Malignant Astrocytomas. Cancer Res. 2010;70(2):512–9.CrossRef
227.
Zurück zum Zitat Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N, et al. A Distinct Spectrum of Copy Number Aberrations in Pediatric High-Grade Gliomas. Clin Cancer Res. 2010;16(13):3368–77.CrossRef Bax DA, Mackay A, Little SE, Carvalho D, Viana-Pereira M, Tamber N, et al. A Distinct Spectrum of Copy Number Aberrations in Pediatric High-Grade Gliomas. Clin Cancer Res. 2010;16(13):3368–77.CrossRef
228.
Zurück zum Zitat Reinhardt A, Stichel D, Schrimpf D, Sahm F, Korshunov A, Reuss DE, et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 2018;136(2):273–91.CrossRef Reinhardt A, Stichel D, Schrimpf D, Sahm F, Korshunov A, Reuss DE, et al. Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol. 2018;136(2):273–91.CrossRef
229.
Zurück zum Zitat Brat DJ, Aldape K, Colman H, Figrarella-Branger D, Fuller GN, Giannini C, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603–8.CrossRef Brat DJ, Aldape K, Colman H, Figrarella-Branger D, Fuller GN, Giannini C, et al. cIMPACT-NOW update 5: recommended grading criteria and terminologies for IDH-mutant astrocytomas. Acta Neuropathol. 2020;139(3):603–8.CrossRef
230.
Zurück zum Zitat Reis GF, Pekmezci M, Hansen HM, Rice T, Marshall RE, Molinaro AM, et al. CDKN2A Loss Is Associated With Shortened Overall Survival in Lower-Grade (World Health Organization Grades II–III) Astrocytomas. J Neuropathol Exp Neurol. 2015;74(5):442–52.CrossRef Reis GF, Pekmezci M, Hansen HM, Rice T, Marshall RE, Molinaro AM, et al. CDKN2A Loss Is Associated With Shortened Overall Survival in Lower-Grade (World Health Organization Grades II–III) Astrocytomas. J Neuropathol Exp Neurol. 2015;74(5):442–52.CrossRef
231.
Zurück zum Zitat Gonzalez-Meljem JM, Haston S, Carreno G, Apps JR, Pozzi S, Stache C, et al. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat Commun. 2017;8(1):1819.CrossRef Gonzalez-Meljem JM, Haston S, Carreno G, Apps JR, Pozzi S, Stache C, et al. Stem cell senescence drives age-attenuated induction of pituitary tumours in mouse models of paediatric craniopharyngioma. Nat Commun. 2017;8(1):1819.CrossRef
232.
Zurück zum Zitat Apps JR, Carreno G, Gonzalez-Meljem JM, Haston S, Guiho R, Cooper JE, et al. Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathol. 2018;135(5):757–77.CrossRef Apps JR, Carreno G, Gonzalez-Meljem JM, Haston S, Guiho R, Cooper JE, et al. Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target. Acta Neuropathol. 2018;135(5):757–77.CrossRef
233.
Zurück zum Zitat Tamayo-Orrego L, Wu CL, Bouchard N, Khedher A, Swikert SM, Remke M, et al. Evasion of Cell Senescence Leads to Medulloblastoma Progression. Cell Rep. 2016;14(12):2925–37.CrossRef Tamayo-Orrego L, Wu CL, Bouchard N, Khedher A, Swikert SM, Remke M, et al. Evasion of Cell Senescence Leads to Medulloblastoma Progression. Cell Rep. 2016;14(12):2925–37.CrossRef
234.
Zurück zum Zitat Kool M, Jones DT, Jäger N, Northcott PA, Pugh TJ, Hovestadt V, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25(3):393–405.CrossRef Kool M, Jones DT, Jäger N, Northcott PA, Pugh TJ, Hovestadt V, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25(3):393–405.CrossRef
235.
Zurück zum Zitat Carreno G, Guiho R, Martinez-Barbera JP. Cell senescence in neuropathology: A focus on neurodegeneration and tumours. Neuropathol Appl Neurobiol. 2021;47(3):359–78.CrossRef Carreno G, Guiho R, Martinez-Barbera JP. Cell senescence in neuropathology: A focus on neurodegeneration and tumours. Neuropathol Appl Neurobiol. 2021;47(3):359–78.CrossRef
236.
