Skip to main content
Erschienen in: BMC Infectious Diseases 1/2020

Open Access 01.12.2020 | Research article

Characteristics of Clostridium difficile isolates and the burden of hospital-acquired Clostridium difficile infection in a tertiary teaching hospital in Chongqing, Southwest China

verfasst von: Wei Dai, Tianxiang Yang, Li Yan, Siqiang Niu, Chuanming Zhang, Jide Sun, Zhu Wang, Yun Xia

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2020

Abstract

Background

Clostridium difficile infection (CDI), especially hospital-acquired Clostridium difficile infection (HA-CDI), continues to be a public health problem and has aroused great concern worldwide for years. This study aimed to elucidate the clinical and epidemiological features of HA-CDI and the characteristics of C.difficile isolates in Chongqing, Southwest China.

Methods

A case-control study was performed to identify the clinical incidence and risk factors of HA-CDI. C. difficile isolates were characterised by polymerase chain reaction (PCR) ribotyping, multilocus sequence typing (MLST), toxin gene detection and antimicrobial susceptibility testing.

Results

Of the 175 suspicious patients, a total of 122 patients with antibiotic-associated diarrhea (AAD) were included in the study; among them, 38 had HA-CDI. The incidence of AAD and HA-CDI was 0.58 and 0.18 per 1000 patient admissions, respectively. Chronic renal disease and cephalosporin use were independent risk factors for HA-CDI. Fifty-five strains were assigned into 16 sequence types (STs) and 15 ribotypes (RTs). ST2/RT449 (8, 14.5%) was the predominant genotype. Of the 38 toxigenic isolates, A + B + CDT- isolates accounted for most (34, 89.5%) and 1 A + B + CDT+ isolate emerged. No isolate was resistant to vancomycin, metronidazole or tigecycline, with A-B-CDT- being more resistant than A + B + CDT-.

Conclusions

Different genotypes of C. difficile strains were witnessed in Chongqing, which hinted at the necessary surveillance of HA-CDI. Adequate awareness of patients at high risk of HA-CDI acquisition is advocated and cautious adoption of cephalosporins should be highlighted.
Hinweise
Wei Dai and Tianxiang Yang contributed equally to this work.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12879-020-05014-6.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CDI
Clostridium difficile infection
HA-CDI
Hospital-acquired Clostridium difficile infection
AAD
Antibiotic-associated diarrhea
PCR
Polymerase Chain Reaction
RT
Ribotype
MLST
Multilocus sequence typing
CCFA
Cycloserin-cefoxitin-fructose agar
ELFA
Enzyme linked fluorescent assay
CLSI
Clinical and Laboratory Standards Institute
EUCAST
European Committee on Antimicrobial Susceptibility Testing
ST
Sequence type
CQR
Chongqing Ribotype
OR
Odds ratio
CI
Confidence interval
PPIs
Proton pump inhibitors
MIC
Minimum inhibitory concentration
MDR
Multidrug resistant
WHO
World health organization
IL
Interleukin
CGE
Capillary gel electrophoresis
WGS
Whole genome sequencing
NAAT
Nucleic acid amplification test
GDH
Glutamate dehydrogenase

Background

As a successful nosocomial pathogen, toxin-producing C. difficile has caused approximately 10–30% healthcare-associated infections [1, 2]. Increased incidence and severity of Clostridium difficile infection (CDI) have been witnessed in Europe and North America in recent decades [3, 4]. However, in developing countries, due to the poor awareness of healthcare workers and limited capacity of laboratory diagnosis, the potential public threat of CDI has not been fully recognized. A recent random-effects study including 37,663 patients reported a similar incidence rate of CDI in Asia in comparison with North America and Europe. Significant regional variation has been revealed and when compared with the Middle East and South Asia, East Asia was exposed to the highest CDI prevalence of 19.5% [5], which necessitated good awareness and surveillance of CDI in this area.
However, unlike the rest of East Asia, limited data have focused on the burden of CDI in China. Although few regional studies alarmed that the hyper-virulent C. difficile strain ST-1 (BI/NAP1/027), an epidemic strain in Europe and North America, has emerged in Chinese hospital settings, recent reports revealed that ST35, ST37 and ST3 were the most prevalent genotypes in mainland China [6, 7]. Moreover, in consideration of the complex personnel mobility in medical institutions, the majority of CDI is hospital-acquired, and nosocomial transmission of C. difficile contributes greatly to the spread of different genotypes. Recently, whole genome sequencing (WGS) identified the dissemination and spread of C. difficile ribotype 027 (RT027) and sequence type 081 (ST081) in two Chinese hospitals [8, 9]. Therefore, a better understanding of regional epidemiology is helpful to guide priorities for the management of hospital-acquired Clostridium difficile infection (HA-CDI). Although many studies have explored the CDI situation in China, the lack of epidemiological data in blind areas impedes a full understanding of CDI in this country. To the best of our knowledge, this is the first study of HA-CDI in Chongqing, a provincial administrative unit in Southwest China [6]. Our study was initiated to investigate the impact of HA-CDI by identifying its prevalence, determine the risk factors for the acquisition of this dilemma in patients with antibiotic-associated diarrhea (AAD), reveal the mortality of HA-CDI in this teaching hospital and inquire into the molecular epidemiology and antimicrobial resistance of C.difficile isolates found in this study.

Methods

Study design

A case-control study was conducted from June 2014 to March 2016 in the First Affiliated Hospital of Chongqing Medical University, a tertiary teaching hospital with 3200 beds, which is the surveillance center of antimicrobial resistance in Chongqing. Unformed stools of inpatients suffering from diarrhea were collected for toxigenic culture of C. difficile. After medical chart screening, patients who were hospitalized for more than or equal to 7 days and who were administered antibiotics before diarrhea were included in this study. According to the results from toxigenic culture, patients diagnosed with HA-CDI were enrolled in the case group, while patients diagnosed with non-C. difficile AAD were enrolled in the control group (Fig. 1). Clinical data including demography, chronic underlying disease, comorbidities, medication prior to the onset of diarrhea, in-hospital recurrence and mortality were retrieved by electronic medical charts.

