Skip to main content
Erschienen in: Endocrine 3/2014

01.04.2014 | Original Article

Changes in levels of peripheral hormones controlling appetite are inconsistent with hyperphagia in leptin-deficient subjects

verfasst von: Sadia Saeed, Paul R. Bech, Tayyaba Hafeez, Rabail Alam, Mario Falchi, Mohammad A. Ghatei, Stephen R. Bloom, Muhammad Arslan, Philippe Froguel

Erschienen in: Endocrine | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Congenital leptin deficiency, a rare genetic disorder due to a homozygous mutation in the leptin gene (LEP), is accompanied by extreme obesity and hyperphagia. A number of gastrointestinal hormones have been shown to critically regulate food intake but their physiological role in hyperphagic response in congenital leptin deficiency has not been elucidated. This study is the first to evaluate the fasting and postprandial profiles of gut-derived hormones in homozygous and heterozygous carriers of LEP mutation. The study subjects from two consanguineous families consisted of five homozygous and eight heterozygous carriers of LEP mutation, c.398delG. Ten wild-type normal-weight subjects served as controls. Fasting and 1-h postprandial plasma ghrelin, glucagon-like peptide (GLP) 1, peptide YY (PYY), leptin and insulin levels were measured by immunoassays. Fasting plasma ghrelin levels in homozygotes remained remarkably unchanged following food consumption (P = 0.33) in contrast to a significant decline in heterozygous (P < 0.03) and normal (P < 0.02) subjects. A significant postprandial increase in PYY was observed in heterozygous (P < 0.02) and control subjects (P < 0.01), but not in the homozygous group (P = 0.22). A postprandial rise in GLP-1 levels was significant (P < 0.02) in all groups. Interestingly, fasting leptin levels in heterozygotes were not significantly different from controls and did not change significantly following meal. Our results demonstrate that gut hormones play little or no physiological role in driving the hyperphagic response of leptin-deficient subjects. In contrast, fasting and postprandial levels of gut hormones in heterozygous mutation carriers were comparable to those of normal-weight controls.
Literatur
1.
Zurück zum Zitat C. Bjorbaek, B.B. Kahn, Leptin signaling in the central nervous system and the periphery. Recent Prog. Horm. Res. 59, 305–331 (2004)PubMedCrossRef C. Bjorbaek, B.B. Kahn, Leptin signaling in the central nervous system and the periphery. Recent Prog. Horm. Res. 59, 305–331 (2004)PubMedCrossRef
2.
Zurück zum Zitat A. Oswal, G. Yeo, Leptin and the control of body weight: a review of its diverse central targets, signaling mechanisms, and role in the pathogenesis of obesity. Obesity (Silver Spring) 18, 221–229 (2010)CrossRef A. Oswal, G. Yeo, Leptin and the control of body weight: a review of its diverse central targets, signaling mechanisms, and role in the pathogenesis of obesity. Obesity (Silver Spring) 18, 221–229 (2010)CrossRef
3.
Zurück zum Zitat K.G. Murphy, S.R. Bloom, Gut hormones and the regulation of energy homeostasis. Nature 444, 854–859 (2006)PubMedCrossRef K.G. Murphy, S.R. Bloom, Gut hormones and the regulation of energy homeostasis. Nature 444, 854–859 (2006)PubMedCrossRef
4.
Zurück zum Zitat H. Ariyasu, K. Takaya, T. Tagami et al., Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab. 86, 4753–4758 (2001)PubMedCrossRef H. Ariyasu, K. Takaya, T. Tagami et al., Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab. 86, 4753–4758 (2001)PubMedCrossRef
5.
Zurück zum Zitat T.R. Castaneda, J. Tong, R. Datta, M. Culler, M.H. Tschop, Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocrinol. 31, 44–60 (2010)PubMedCrossRef T.R. Castaneda, J. Tong, R. Datta, M. Culler, M.H. Tschop, Ghrelin in the regulation of body weight and metabolism. Front. Neuroendocrinol. 31, 44–60 (2010)PubMedCrossRef
6.