Zurück zum Zitat Hilton DA, Penney M, Evans B, Sanders H, Love S. Evaluation of molecular markers in low-grade diffuse astrocytomas: loss of p16 and retinoblastoma protein expression is associated with short survival. Am J Surg Pathol. 2002;26(4):472–8.CrossRef Hilton DA, Penney M, Evans B, Sanders H, Love S. Evaluation of molecular markers in low-grade diffuse astrocytomas: loss of p16 and retinoblastoma protein expression is associated with short survival. Am J Surg Pathol. 2002;26(4):472–8.CrossRef
237.
Zurück zum Zitat Coppola D, Balducci L, Chen DT, Loboda A, Nebozhyn M, Staller A, et al. Senescence-associated-gene signature identifies genes linked to age, prognosis, and progression of human gliomas. J Geriatr Oncol. 2014;5(4):389–99.CrossRef Coppola D, Balducci L, Chen DT, Loboda A, Nebozhyn M, Staller A, et al. Senescence-associated-gene signature identifies genes linked to age, prognosis, and progression of human gliomas. J Geriatr Oncol. 2014;5(4):389–99.CrossRef
238.
Zurück zum Zitat Salam R, Saliou A, Bielle F, Bertrand M, Antoniewski C, Carpentier C, et al. Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma. bioRxiv. 2022:2022.05.18.492465. Salam R, Saliou A, Bielle F, Bertrand M, Antoniewski C, Carpentier C, et al. Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma. bioRxiv. 2022:2022.05.18.492465.
239.
Zurück zum Zitat Jung JM, Bruner JM, Ruan S, Langford LA, Kyritsis AP, Kobayashi T, et al. Increased levels of p21WAF1/Cip1 in human brain tumors. Oncogene. 1995;11(10):2021–8. Jung JM, Bruner JM, Ruan S, Langford LA, Kyritsis AP, Kobayashi T, et al. Increased levels of p21WAF1/Cip1 in human brain tumors. Oncogene. 1995;11(10):2021–8.
240.
Zurück zum Zitat Korkolopoulou P, Kouzelis K, Christodoulou P, Papanikolaou A, Thomas-Tsagli E. Expression of retinoblastoma gene product and p21 (WAF1/Cip 1) protein in gliomas: correlations with proliferation markers, p53 expression and survival. Acta Neuropathol. 1998;95(6):617–24.CrossRef Korkolopoulou P, Kouzelis K, Christodoulou P, Papanikolaou A, Thomas-Tsagli E. Expression of retinoblastoma gene product and p21 (WAF1/Cip 1) protein in gliomas: correlations with proliferation markers, p53 expression and survival. Acta Neuropathol. 1998;95(6):617–24.CrossRef
241.
Zurück zum Zitat Lewis JS Jr, Thorstad WL, Chernock RD, Haughey BH, Yip JH, Zhang Q, et al. p16 positive oropharyngeal squamous cell carcinoma:an entity with a favorable prognosis regardless of tumor HPV status. Am J Surg Pathol. 2010;34(8):1088–96.CrossRef Lewis JS Jr, Thorstad WL, Chernock RD, Haughey BH, Yip JH, Zhang Q, et al. p16 positive oropharyngeal squamous cell carcinoma:an entity with a favorable prognosis regardless of tumor HPV status. Am J Surg Pathol. 2010;34(8):1088–96.CrossRef
242.
Zurück zum Zitat Machiels JP, René Leemans C, Golusinski W, Grau C, Licitra L, Gregoire V. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31(11):1462–75.CrossRef Machiels JP, René Leemans C, Golusinski W, Grau C, Licitra L, Gregoire V. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31(11):1462–75.CrossRef
243.
Zurück zum Zitat Natarajan E, Saeb M, Crum CP, Woo SB, McKee PH, Rheinwald JG. Co-expression of p16(INK4A) and laminin 5 gamma2 by microinvasive and superficial squamous cell carcinomas in vivo and by migrating wound and senescent keratinocytes in culture. Am J Pathol. 2003;163(2):477–91.CrossRef Natarajan E, Saeb M, Crum CP, Woo SB, McKee PH, Rheinwald JG. Co-expression of p16(INK4A) and laminin 5 gamma2 by microinvasive and superficial squamous cell carcinomas in vivo and by migrating wound and senescent keratinocytes in culture. Am J Pathol. 2003;163(2):477–91.CrossRef
244.