Definitions

AAD was diagnosed when a hospitalized patient suffered from unexplained diarrhea in association with the administration of antibiotics during current hospitalization [1].
CDI was diagnosed when a patient with diarrhea was positive for a toxin-producing C. difficile strain in stool culture.
HA-CDI was the case with CDI confirmed at least 48 h after admission.
Four severity levels of CDI (mild, moderate, severe and complicated) introduced by Leffler et al. [10] were adopted to judge the clinical manifestations of patients in this study. Clinical outcomes of HA-CDI cases were classified into three categories: a. symptomatic recovery, b. CDI symptomatic recurrence while in hospital, c. in-hospital death after the diagnosis of HA-CDI.

Microbiological testing

Unformed stool samples treated with alcohol shock were inoculated onto cycloserin-cefoxitin-fructose agar (CCFA) and cultured anaerobically in 37 °C for 5 days. The colonies suspected as C. difficile were subjected to mass spectrometry (Vitek MS, bioMerieux, France). C. difficile strains were assayed for toxin A and toxin B antigen by enzyme linked fluorescent assay (ELFA) (Vidas mini, bioMerieux, France) performed on culture supernatants in vitro. DNA of the C. difficile strain was extracted and polymerase chain reaction (PCR) was performed to detect the presence of toxin genes (tcdA, tcdB), the regulatory gene (tcdC) and binary toxin genes (cdtA and cdtB) as previously reported [11, 12]. The flow diagram of the laboratory diagnosis of C. difficile infection by toxigenic culture was summarized in Fig. 1. Antimicrobial susceptibilities of C. difficile to seven antibiotics (vancomycin, metronidazole, rifampin, levofloxacin, erythromycin, clindamycin and tigecycline) were tested by the agar dilution method as recommended by the Clinical and Laboratory Standards Institute (CLSI) M11-A8 [13]. Breakpoints for clindamycin and metronidazole were according to CLSI recommendations for anaerobic bacteria [14], while those for rifampin, erythromycin and levofloxacin were adopted on the basis of the suggestion made by Lidan C et al. [15]. Interpretation criteria of vancomycin and tigecycline were according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommendations [16].

Molecular typing analysis

Multilocus sequence typing (MLST) was performed by sequencing seven house-keeping genes of C. difficile (adk, atpA, dxr, glyA, recA, sodA and tpi) as previously reported by Griffiths D et al. [11]. Sequence types (STs) and clades of C. difficile strains were confirmed by querying on http://​pubmlst.​org/​ website. A minimum spanning tree generated from BioNumerics version 7.6 was used to show the genetic diversity of the MLST data derived from this study.
Capillary gel electrophoresis-based PCR ribotyping was implemented according to a previous report by Fawley WN et al. [17]. Ribotypes were identified by querying on the WEBRIBO web-based database (http://​webribo.​ages.​at). The novel ribotype was named as “Chongqing Ribotype” (CQR) plus two Arabic numbers (e.g., CQR01).

Statistical analysis

Patients with a length of hospitalization more than or equal to 7 days were included in the statistical analysis. A univariate analysis was initially conducted to determine the potential risk factors for the acquisition of HA-CDI by comparing the HA-CDI group with the non- C. difficile AAD group. Categorical variables were compared by use of chi-square or Fisher’s exact test. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of any association. Variables with a P value of < 0.10 in the univariate test were included in a multivariate one-step logistic remodel. A two-tailed P-value of < 0.05 was considered to be statistically significant. All of the statistical calculations were performed with standard programs in SPSS v.21.0 (SPSS, Chicago, IL, USA) [18].

Results

The prevalence of AAD and HA-CDI

During the surveillance period, a total of 211,536 patients were hospitalised and 91,800 received antibiotic treatment. A total of 175 patients developed diarrhea but only 122 (69.7%) received antibiotic treatment before that thus were included in this study as AAD patients. AAD developed in 1.3‰ of antibiotic-treated inpatients and had an incidence of 0.58 per 1000 patient admissions in this hospital. Among the 122 AAD patients, C. difficile was isolated from the specimens of 55 respondents, and 38 (31.1%) were positive for toxigenic C. difficile culture and diagnosed with HA-CDI, yielding an incidence of 0.41 HA-CDI per 1000 antibiotic-treated patients and 0.18 HA-CDI per 1000 patient admissions. Among the HA-CDI patients, the average age was 54.5 ± 17.4 years and 60.5% of the patients were older than 65 years. Twenty-eight (73.7%) were males. A majority of HA-CDI patients were from surgical wards. The median time between admission and the onset of diarrhea was 7 days, while that between admission and diagnosis of HA-CDI was 14 days. The severity of patients with HA-CDI ranged from mild to moderate, no severe HA-CDI case was recorded in this work. Thirty-five out of 38 (92.1%) HA-CDI patients had symptomatic recovery and no recurrence was noted. Three (7.9%) patients died during hospitalisation but not because of HA-CDI.

Clinical characteristics and risk factors for HA-CDI

The clinical characteristics and risk factors for HA-CDI in AAD patients were summarized in Table 1. No significant demographic differences (such as age and gender) were observed between the two groups. Compared with the non-C. difficile AAD cases, HA-CDI patients were significantly more likely to have surgery in the last 6 months and more prone to suffering from chronic renal disease, pulmonary infection and hypoalbuminemia on admission. Exposure to chemotherapy, cephalosporins, metronidazole and proton pump inhibitors (PPIs) use were more frequent in patients with HA-CDI. Multivariate analysis showed that chronic kidney diseases (OR, 4.275; 95% CI, 1.154–15.839; P = .030) and cephalosporins exposure (OR, 8.840; 95% CI, 2.807–27.836; P = .000) were independent risk factors for HA-CDI acquisition in AAD patients.
Table 1
Statistical analysis for risk factors of hospital-acquired C. difficile infection (HA-CDI) in AAD patients
Variable
HA-CDI (n = 38)
No.(%)
Non-C. difficile AAD (n = 84)
No.(%)
Univariate analysis
Multivariate analysis
P value
OR
P value
OR(95%CI)
Demographic data
 Male gender
28(73.7)
62(73.8)
0.988
1.006
  