Zurück zum Zitat P.J. English, M.A. Ghatei, I.A. Malik, S.R. Bloom, J.P. Wilding, Food fails to suppress ghrelin levels in obese humans. J. Clin. Endocrinol. Metab. 87, 2984–2987 (2002)PubMedCrossRef P.J. English, M.A. Ghatei, I.A. Malik, S.R. Bloom, J.P. Wilding, Food fails to suppress ghrelin levels in obese humans. J. Clin. Endocrinol. Metab. 87, 2984–2987 (2002)PubMedCrossRef
7.
Zurück zum Zitat B. Otto, U. Cuntz, E. Fruehauf, R. Wawarta et al., Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur. J. Endocrinol. 145, 669–673 (2001)PubMedCrossRef B. Otto, U. Cuntz, E. Fruehauf, R. Wawarta et al., Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. Eur. J. Endocrinol. 145, 669–673 (2001)PubMedCrossRef
8.
Zurück zum Zitat A.A. van der Klaauw, J.M. Keogh, E. Henning, A. Blackwood, A.M. Haqq, J.Q. Purnell, I.S. Farooqi, Postprandial total ghrelin suppression is modulated by melanocortin signaling in humans. J. Clin. Endocrinol. Metab. 98, E288–E292 (2013)PubMedCentralPubMedCrossRef A.A. van der Klaauw, J.M. Keogh, E. Henning, A. Blackwood, A.M. Haqq, J.Q. Purnell, I.S. Farooqi, Postprandial total ghrelin suppression is modulated by melanocortin signaling in humans. J. Clin. Endocrinol. Metab. 98, E288–E292 (2013)PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat A.M. Haqq, I.S. Farooqi, S. O’Rahilly et al., Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader–Willi syndrome. J. Clin. Endocrinol. Metab. 88, 174–178 (2003)PubMedCrossRef A.M. Haqq, I.S. Farooqi, S. O’Rahilly et al., Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader–Willi syndrome. J. Clin. Endocrinol. Metab. 88, 174–178 (2003)PubMedCrossRef
10.
Zurück zum Zitat A.P. Goldstone, M. Patterson, N. Kalingag et al., Fasting and postprandial hyperghrelinemia in Prader–Willi syndrome is partially explained by hypoinsulinemia, and is not due to peptide YY3-36 deficiency or seen in hypothalamic obesity due to craniopharyngioma. J. Clin. Endocrinol. Metab. 90, 2681–2690 (2005)PubMedCrossRef A.P. Goldstone, M. Patterson, N. Kalingag et al., Fasting and postprandial hyperghrelinemia in Prader–Willi syndrome is partially explained by hypoinsulinemia, and is not due to peptide YY3-36 deficiency or seen in hypothalamic obesity due to craniopharyngioma. J. Clin. Endocrinol. Metab. 90, 2681–2690 (2005)PubMedCrossRef
11.
Zurück zum Zitat E. Ekblad, F. Sundler, Distribution of pancreatic polypeptide and peptide YY. Peptides 23, 251–261 (2002)PubMedCrossRef E. Ekblad, F. Sundler, Distribution of pancreatic polypeptide and peptide YY. Peptides 23, 251–261 (2002)PubMedCrossRef
12.
Zurück zum Zitat R.L. Batterham, H. Heffron, S. Kapoor et al., Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 4, 223–233 (2006)PubMedCrossRef R.L. Batterham, H. Heffron, S. Kapoor et al., Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 4, 223–233 (2006)PubMedCrossRef
13.
Zurück zum Zitat T.E. Adrian, G.L. Ferri, A.J. Bacarese-Hamilton, H.S. Fuessl, J.M. Polak, S.R. Bloom, Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89, 1070–1077 (1985)PubMed T.E. Adrian, G.L. Ferri, A.J. Bacarese-Hamilton, H.S. Fuessl, J.M. Polak, S.R. Bloom, Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89, 1070–1077 (1985)PubMed
14.
Zurück zum Zitat A.A. van der Klaauw, J.M. Keogh, E. Henning, V.M. Trowse, W.S. Dhillo, M.A. Ghatei, I.S. Farooqi, High protein intake stimulates postprandial GLP1 and PYY release. Obesity (Silver Spring) (2012). doi:10.1002/oby.20154 A.A. van der Klaauw, J.M. Keogh, E. Henning, V.M. Trowse, W.S. Dhillo, M.A. Ghatei, I.S. Farooqi, High protein intake stimulates postprandial GLP1 and PYY release. Obesity (Silver Spring) (2012). doi:10.​1002/​oby.​20154
15.
Zurück zum Zitat R.A. Pittner, C.X. Moore, S.P. Bhavsar et al., Effects of PYY[3–36] in rodent models of diabetes and obesity. Int. J. Obes. Relat. Metab. Disord. 28, 963–971 (2004)PubMedCrossRef R.A. Pittner, C.X. Moore, S.P. Bhavsar et al., Effects of PYY[3–36] in rodent models of diabetes and obesity. Int. J. Obes. Relat. Metab. Disord. 28, 963–971 (2004)PubMedCrossRef
16.