Zurück zum Zitat Angiero F, Berenzi A, Benetti A, Rossi E, del Sordo R, Sidoni A, et al. Expression of P16, P53 and Ki-67 Proteins in the Progression of Epithelial Dysplasia of the Oral Cavity. Anticancer Res. 2008;28(5A):2535–9. Angiero F, Berenzi A, Benetti A, Rossi E, del Sordo R, Sidoni A, et al. Expression of P16, P53 and Ki-67 Proteins in the Progression of Epithelial Dysplasia of the Oral Cavity. Anticancer Res. 2008;28(5A):2535–9.
245.
Zurück zum Zitat Soni S, Kaur J, Kumar A, Chakravarti N, Mathur M, Bahadur S, et al. Alterations of rb pathway components are frequent events in patients with oral epithelial dysplasia and predict clinical outcome in patients with squamous cell carcinoma. Oncology. 2005;68(4–6):314–25.CrossRef Soni S, Kaur J, Kumar A, Chakravarti N, Mathur M, Bahadur S, et al. Alterations of rb pathway components are frequent events in patients with oral epithelial dysplasia and predict clinical outcome in patients with squamous cell carcinoma. Oncology. 2005;68(4–6):314–25.CrossRef
246.
Zurück zum Zitat Reed AL, Califano J, Cairns P, Westra WH, Jones RM, Koch W, et al. High Frequency of p16 (CDKN2/MTS-1/INK4A) Inactivation in Head and Neck Squamous Cell Carcinoma 1, 2. Can Res. 1996;56(16):3630–3. Reed AL, Califano J, Cairns P, Westra WH, Jones RM, Koch W, et al. High Frequency of p16 (CDKN2/MTS-1/INK4A) Inactivation in Head and Neck Squamous Cell Carcinoma 1, 2. Can Res. 1996;56(16):3630–3.
247.
Zurück zum Zitat Schenker H, Büttner-Herold M, Fietkau R, Distel LV. Cell-in-cell structures are more potent predictors of outcome than senescence or apoptosis in head and neck squamous cell carcinomas. Radiat Oncol. 2017;12(1):21.CrossRef Schenker H, Büttner-Herold M, Fietkau R, Distel LV. Cell-in-cell structures are more potent predictors of outcome than senescence or apoptosis in head and neck squamous cell carcinomas. Radiat Oncol. 2017;12(1):21.CrossRef
248.
Zurück zum Zitat Wang J, Zhou C-C, Sun H-C, Li Q, Hu J-D, Jiang T, et al. Identification of several senescence-associated genes signature in head and neck squamous cell carcinoma. J Clin Lab Anal.n/a(n/a):e24555. Wang J, Zhou C-C, Sun H-C, Li Q, Hu J-D, Jiang T, et al. Identification of several senescence-associated genes signature in head and neck squamous cell carcinoma. J Clin Lab Anal.n/a(n/a):e24555.
249.
Zurück zum Zitat Fischer CA, Jung M, Zlobec I, Green E, Storck C, Tornillo L, et al. Co-overexpression of p21 and Ki-67 in head and neck squamous cell carcinoma relative to a significantly poor prognosis. Head Neck. 2011;33(2):267–73.CrossRef Fischer CA, Jung M, Zlobec I, Green E, Storck C, Tornillo L, et al. Co-overexpression of p21 and Ki-67 in head and neck squamous cell carcinoma relative to a significantly poor prognosis. Head Neck. 2011;33(2):267–73.CrossRef
250.
Zurück zum Zitat Zhang M, Li J, Wang L, Tian Z, Zhang P, Xu Q, et al. Prognostic significance of p21, p27 and survivin protein expression in patients with oral squamous cell carcinoma. Oncol Lett. 2013;6(2):381–6.CrossRef Zhang M, Li J, Wang L, Tian Z, Zhang P, Xu Q, et al. Prognostic significance of p21, p27 and survivin protein expression in patients with oral squamous cell carcinoma. Oncol Lett. 2013;6(2):381–6.CrossRef
251.
Zurück zum Zitat Hafkamp HC, Mooren JJ, Claessen SM, Klingenberg B, Voogd AC, Bot FJ, et al. P21 Cip1/WAF1 expression is strongly associated with HPV-positive tonsillar carcinoma and a favorable prognosis. Mod Pathol. 2009;22(5):686–98.CrossRef Hafkamp HC, Mooren JJ, Claessen SM, Klingenberg B, Voogd AC, Bot FJ, et al. P21 Cip1/WAF1 expression is strongly associated with HPV-positive tonsillar carcinoma and a favorable prognosis. Mod Pathol. 2009;22(5):686–98.CrossRef
252.