 Elderly(≥65 years)
23(60.5)
37(44.0)
0.795
0.949
  
 Admission to ICU
16(42.1)
38(45.2)
0.747
0.931
  
Comorbidities
 Chronic kidney diseases
12(31.6)
12(14.3)
0.026*
2.211
0.030*
4.275 (1.154–15.839)
 Coronary heart disease
3(7.9)
5(6.0)
0.703
1.326
  
 Diabetes mellitus
8(21.1)
16(19.0)
0.796
1.105
  
 Hypertension
13(34.2)
30(35.7)
0.872
0.958
  
 Hepatic disease
12(31.6)
15(17.9)
0.091
1.768
  
 Malignancy
7(18.4)
15(17.9)
0.940
1.032
  
 Surgery in the past 6 months
16(42.1)
16(19.0)
0.007*
2.211
  
Diagnosis on admission
 Hypoalbuminaemia
25(65.8.)
16(19.0)
0.000*
3.454
  
 Urinary tract infection
5(13.2)
8(9.5)
0.541
1.382
  
 Pulmonary infection
22(57.9)
25(29.8)
0.003*
1.945
  
 Bloodstream infection
2(5.3)
7(8.3)
0.719
0.632
  
Medication prior to the onset of diarrhea during hospitalization
 Glucocorticoids
12(31.6)
21(25.0)
0.449
1.263
  
 Chemotherapy
7(18.4)
3(3.6)
0.010*
5.158
  
 PPIs
20(52.6)
64(76.2)
0.009*
0.691
  
 Penicillin
17(44.7)
41(48.8)
0.677
0.917
  
 Cephalosporins
23(60.5)
10(11.9)
0.000*
5.084
0.000*
8.840 (2.807–27.836)
 Carbapenems
16(42.1)
39(46.4)
0.677
0.907
  
 Aminoglycosides
5(13.2)
7(8.3)
0.513
1.579
  
 Fluoroquinolones
5(13.2)
15(17.9)
0.605
0.737
  
 Glycopeptides
15(39.5)
30(35.7)
0.690
1.105
  
 Metronidazole
13(34.2)
9(10.7)
0.020*
3.193
  
HA-CDI hospital-acquired C. difficile infection, AAD antibiotic-associated diarrhea, OR odds ratio, CI confidence interval, PPIs Proton pump inhibitors, * p < 0.05

Genotyping characteristics of C. difficile isolates

In total, 55 non-duplicated strains were isolated and assigned to 16 genotypes by MLST. ST2 (n = 9, 16.4%) was the most common genotype, followed by ST39 (n = 7, 12.7%) and ST37 (n = 6, 10.9%). ST35, ST54 and ST205 were commonly detected. A novel genotype ST352 was found. A majority (n = 40, 72.7%) of isolates were categorized as clade 1, followed by clade 4 (n = 13, 23.6%) and clade 3 (n = 2, 3.6%). The minimum spanning tree showed the relationship of ST types in Fig. 2.
All 55 isolates recovered were finally assigned to 15 PCR ribotypes (RTs) with 8 known RTs and 7 novel RTs. RT449 (n = 10, 18.2%), RT085 (n = 7, 12.7%), RT012 (n = 6, 10.9%), and RT017 (n = 5, 9.1%) were the main RTs. Of the seven novel ribotypes, CQR03 and CQR04 exhibited a high prevalence (n = 5, 9.1%). None of the isolates belonged to RT027 or RT078. Superimposition of the percentage diagram with the time of C. difficile detection by season revealed predominant proportions of RT449, RT085, and RT012 in this study (Fig. 3). Looking through the data derived from the two methods, ST2/RT449 (8, 14.5%) was the predominant genotype, followed by ST39/RT085 (7, 12.7%), ST54/RT012 (5, 9%) and ST37/RT017 (5, 9%). Exclusive correlations were found among three groups: ST26/RT39/2, ST39/RT085 and ST3/RT456.

Toxigenic characteristics and their correlation with the genotypes of isolates

In all 55 isolates, an exclusive correlation was found between toxin types and genotypes (seen in the Additional file 1). All the ST39/RT085 isolates were A-B-, while all the RT012 isolates were toxin-producing (A + B+). Of the 55 isolates, 38 (69.1%) were toxin-producing, including 34 (89.5%) with toxigenic type A + B + CDT-, 3 (7.9%) with toxigenic type A-B + CDT- and 1 (2.6%) with toxigenic type A + B + CDT+.
Of the 38 toxigenic isolates, ST2/RT449 (8, 21.1%) and ST54/RT012 (5, 13.2%) were the predominant toxigenic genotypes. In MLST, ST2 (n = 9, 23.7%) was most frequently detected, followed by ST37 (n = 6, 15.8%), ST54 (n = 5, 13.2%) and ST35 (n = 5, 13.2%). PCR ribotyping found 11 ribotypes, including 6 known ribotypes and 5 novel ribotypes. RT449 (n = 9, 23.7%), RT012 (n = 6, 15.8%) and RT017 (n = 5, 13.2%) were the most frequent ribotypes. The CDT+ strain was assigned to the genotype of ST5/RT498 in clade 3 (Table 2).
Table 2
Typing results and toxin genotypes of 55 C. difficile isolates
Clades
MLST
CGE
tcdA
tcdB
tcdC
cdtA
cdtB
No.of isolates
1
ST8
CQR02
+
+
+
1
RT010
+
+
+
1
ST3
RT456
+
+
+
4
ST42
CQR01
+
+
+
2
ST54
RT012
+
+
+
5
ST2
RT449
+
+
+
8
CQR07
+
+
+
1
ST35
CQR04
+
+
+
5
ST133
RT449
+
+
+
1
ST14
CQR05
+
+
+
2
ST205
CQR03
5
ST26
RT39/2
2
ST15
RT449
1
RT010
1
ST352
CQR06
1
3
ST5
RT498
+
+
+
+
+
1
ST201
RT498
+
+
+
1
4
ST37
RT017
+
+
3
RT017
+
+
+
2
RT012
+
+
+
1
ST39
RT085
7
MLST multilocus sequence typing, CGE capillary gel electrophoresis, CQR Chongqing Ribotype New-ribo-type found in Chongqing, ST sequence type, RT ribotype