Zurück zum Zitat K. Zwirska-Korczala, S.J. Konturek, M. Sodowski et al., Basal and postprandial plasma levels of PYY, ghrelin, cholecystokinin, gastrin and insulin in women with moderate and morbid obesity and metabolic syndrome. J. Physiol. Pharmacol. 58(Suppl 1), 13–35 (2007)PubMed K. Zwirska-Korczala, S.J. Konturek, M. Sodowski et al., Basal and postprandial plasma levels of PYY, ghrelin, cholecystokinin, gastrin and insulin in women with moderate and morbid obesity and metabolic syndrome. J. Physiol. Pharmacol. 58(Suppl 1), 13–35 (2007)PubMed
17.
Zurück zum Zitat M.D. Turton, D. O’Shea, I. Gunn, S.A. Beak et al., A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996)PubMedCrossRef M.D. Turton, D. O’Shea, I. Gunn, S.A. Beak et al., A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996)PubMedCrossRef
19.
Zurück zum Zitat K.D. Niswender, M.W. Schwartz, Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front. Neuroendocrinol. 24, 1–10 (2003)PubMedCrossRef K.D. Niswender, M.W. Schwartz, Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front. Neuroendocrinol. 24, 1–10 (2003)PubMedCrossRef
20.
Zurück zum Zitat M.W. Schwartz, S.C. Woods, D. Porte Jr, R.J. Seeley, D.G. Baskin, Central nervous system control of food intake. Nature 404, 661–671 (2000)PubMed M.W. Schwartz, S.C. Woods, D. Porte Jr, R.J. Seeley, D.G. Baskin, Central nervous system control of food intake. Nature 404, 661–671 (2000)PubMed
21.
Zurück zum Zitat A.J. van der Lely, M. Tschop, M.L. Heiman, E. Ghigo, Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr. Rev. 25, 426–457 (2004)PubMedCrossRef A.J. van der Lely, M. Tschop, M.L. Heiman, E. Ghigo, Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr. Rev. 25, 426–457 (2004)PubMedCrossRef
22.
Zurück zum Zitat C.T. Montague, I.S. Farooqi, J.P. Whitehead et al., Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997)PubMedCrossRef C.T. Montague, I.S. Farooqi, J.P. Whitehead et al., Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 387, 903–908 (1997)PubMedCrossRef
23.
Zurück zum Zitat I.S. Farooqi, S. O’Rahilly, Monogenic human obesity syndromes. Recent Prog. Horm. Res. 59, 409–424 (2004)PubMedCrossRef I.S. Farooqi, S. O’Rahilly, Monogenic human obesity syndromes. Recent Prog. Horm. Res. 59, 409–424 (2004)PubMedCrossRef
24.
Zurück zum Zitat S. Saeed, T.A. Butt, M. Anwer, M. Arslan, P. Froguel, High prevalence of leptin and melanocortin-4 receptor gene mutations in children with severe obesity from Pakistani consanguineous families. Mol. Genet. Metab. 106, 121–126 (2012)PubMedCrossRef S. Saeed, T.A. Butt, M. Anwer, M. Arslan, P. Froguel, High prevalence of leptin and melanocortin-4 receptor gene mutations in children with severe obesity from Pakistani consanguineous families. Mol. Genet. Metab. 106, 121–126 (2012)PubMedCrossRef
25.
Zurück zum Zitat A.I. Blakemore, P. Froguel, Investigation of Mendelian forms of obesity holds out the prospect of personalized medicine. Ann. N. Y. Acad. Sci. 1214, 180–189 (2010)PubMedCrossRef A.I. Blakemore, P. Froguel, Investigation of Mendelian forms of obesity holds out the prospect of personalized medicine. Ann. N. Y. Acad. Sci. 1214, 180–189 (2010)PubMedCrossRef
26.
Zurück zum Zitat I.S. Farooqi, J.M. Keogh, S. Kamath et al., Partial leptin deficiency and human adiposity. Nature 414, 34–35 (2001)PubMedCrossRef I.S. Farooqi, J.M. Keogh, S. Kamath et al., Partial leptin deficiency and human adiposity. Nature 414, 34–35 (2001)PubMedCrossRef
27.
Zurück zum Zitat A.M. Wren, L.J. Seal, M.A. Cohen et al., Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992–5995 (2001)PubMedCrossRef A.M. Wren, L.J. Seal, M.A. Cohen et al., Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992–5995 (2001)PubMedCrossRef
28.
Zurück zum Zitat M. Tschop, C. Weyer, P.A. Tataranni, V. Devanarayan, E. Ravussin, M.L. Heiman, Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001)PubMedCrossRef M. Tschop, C. Weyer, P.A. Tataranni, V. Devanarayan, E. Ravussin, M.L. Heiman, Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001)PubMedCrossRef