Zurück zum Zitat Kapranos N, Stathopoulos GP, Manolopoulos L, Kokka E, Papadimitriou C, Bibas A, et al. p53, p21 and p27 protein expression in head and neck cancer and their prognostic value. Anticancer Res. 2001;21(1b):521–8. Kapranos N, Stathopoulos GP, Manolopoulos L, Kokka E, Papadimitriou C, Bibas A, et al. p53, p21 and p27 protein expression in head and neck cancer and their prognostic value. Anticancer Res. 2001;21(1b):521–8.
253.
Zurück zum Zitat Goulart-Filho JAV, Montalli VAM, Passador-Santos F, de Araújo NS, de Araújo VC. Role of apoptotic, autophagic and senescence pathways in minor salivary gland adenoid cystic carcinoma. Diagn Pathol. 2019;14(1):14.CrossRef Goulart-Filho JAV, Montalli VAM, Passador-Santos F, de Araújo NS, de Araújo VC. Role of apoptotic, autophagic and senescence pathways in minor salivary gland adenoid cystic carcinoma. Diagn Pathol. 2019;14(1):14.CrossRef
254.
Zurück zum Zitat Schoetz U, Klein D, Hess J, Shnayien S, Spoerl S, Orth M, et al. Early senescence and production of senescence-associated cytokines are major determinants of radioresistance in head-and-neck squamous cell carcinoma. Cell Death Dis. 2021;12(12):1162.CrossRef Schoetz U, Klein D, Hess J, Shnayien S, Spoerl S, Orth M, et al. Early senescence and production of senescence-associated cytokines are major determinants of radioresistance in head-and-neck squamous cell carcinoma. Cell Death Dis. 2021;12(12):1162.CrossRef
255.
Zurück zum Zitat Rao SG, Jackson JG. SASP: Tumor Suppressor or Promoter? Yes! Trends Cancer. 2016;2(11):676–87.CrossRef Rao SG, Jackson JG. SASP: Tumor Suppressor or Promoter? Yes! Trends Cancer. 2016;2(11):676–87.CrossRef
256.
Zurück zum Zitat Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev. 2011;25(20):2125–36.CrossRef Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev. 2011;25(20):2125–36.CrossRef
257.
Zurück zum Zitat Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol. 2015;17(9):1205–17.CrossRef Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol. 2015;17(9):1205–17.CrossRef
258.
Zurück zum Zitat Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17(8):1049–61.CrossRef Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17(8):1049–61.CrossRef
259.
Zurück zum Zitat Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. Embo j. 2011;30(8):1536–48.CrossRef Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. Embo j. 2011;30(8):1536–48.CrossRef
260.
Zurück zum Zitat Zacarias-Fluck MF, Morancho B, Vicario R, Luque Garcia A, Escorihuela M, Villanueva J, et al. Effect of Cellular Senescence on the Growth of HER2-Positive Breast Cancers. J Natl Cancer Inst. 2015;107(5). Zacarias-Fluck MF, Morancho B, Vicario R, Luque Garcia A, Escorihuela M, Villanueva J, et al. Effect of Cellular Senescence on the Growth of HER2-Positive Breast Cancers. J Natl Cancer Inst. 2015;107(5).
261.
Zurück zum Zitat Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci U S A. 2009;106(40):17031–6.CrossRef Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci U S A. 2009;106(40):17031–6.CrossRef
262.
Zurück zum Zitat Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978–90.CrossRef Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978–90.CrossRef
263.
Zurück zum Zitat Ruhland MK, Loza AJ, Capietto AH, Luo X, Knolhoff BL, Flanagan KC, Belt BA, Alspach E, Leahy K, Luo J, Schaffer A, Edwards JR, Longmore G, Faccio R, DeNardo DG, Stewart SA. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762. https://doi.org/10.1038/ncomms11762. Ruhland MK, Loza AJ, Capietto AH, Luo X, Knolhoff BL, Flanagan KC, Belt BA, Alspach E, Leahy K, Luo J, Schaffer A, Edwards JR, Longmore G, Faccio R, DeNardo DG, Stewart SA. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762. https://​doi.​org/​10.​1038/​ncomms11762.
264.
Zurück zum Zitat Ruhland MK, Loza AJ, Capietto AH, Luo X, Knolhoff BL, Flanagan KC, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762.CrossRef Ruhland MK, Loza AJ, Capietto AH, Luo X, Knolhoff BL, Flanagan KC, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016;7:11762.CrossRef
265.