Antimicrobial susceptibility between genotypes and toxin types of isolates

The minimum inhibitory concentrations (MICs) of seven antimicrobial agents for 55 non-duplicated strains were summarized in Table 3 (raw data shown in Additional file 2). Eight (14.5%) isolates were found to be multidrug resistant (MDR). None of the isolates were resistant to vancomycin, metronidazole or tigecycline, while high resistance to erythromycin and clindamycin was observed with rates of 87.3 and 61.8%, respectively. Twelve point seven percent of the isolates were resistant to rifampin and 14.5% were resistant to levofloxacin.
Table 3
The drug susceptibility results and MIC ranges of all the 55 C. difficile isolates
Antimicrobial agent
Resistance breakpoints and ECOFFs (ug/ml)
All strains(n = 55)
A + B+ strains(n = 35)
A-B- strains(n = 17)
A-B + strains(n = 3)
MIC (ug/ml)
% of isolates
MIC (ug/ml)
% of isolates
MIC (ug/ml)
% of isolates
MIC (ug/ml)
% of isolates
MIC50
MIC90
Range
R
MIC50
MIC90
Range
R
MIC50
MIC90
Range
R
MIC50
MIC90
Range
R
Vancomycina
> 2
0.5
0.5
0.125–1
0
0.5
0.5
0.5–1
0
0.5
0.5
0.25–0.5
0
0.5
0.5
0.125–0.5
0
Metronidazoleb
> = 32
0.25
0.25
0.125–1
0
0.25
0.25
0.125–1
0
0.125
0.25
0.125–0.25
0
0.125
0.25
0.125–0.25
0
Rifampinc
> = 8
0.0625
256
0.0625–512
12.7
0.0625
0.0625
0.0625–512
2.9
256
512
0.0625–512
66.7
0.0625
512
0.0625–512
23.5
Levofloxacinc
> = 8
2
128
0.5–128
14.5
2
2
0.5–128
2.9
8
128
2–128
66.7
2
128
0.5–128
29.4
Erythromycinc
> = 8
256
512
2–512
87.3
256
512
2–512
82.9
512
512
512–512
100
64
512
2–512
94.1
Clindamycinb
> = 8
16
256
0.5–256
61.8
8
256
0.5–256
57.1
256
256
128–256
100
128
256
0.5–256
64.7
Tigecyclined
> 0.25
0.0625
0.0625
0.0625–0.0625
0
0.0625
0.0625
0.0625–0.0625
0
0.0625
0.0625
0.0625–0.0625
0
0.0625
0.0625
0.0625–0.0625
0
MIC minimum inhibitory concentration, aFor vancomycin, MIC breakpoint is recommended by the EUCAST (2019); bThe applied MIC breakpoints are those recommended for anaerobes by the CLSI (2019), M100 29th ed.; cBreakpoints were suggested by Chen Lidan et al. [14]; dFor tigecycline, MICs were compared to the EUCAST (2019) epidemiological cut-off value (0.25 μg/ml)
In comparison with A + B+ isolates and A-B+ isolates, higher resistance rates of A-B- isolates to rifampin, levofloxacin, erythromycin and clindamycin were revealed. Relatively low resistance rates of A + B+ isolates to rifampin (2.9%) and levofloxacin (2.9%) were observed.
Varied antimicrobial phenotypes demonstrated in different RTs. The resistance rates of RT012 to erythromycin and clindamycin (100 and 83.3%, respectively) were higher than those of RT449. All of the RT017 isolates were co-resistant to erythromycin and clindamycin. Sixty percent of the RT017 isolates were co-resistant to erythromycin, clindamycin and levofloxacin.