30.
Zurück zum Zitat H. Kirchner, K.M. Heppner, J. Holland, D. Kabra, M.H. Tschöp, P.T. Pfluger, Ablation of ghrelin O-acyltransferase does not improve glucose intolerance or body adiposity in mice on a leptin-deficient ob/ob background. PLoS One 8, e61822 (2013)PubMedCentralPubMedCrossRef H. Kirchner, K.M. Heppner, J. Holland, D. Kabra, M.H. Tschöp, P.T. Pfluger, Ablation of ghrelin O-acyltransferase does not improve glucose intolerance or body adiposity in mice on a leptin-deficient ob/ob background. PLoS One 8, e61822 (2013)PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat B.O. Yildiz, M.A. Suchard, M.L. Wong, S.M. McCann, J. Licinio, Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc. Natl. Acad. Sci. USA. 101, 10434–10439 (2004)PubMedCentralPubMedCrossRef B.O. Yildiz, M.A. Suchard, M.L. Wong, S.M. McCann, J. Licinio, Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc. Natl. Acad. Sci. USA. 101, 10434–10439 (2004)PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat C. Bizzarri, A.E. Rigamonti, A. Luce et al., Children with Prader–Willi syndrome exhibit more evident meal-induced responses in plasma ghrelin and peptide YY levels than obese and lean children. Eur. J. Endocrinol. 162, 499–505 (2010)PubMedCrossRef C. Bizzarri, A.E. Rigamonti, A. Luce et al., Children with Prader–Willi syndrome exhibit more evident meal-induced responses in plasma ghrelin and peptide YY levels than obese and lean children. Eur. J. Endocrinol. 162, 499–505 (2010)PubMedCrossRef
33.
Zurück zum Zitat A.P. Goldstone, E.L. Thomas, A.E. Brynes et al., Visceral adipose tissue and metabolic complications of obesity are reduced in Prader–Willi syndrome female adults: evidence for novel influences on body fat distribution. J. Clin. Endocrinol. Metab. 86, 4330–4338 (2001)PubMedCrossRef A.P. Goldstone, E.L. Thomas, A.E. Brynes et al., Visceral adipose tissue and metabolic complications of obesity are reduced in Prader–Willi syndrome female adults: evidence for novel influences on body fat distribution. J. Clin. Endocrinol. Metab. 86, 4330–4338 (2001)PubMedCrossRef
34.
Zurück zum Zitat L. Purtell, L. Sze, G. Loughnan et al., In adults with Prader–Willi syndrome, elevated ghrelin levels are more consistent with hyperphagia than high PYY and GLP-1 levels. Neuropeptides 4, 301–307 (2011)CrossRef L. Purtell, L. Sze, G. Loughnan et al., In adults with Prader–Willi syndrome, elevated ghrelin levels are more consistent with hyperphagia than high PYY and GLP-1 levels. Neuropeptides 4, 301–307 (2011)CrossRef
35.
Zurück zum Zitat A. De Silva, S.R. Bloom, Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver 6, 10–20 (2012)PubMedCentralPubMedCrossRef A. De Silva, S.R. Bloom, Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver 6, 10–20 (2012)PubMedCentralPubMedCrossRef
36.
Zurück zum Zitat J.L. Chan, V. Stoyneva, T. Kelesidis, P. Raciti, C.S. Mantzoros, Peptide YY levels are decreased by fasting and elevated following caloric intake but are not regulated by leptin. Diabetologia 49, 169–173 (2006)PubMedCrossRef J.L. Chan, V. Stoyneva, T. Kelesidis, P. Raciti, C.S. Mantzoros, Peptide YY levels are decreased by fasting and elevated following caloric intake but are not regulated by leptin. Diabetologia 49, 169–173 (2006)PubMedCrossRef
37.
Zurück zum Zitat M. Korbonits, P.J. Trainer, J.A. Little et al., Leptin levels do not change acutely with food administration in normal or obese subjects, but are negatively correlated with pituitary-adrenal activity. Clin. Endocrinol. (Oxf.) 46, 751–757 (1997)CrossRef M. Korbonits, P.J. Trainer, J.A. Little et al., Leptin levels do not change acutely with food administration in normal or obese subjects, but are negatively correlated with pituitary-adrenal activity. Clin. Endocrinol. (Oxf.) 46, 751–757 (1997)CrossRef
38.