Zurück zum Zitat Di Mitri D, Toso A, Chen JJ, Sarti M, Pinton S, Jost TR, et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature. 2014;515(7525):134–7.CrossRef Di Mitri D, Toso A, Chen JJ, Sarti M, Pinton S, Jost TR, et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature. 2014;515(7525):134–7.CrossRef
266.
Zurück zum Zitat Jackson JG, Pant V, Li Q, Chang LL, Quintás-Cardama A, Garza D, et al. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell. 2012;21(6):793–806.CrossRef Jackson JG, Pant V, Li Q, Chang LL, Quintás-Cardama A, Garza D, et al. p53-mediated senescence impairs the apoptotic response to chemotherapy and clinical outcome in breast cancer. Cancer Cell. 2012;21(6):793–806.CrossRef
267.
Zurück zum Zitat Bertheau P, Plassa F, Espié M, Turpin E, de Roquancourt A, Marty M, et al. Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet. 2002;360(9336):852–4.CrossRef Bertheau P, Plassa F, Espié M, Turpin E, de Roquancourt A, Marty M, et al. Effect of mutated TP53 on response of advanced breast cancers to high-dose chemotherapy. Lancet. 2002;360(9336):852–4.CrossRef
268.
Zurück zum Zitat Bertheau P, Turpin E, Rickman DS, Espié M, de Reyniès A, Feugeas JP, et al. Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med. 2007;4(3): e90.CrossRef Bertheau P, Turpin E, Rickman DS, Espié M, de Reyniès A, Feugeas JP, et al. Exquisite sensitivity of TP53 mutant and basal breast cancers to a dose-dense epirubicin-cyclophosphamide regimen. PLoS Med. 2007;4(3): e90.CrossRef
269.
Zurück zum Zitat Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell. 2021;20(2):e13316.CrossRef Zhou D, Borsa M, Simon AK. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell. 2021;20(2):e13316.CrossRef
270.
Zurück zum Zitat Gonzalez-Meljem JM, Apps JR, Fraser HC, Martinez-Barbera JP. Paracrine roles of cellular senescence in promoting tumourigenesis. Br J Cancer. 2018;118(10):1283–8.CrossRef Gonzalez-Meljem JM, Apps JR, Fraser HC, Martinez-Barbera JP. Paracrine roles of cellular senescence in promoting tumourigenesis. Br J Cancer. 2018;118(10):1283–8.CrossRef
271.
Zurück zum Zitat Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol. 2019;21(1):94–101.CrossRef Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol. 2019;21(1):94–101.CrossRef
272.
Zurück zum Zitat Niedernhofer LJ, Robbins PD. Senotherapeutics for healthy ageing. Nature Rev Drug Discov. 2018;17(5):377.CrossRef Niedernhofer LJ, Robbins PD. Senotherapeutics for healthy ageing. Nature Rev Drug Discov. 2018;17(5):377.CrossRef
273.
Zurück zum Zitat Cui M, Zhang DY. Artificial intelligence and computational pathology. Lab Invest. 2021;101(4):412–22.CrossRef Cui M, Zhang DY. Artificial intelligence and computational pathology. Lab Invest. 2021;101(4):412–22.CrossRef
274.
Zurück zum Zitat Domen A, Quatannens D, Zanivan S, Deben C, Van Audenaerde J, Smits E, et al. Cancer-Associated Fibroblasts as a Common Orchestrator of Therapy Resistance in Lung and Pancreatic Cancer. Cancers (Basel). 2021;13(5). Domen A, Quatannens D, Zanivan S, Deben C, Van Audenaerde J, Smits E, et al. Cancer-Associated Fibroblasts as a Common Orchestrator of Therapy Resistance in Lung and Pancreatic Cancer. Cancers (Basel). 2021;13(5).
275.
Zurück zum Zitat Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18(7):407–18.CrossRef Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer. 2018;18(7):407–18.CrossRef
276.
Zurück zum Zitat Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol. 2020;38(3):333–42.CrossRef Moncada R, Barkley D, Wagner F, Chiodin M, Devlin JC, Baron M, et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat Biotechnol. 2020;38(3):333–42.CrossRef
Metadaten
Titel
Cellular senescence in cancer: clinical detection and prognostic implications
verfasst von
Andreas Domen
Christophe Deben
Jasper Verswyvel
Tal Flieswasser
Hans Prenen
Marc Peeters
Filip Lardon
An Wouters
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Experimental & Clinical Cancer Research / Ausgabe 1/2022
Elektronische ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-022-02555-3

Weitere Artikel der Ausgabe 1/2022

Journal of Experimental & Clinical Cancer Research 1/2022 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.