Discussion

Enhanced molecular diagnostic and antibiotic treatment strategies promote the continuous evolution of the knowledge of CDI epidemiology. Geographical heterogeneity and transcontinental dissemination have aroused more concerns about regional CDI surveillance. In China, although the state of dilemma introduced by CDI has been documented before [6, 7], data are lacking in the central and western regions. To fill gaps in the epidemiological territory of CDI in China, the results in this study presented basic knowledge of the prevalence and mortality of HA-CDI, and helped to improve the recognition of patients at high risk for HA-CDI acquisition and to guide antibiotic stewardship initiatives of HA-CDI in this tertiary teaching hospital in Southwest China.
A survey focusing on antibiotic consumption in specialized public hospitals in 30 provinces in mainland China showed a decrease in the percentage of antibiotic use in inpatients in Chongqing, from 78.84 to 54.93% [19]. The present study found the ratio of antibiotic use in inpatients was 43.4%. Despite being relatively low and comparable to the previous data reported by Zhou et al. [20], this percentage, to a large extent, surpassed the recommendation of 30% by World Health Organization (WHO). Previous studies have reported varied frequencies of AAD from 0.57 to 14.9% in different populations [21, 22]. The correlation between antibiotic use and the prevalence of AAD in Chongqing was previously unknown. The present study witnessed a moderate prevalence of AAD in 0.13% (a much lower rate) of antibiotic-treated inpatients. One possible explanation is that a majority of the patients in this cohort were from surgical wards and received antibiotics simply for perioperative prophylaxis.
In this investigation, HA-CDI accounted for 31.1% of AAD, which was consistent with previous reports [20, 23]. The high prevalence of CDI among AAD is always a major concern worldwide [24]. To prevent CDI from AAD, external interventions and internal defense mechanisms should work cooperatively. Our previous study has shown that interleukin-27 (IL-27)/IL-27 receptor signaling provides protection against C. difficile-induced colitis in AAD patients [25]. A recent systematic review and meta-analysis reported an incidence of 0.32 cases of CDI per 1000 patient admissions in Asia [5] and a similar result was verified in a 7-year retrospective study in a large university hospital in Eastern China [26]. This study reported a relatively low incidence of 0.18 per 1000 patient admissions, probably due to inadequate awareness of CDI among clinicians, low sensitivity of stool anaerobic culture for C. difficile detection, and low testing frequency [27]. Another possible reason is the missing information of a proportion of inpatients who might develop CDI after discharge.
As is well known, the use of antibiotics may cause CDI [28], but the case-control design focusing on the difference between antibiotic group and non-antibiotic group may have the trends to overestimate the impact of antibiotic exposure on the acquisition of HA-CDI. To explore the specific reasons leading to CDI, this study set up a comparison between the HA-CDI group and the non-C. difficile AAD group in AAD patients to identify which antibiotics or predictors were associated with a high risk for HA-CDI. Although many risk factors were revealed in univariate analysis, only two independent risk factors, cephalosporin use prior to the onset of diarrhea and chronic kidney diseases were identified for patients with HA-CDI when compared to non-C.difficile AAD, which is consistent with previous reports [2931] and not difficult to explain. In addition to the cephalosporins known to all [32], chronic renal disease may cause poor excretion of antibiotic agents, high concentration in blood and finally, the imbalance of bacterial flora in the gut.
Age over 65 years was not associated with an increased risk for HA-CDI. Suffering from HA-CDI in younger age was observed in this study. Similar results have been reported in several previous studies in mainland China and France [23, 29, 33]. Therefore, it is necessary to consider the age threshold in the recognition of inpatients at high risk for HA-CDI in different settings. Massive consumption of antibiotics by university students has been reported nationwide in China [34]. Accumulative effects of antibiotic consumption may contribute partly to the acquisition of CDI in younger age, which deserves more attention. Moreover, ageing is accompanied by changes in the gut microbiome [35], and it is speculated that it is not the age threshold, but the gut microbial structure that truly participates in the priming of HA-CDI.
To reveal the epidemiology of CDI in mainland China, in this non-outbreak situation, specific genotypes of toxigenic C. difficile strains were observed. ST2 was the most predominant genotype, while recent studies reported that ST54, ST3 and ST37 were the most prevalent genotypes in mainland China [6, 33, 3638]. Noteworthily, in addition to ST54 and ST3, ST35 also emerged both in this work and another inspection in Yunnan [39], a province bordering Chongqing, witnessing the spread of this toxin genotype over provinces in China. Toxigenic RT449 with a high prevalence in this work was not reported previously, and its predominant proportion may indicate an upcoming outbreak. One C. difficile isolate was positive for binary toxin and belonged to ST5/RT498 in clade 3. Although the CDT+ strain appeared less frequently in Asia, this was not the first report of this toxin genotype in China. ST5 accounted for 83.7% of binary toxin gene-positive strains in a survey conducted by Chen et al. [40] in 2018. Data on C. difficile strains in clade 3 with binary toxins are not well documented in mainland China. WGS of three clade 3 C. difficile strains carrying binary toxin genes in a university hospital found that clade 3 has unusual clade-specific PaLoc characteristic of Tn6218 insertion, which may be the main feature to distinguish clade 3 from other C. difficile [41]. The identification of seven novel RTs indicated the diversity of C. difficile strains in this hospital.
Despite the fact that clinical C. difficile strains with hetero-resistance or high-level resistance to metronidazole were reported in China [20, 33], the present study failed to identify strains resistant to metronidazole, vancomycin or tigecycline, indicating that these three antibiotic agents still seem to be appropriate for empirical treatment of HA-CDI. In addition, toxin types were associated with antibiotic resistance phenotypes. A-B- strains were more resistant than A + B+ strains, while the latest data from two hospitals in Shangdong illustrated that non-toxigenic strains were more sensitive [42].
Our study has some limitations. First, these results were derived from a single-center. Widely recommended detection schemes, two-step and three-step methods for the diagnosis of CDI, were implemented in many laboratories in China, but anaerobic culture was not the choice for the final confirmation. This may be one of the causes for the lack of epidemiological data in this country. To obtain surveillance data for CDI, a network of reference or central laboratories such as that found in Europe is needed [43]. Second, this study failed to track clinical treatments of HA-CDI, but most patients recovered from diarrhea after the discontinuation of antibiotic therapy. Third, highly sensitive tests, such as the nucleic acid amplification test (NAAT) or the glutamate dehydrogenase (GDH) screening test, were not performed in this study.

Conclusions

In summary, this study presented a comprehensive survey of HA-CDI and AAD in Chongqing, Southwest China. The burdens of HA-CDI and AAD were moderate. Inpatients undergoing cephalosporins therapy and suffering from chronic kidney diseases, who are thus at high risk for HA-CDI, deserve more attention. The regional diversity of C. difficile strains in genotype necessitates good awareness of HA-CDI by holding an evolving insight into the surveillance of this adverse event. In addition to the notorious genotypes, sufficient attention should be paid to the relatively rare toxigenic strains found in this report, such as ST5/RT498, during molecular epidemiology monitoring.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12879-020-05014-6.