Zurück zum Zitat M. Romon, P. Lebel, J.C. Fruchart, J. Dallongeville, Postprandial leptin response to carbohydrate and fat meals in obese women. J. Am. Coll. Nutr. 22, 247–251 (2003)PubMedCrossRef M. Romon, P. Lebel, J.C. Fruchart, J. Dallongeville, Postprandial leptin response to carbohydrate and fat meals in obese women. J. Am. Coll. Nutr. 22, 247–251 (2003)PubMedCrossRef
39.
Zurück zum Zitat J. Dallongeville, B. Hecquet, P. Lebel et al., Short term response of circulating leptin to feeding and fasting in man: influence of circadian cycle. Int. J. Obes. Relat. Metab. Disord. 22, 728–733 (1998)PubMedCrossRef J. Dallongeville, B. Hecquet, P. Lebel et al., Short term response of circulating leptin to feeding and fasting in man: influence of circadian cycle. Int. J. Obes. Relat. Metab. Disord. 22, 728–733 (1998)PubMedCrossRef
40.
Zurück zum Zitat I.S. Farooqi, G. Matarese, G.M. Lord et al., Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002)PubMedCentralPubMedCrossRef I.S. Farooqi, G. Matarese, G.M. Lord et al., Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 110, 1093–1103 (2002)PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat J. Levi, S.L. Gray, M. Speck et al., Acute disruption of leptin signaling in vivo leads to increased insulin levels and insulin resistance. Endocrinology 152, 3385–3395 (2011)PubMedCrossRef J. Levi, S.L. Gray, M. Speck et al., Acute disruption of leptin signaling in vivo leads to increased insulin levels and insulin resistance. Endocrinology 152, 3385–3395 (2011)PubMedCrossRef
42.
Zurück zum Zitat P.R. Flatt, C.J. Bailey, A.M. Cameron, B.J. Gould, Age effects on glycosylated blood proteins in lean and obese hyperglycaemic (ob/ob) mice. Diabetes Res. 3, 241–243 (1986)PubMed P.R. Flatt, C.J. Bailey, A.M. Cameron, B.J. Gould, Age effects on glycosylated blood proteins in lean and obese hyperglycaemic (ob/ob) mice. Diabetes Res. 3, 241–243 (1986)PubMed
43.
Zurück zum Zitat J. Seufert, T.J. Kieffer, J.F. Habener, Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. Proc. Natl. Acad. Sci. USA. 96, 674–679 (1999)PubMedCentralPubMedCrossRef J. Seufert, T.J. Kieffer, J.F. Habener, Leptin inhibits insulin gene transcription and reverses hyperinsulinemia in leptin-deficient ob/ob mice. Proc. Natl. Acad. Sci. USA. 96, 674–679 (1999)PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Y. Sun, M. Asnicar, P.K. Saha, L. Chan, R.G. Smith, Ablation of ghrelin improves the diabetic but not obese phenotype of ob/ob mice. Cell Metab. 3, 379–386 (2006)PubMedCrossRef Y. Sun, M. Asnicar, P.K. Saha, L. Chan, R.G. Smith, Ablation of ghrelin improves the diabetic but not obese phenotype of ob/ob mice. Cell Metab. 3, 379–386 (2006)PubMedCrossRef
Metadaten
Titel
Changes in levels of peripheral hormones controlling appetite are inconsistent with hyperphagia in leptin-deficient subjects
verfasst von
Sadia Saeed
Paul R. Bech
Tayyaba Hafeez
Rabail Alam
Mario Falchi
Mohammad A. Ghatei
Stephen R. Bloom
Muhammad Arslan
Philippe Froguel
Publikationsdatum
01.04.2014
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 3/2014
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-013-0009-9

Weitere Artikel der Ausgabe 3/2014

Endocrine 3/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Herzinfarkt mit 85 – trotzdem noch intensive Lipidsenkung?

16.05.2024 Hypercholesterinämie Nachrichten

Profitieren nach einem akuten Myokardinfarkt auch Betroffene über 80 Jahre noch von einer intensiven Lipidsenkung zur Sekundärprävention? Um diese Frage zu beantworten, wurden jetzt Registerdaten aus Frankreich ausgewertet.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

CKD bei Diabetes: Neuheiten und Zukunftsaussichten

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Jeder Mensch mit Diabetes muss auf eine chronische Nierenerkrankung gescreent werden – diese neue Empfehlung spricht die KDIGO aus. Die Therapie erfolgt individuell und je nach Szenario mit verschiedenen Substanzklassen. Künftig kommt wahrscheinlich, neben RAS-Hemmung, SGLT2-Inhibition und nsMRA, eine vierte Therapiesäule hinzu.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.