Acknowledgements

Not applicable.
The study protocol was approved by the ethics committee of The First Affiliated Hospital of Chongqing Medical University. Written consents informed were obtained from all participants.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Cai J, Zhao C, Du Y, Zhang Y, Zhao M, Zhao Q, et al. Comparative efficacy and tolerabilityof probiotics for antibiotic-associated diarrhea: systematic review with network meta-analysis. United European Gastroenterol J. 2018;6(2):169–80.CrossRef Cai J, Zhao C, Du Y, Zhang Y, Zhao M, Zhao Q, et al. Comparative efficacy and tolerabilityof probiotics for antibiotic-associated diarrhea: systematic review with network meta-analysis. United European Gastroenterol J. 2018;6(2):169–80.CrossRef
2.
Zurück zum Zitat Schäffler H, Breitrück A. Clostridium difficile-from colonization to infection. Front Microbiol. 2018;9:646.CrossRef Schäffler H, Breitrück A. Clostridium difficile-from colonization to infection. Front Microbiol. 2018;9:646.CrossRef
3.
Zurück zum Zitat Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825–34.CrossRef Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825–34.CrossRef
4.
Zurück zum Zitat Wiegand PN, Nathwani D, Wilcox MH, Stephens J, Shelbaya A, Haider S. Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare- facility-acquired infection. J Hosp Infect. 2012;81(1):1–14.CrossRef Wiegand PN, Nathwani D, Wilcox MH, Stephens J, Shelbaya A, Haider S. Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare- facility-acquired infection. J Hosp Infect. 2012;81(1):1–14.CrossRef
5.
Zurück zum Zitat Borren NZ, Ghadermarzi S, Hutfless S, Ananthakrishnan AN. The emergence of Clostridium difficile infection in Asia: a systematic review and meta-analysis of incidence and impact. PLoS One. 2017;12(5):e0176797.CrossRef Borren NZ, Ghadermarzi S, Hutfless S, Ananthakrishnan AN. The emergence of Clostridium difficile infection in Asia: a systematic review and meta-analysis of incidence and impact. PLoS One. 2017;12(5):e0176797.CrossRef
6.
Zurück zum Zitat Tang C, Cui L, Xu Y, Xie L, Sun P, Liu C, et al. The incidence and drug resistance of Clostridium difficile infection in Mainland China: a systematic review and meta-analysis. Sci Rep. 2016:6, 37865. Tang C, Cui L, Xu Y, Xie L, Sun P, Liu C, et al. The incidence and drug resistance of Clostridium difficile infection in Mainland China: a systematic review and meta-analysis. Sci Rep. 2016:6, 37865.
7.
Zurück zum Zitat Liu XS, Li WG, Zhang WZ, Wu Y, Lu JX. Molecular characterization of Clostridium difficile isolates in China from 2010 to 2015. Front Microbiol. 2018;9:845.CrossRef Liu XS, Li WG, Zhang WZ, Wu Y, Lu JX. Molecular characterization of Clostridium difficile isolates in China from 2010 to 2015. Front Microbiol. 2018;9:845.CrossRef
8.
Zurück zum Zitat Qin J, Dai Y, Ma X, Wang Y, Gao Q, Lu H, et al. Nosocomial transmission of Clostridium difficile genotype ST81 in a general teaching Hospital in China traced by whole genome sequencing. Sci Rep. 2017;7(1):9627.CrossRef Qin J, Dai Y, Ma X, Wang Y, Gao Q, Lu H, et al. Nosocomial transmission of Clostridium difficile genotype ST81 in a general teaching Hospital in China traced by whole genome sequencing. Sci Rep. 2017;7(1):9627.CrossRef
9.
Zurück zum Zitat Jia H, Du P, Yang H, Zhang Y, Wang J, Zhang W, et al. Nosocomial transmission of Clostridium difficile ribotype 027 in a Chinese hospital, 2012-2014, traced by whole genome sequencing. BMC Genomics. 2016;17:405.CrossRef Jia H, Du P, Yang H, Zhang Y, Wang J, Zhang W, et al. Nosocomial transmission of Clostridium difficile ribotype 027 in a Chinese hospital, 2012-2014, traced by whole genome sequencing. BMC Genomics. 2016;17:405.CrossRef
10.
Zurück zum Zitat Leffler DA, Lamont JT. Clostridium diffcile infection. N Engl J Med. 2015;372:1539–48.CrossRef Leffler DA, Lamont JT. Clostridium diffcile infection. N Engl J Med. 2015;372:1539–48.CrossRef
11.
Zurück zum Zitat Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW, Fung R, et al. Multilocus sequence typing of Clostridium difficile. J Clin Microbiol. 2010;48(3):770–8.CrossRef Griffiths D, Fawley W, Kachrimanidou M, Bowden R, Crook DW, Fung R, et al. Multilocus sequence typing of Clostridium difficile. J Clin Microbiol. 2010;48(3):770–8.CrossRef
12.
Zurück zum Zitat Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, FiedlerA WG, Allerberger F, Kuijper EJ. Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol. 2008;57(Pt 11):1377–82.CrossRef Indra A, Huhulescu S, Schneeweis M, Hasenberger P, Kernbichler S, FiedlerA WG, Allerberger F, Kuijper EJ. Characterization of Clostridium difficile isolates using capillary gel electrophoresis-based PCR ribotyping. J Med Microbiol. 2008;57(Pt 11):1377–82.CrossRef
13.
Zurück zum Zitat Clinical and Laboratory Standards Institute. Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard M11-A8. Wayne: CLSI; 2016. Clinical and Laboratory Standards Institute. Methods for antimicrobial susceptibility testing of anaerobic bacteria. Approved standard M11-A8. Wayne: CLSI; 2016.
14.
Zurück zum Zitat CLSI. Performance standards for antimicrobial susceptibility testing; M100-29th edition. Wayne: Clinical and Laboratory Standards Institute; 2019. CLSI. Performance standards for antimicrobial susceptibility testing; M100-29th edition. Wayne: Clinical and Laboratory Standards Institute; 2019.
15.
Zurück zum Zitat Lidan C, Linhai L, Yang L, Zhaohui S, Xiaoyan H, Yuling S. Molecular characterization and antimicrobial susceptibility of tcdA-negative Clostridium difficile isolates from Guangzhou, China. Diagn Microbiol Infect Dis. 2016;84(4):361–5.CrossRef Lidan C, Linhai L, Yang L, Zhaohui S, Xiaoyan H, Yuling S. Molecular characterization and antimicrobial susceptibility of tcdA-negative Clostridium difficile isolates from Guangzhou, China. Diagn Microbiol Infect Dis. 2016;84(4):361–5.CrossRef
16.
Zurück zum Zitat The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0; 2010. http://www.eucast.org. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0; 2010. http://​www.​eucast.​org.
17.
Zurück zum Zitat Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotype protocol for Clostridium difficile. PLoS One. 2015;10(2):e0118150.CrossRef Fawley WN, Knetsch CW, MacCannell DR, Harmanus C, Du T, Mulvey MR, et al. Development and validation of an internationally-standardized, high-resolution capillary gel-based electrophoresis PCR-ribotype protocol for Clostridium difficile. PLoS One. 2015;10(2):e0118150.CrossRef
18.
Zurück zum Zitat Sun JD, Huang SF, Yang SS, Pu SL, Zhang CM, Zhang LP. Impact of carbapenem heteroresistance among clinical isolates of invasive Escherichia coli in Chongqing, southwestern China. Clin Microbiol Infect. 2015;21(5):469. e1–10.CrossRef Sun JD, Huang SF, Yang SS, Pu SL, Zhang CM, Zhang LP. Impact of carbapenem heteroresistance among clinical isolates of invasive Escherichia coli in Chongqing, southwestern China. Clin Microbiol Infect. 2015;21(5):469. e1–10.CrossRef
19.
Zurück zum Zitat Zou XX, Fang Z, Min R, Bai X, Zhang Y, Xu D, et al. Is nationwide special campaign on antibiotic stewardship program effective on ameliorating irrational antibiotic use in China? Studyon the antibiotic use of specialized hospitals in China in 2011-2012. J Huazhong Univ Sci Technolog Med Sci. 2014;34(3):456–63.CrossRef Zou XX, Fang Z, Min R, Bai X, Zhang Y, Xu D, et al. Is nationwide special campaign on antibiotic stewardship program effective on ameliorating irrational antibiotic use in China? Studyon the antibiotic use of specialized hospitals in China in 2011-2012. J Huazhong Univ Sci Technolog Med Sci. 2014;34(3):456–63.CrossRef
20.
Zurück zum Zitat Zhou FF, Wu S, Klena JD, Huang HH. Clinical characteristics of Clostridium difficile infection in hospitalized patients with antibiotic-associated diarrhea in a university hospital in China. Eur J Clin Microbiol Infect Dis. 2014;33(10):1773–9.CrossRef Zhou FF, Wu S, Klena JD, Huang HH. Clinical characteristics of Clostridium difficile infection in hospitalized patients with antibiotic-associated diarrhea in a university hospital in China. Eur J Clin Microbiol Infect Dis. 2014;33(10):1773–9.CrossRef
21.
Zurück zum Zitat Gillespie D, Hood K, Bayer A, Carter B, Duncan D, Espinasse A, et al. Antibiotic prescribing and associated diarrhoea: a prospective cohort study of care home residents. Age Ageing. 2015;44(5):853–60.CrossRef Gillespie D, Hood K, Bayer A, Carter B, Duncan D, Espinasse A, et al. Antibiotic prescribing and associated diarrhoea: a prospective cohort study of care home residents. Age Ageing. 2015;44(5):853–60.CrossRef
22.
Zurück zum Zitat Wong S, Santullo P, Hirani SP, Kumar N, Chowdhury JR, García-Forcada A, et al. Use of antibiotics and the prevalence of antibiotic-associated diarrhea inpatients with spinal cord injuries: an international, multicentre study. J Hosp Infect. 2017;97(2):146–52.CrossRef Wong S, Santullo P, Hirani SP, Kumar N, Chowdhury JR, García-Forcada A, et al. Use of antibiotics and the prevalence of antibiotic-associated diarrhea inpatients with spinal cord injuries: an international, multicentre study. J Hosp Infect. 2017;97(2):146–52.CrossRef
23.
Zurück zum Zitat Hawkey PM, Marriott C, Liu WE, Jian ZJ, Gao Q, Ling TK, et al. Molecular epidemiology ofClostridium difficile infection in a major Chinese hospital: an underecognized problem in Asia? J Clin Microbiol. 2013;51(10):3308–13.CrossRef Hawkey PM, Marriott C, Liu WE, Jian ZJ, Gao Q, Ling TK, et al. Molecular epidemiology ofClostridium difficile infection in a major Chinese hospital: an underecognized problem in Asia? J Clin Microbiol. 2013;51(10):3308–13.CrossRef
24.
Zurück zum Zitat Nasiri MJ, Goudarzi M, Hajikhani B, Ghazi M, Goudarzi H, Pouriran R. Clostridioides (Clostridium) difficile infection in hospitalized patients with antibiotic associated diarrhea: a systematic review and meta-analysis. Anaerobe. 2018;50:32–7.CrossRef Nasiri MJ, Goudarzi M, Hajikhani B, Ghazi M, Goudarzi H, Pouriran R. Clostridioides (Clostridium) difficile infection in hospitalized patients with antibiotic associated diarrhea: a systematic review and meta-analysis. Anaerobe. 2018;50:32–7.CrossRef
25.
Zurück zum Zitat Wang LF, Cao J, Li CY, Zhang LP. IL-27/IL-27 Receptor Signaling Provides Protection in Clostridium difficile-Induced Colitis. J Infect Dis. 217(2):198–207. Wang LF, Cao J, Li CY, Zhang LP. IL-27/IL-27 Receptor Signaling Provides Protection in Clostridium difficile-Induced Colitis. J Infect Dis. 217(2):198–207.
26.
Zurück zum Zitat Xu Q, Chen Y, Gu S, Lv T, Zheng B, Shen P, et al. Hospital-acquired Clostridium difficile infection in mainland China: a seven-year (2009-2016) retrospective study in a large university hospital. Sci Rep. 2017;7(1):9645.CrossRef Xu Q, Chen Y, Gu S, Lv T, Zheng B, Shen P, et al. Hospital-acquired Clostridium difficile infection in mainland China: a seven-year (2009-2016) retrospective study in a large university hospital. Sci Rep. 2017;7(1):9645.CrossRef
27.
Zurück zum Zitat Kamboj M, Brite J, Aslam A, Kennington J, Babady NE, Calfee D, et al. Artificial differences in Clostridium difficile infection rates associated with disparity in testing. Emerg Infect Dis. 2018;24(3):584–7.CrossRef Kamboj M, Brite J, Aslam A, Kennington J, Babady NE, Calfee D, et al. Artificial differences in Clostridium difficile infection rates associated with disparity in testing. Emerg Infect Dis. 2018;24(3):584–7.CrossRef
29.
Zurück zum Zitat Khanafer N, Vanhems P, Barbut F, Luxemburger C, CDI01 study group, et al. Factors associated with Clostridium difficile infection: A nested case-control study in a three year prospective cohort. Anaerobe. 2017;44:117–23.CrossRef Khanafer N, Vanhems P, Barbut F, Luxemburger C, CDI01 study group, et al. Factors associated with Clostridium difficile infection: A nested case-control study in a three year prospective cohort. Anaerobe. 2017;44:117–23.CrossRef
30.
Zurück zum Zitat Huang H, Wu S, Chen R, Xu S, Fang H, Weintraub A, et al. Risk factors of Clostridium difficile infections among patients in a university hospital in Shanghai, China. Anaerobe. 2014;30:65–9.CrossRef Huang H, Wu S, Chen R, Xu S, Fang H, Weintraub A, et al. Risk factors of Clostridium difficile infections among patients in a university hospital in Shanghai, China. Anaerobe. 2014;30:65–9.CrossRef
31.
Zurück zum Zitat Lawes T, Lopez-Lozano J-M, Nebot CA, Macartney G, Subbarao-Sharma R, Wares KD, Sinclair C, Gould IM. Effect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium difficile infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis. 2017;17(2):194–206.CrossRef Lawes T, Lopez-Lozano J-M, Nebot CA, Macartney G, Subbarao-Sharma R, Wares KD, Sinclair C, Gould IM. Effect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium difficile infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis. 2017;17(2):194–206.CrossRef
32.
Zurück zum Zitat Slimings C, Riley TV. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother. 2014;69:881–91.CrossRef Slimings C, Riley TV. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother. 2014;69:881–91.CrossRef
33.
Zurück zum Zitat Jin D, Luo Y, Huang C, Cai J, Ye J, Zheng Y, et al. Molecular epidemiology of Clostridium difficile infection in hospitalized patients in eastern China. J Clin Microbiol. 2017;55(3):801–10.CrossRef Jin D, Luo Y, Huang C, Cai J, Ye J, Zheng Y, et al. Molecular epidemiology of Clostridium difficile infection in hospitalized patients in eastern China. J Clin Microbiol. 2017;55(3):801–10.CrossRef
34.
Zurück zum Zitat Wang XM, Zhou XD, Hesketh T. Massive misuse of antibiotics by university students in China: a cross-sectional survey. Lancet. 2016;388(Suppl1):S94.CrossRef Wang XM, Zhou XD, Hesketh T. Massive misuse of antibiotics by university students in China: a cross-sectional survey. Lancet. 2016;388(Suppl1):S94.CrossRef
35.
Zurück zum Zitat Fischer N, Relman DA. Clostridium difficile, aging, and the gut: can microbiome rejuvenation keep us young and healthy? J Infect Dis. 2018;217(2):174–6.CrossRef Fischer N, Relman DA. Clostridium difficile, aging, and the gut: can microbiome rejuvenation keep us young and healthy? J Infect Dis. 2018;217(2):174–6.CrossRef
36.
Zurück zum Zitat Li H, Li WG, Zhang WZ, Yu SB, Liu ZJ, Zhang X, Wu Y, Lu JX. Antibiotic resistance of clinicalisolates of Clostridioides difficile in China and its association with geographical regions and patient age. Anaerobe. 2019;6:102094.CrossRef Li H, Li WG, Zhang WZ, Yu SB, Liu ZJ, Zhang X, Wu Y, Lu JX. Antibiotic resistance of clinicalisolates of Clostridioides difficile in China and its association with geographical regions and patient age. Anaerobe. 2019;6:102094.CrossRef
37.
Zurück zum Zitat Cheng JW, Xiao M, Kudinha T, Kong F, Xu ZP, Sun LY, Zhang L, Fan X, Xie XL, Xu YC. Molecular Epidemiology and Antimicrobial Susceptibility of Clostridium difficile Isolates from a University Teaching Hospital in China. Front Microbiol. 2016;7:1621.PubMedPubMedCentral Cheng JW, Xiao M, Kudinha T, Kong F, Xu ZP, Sun LY, Zhang L, Fan X, Xie XL, Xu YC. Molecular Epidemiology and Antimicrobial Susceptibility of Clostridium difficile Isolates from a University Teaching Hospital in China. Front Microbiol. 2016;7:1621.PubMedPubMedCentral
38.
Zurück zum Zitat Wang R, Suo L, Chen HX, Song LJ, Shen YY, Luo YP. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from the Chinese People’s liberation Army general Hospital in China. Int J Infect Dis. 2018;67:86–91.CrossRef Wang R, Suo L, Chen HX, Song LJ, Shen YY, Luo YP. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from the Chinese People’s liberation Army general Hospital in China. Int J Infect Dis. 2018;67:86–91.CrossRef
39.
Zurück zum Zitat Liao F, Li W, Gu W, Zhang W, Liu X, Fu X, Xu W, Wu Y, Lu J. A retrospective study of community-acquired Clostridium difficile infection in Southwest China. Sci Rep. 2018;8(1):3992.CrossRef Liao F, Li W, Gu W, Zhang W, Liu X, Fu X, Xu W, Wu Y, Lu J. A retrospective study of community-acquired Clostridium difficile infection in Southwest China. Sci Rep. 2018;8(1):3992.CrossRef
40.
Zurück zum Zitat Chen YB, Gu SL, Shen P, Lv T, Fang YH, Tang LL, Li LJ. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from hospitals during a 4-year period in China. J Med Microbiol. 2018;67(1):52–9.CrossRef Chen YB, Gu SL, Shen P, Lv T, Fang YH, Tang LL, Li LJ. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from hospitals during a 4-year period in China. J Med Microbiol. 2018;67(1):52–9.CrossRef
41.
Zurück zum Zitat Chen R, Feng Y, Wang X, Yang J, Zhang X, Lü X, et al. Whole genome sequences of three clade 3 Clostridium difficile strains carrying binary toxingenes in China. Sci Rep. 2017;7:43555.CrossRef Chen R, Feng Y, Wang X, Yang J, Zhang X, Lü X, et al. Whole genome sequences of three clade 3 Clostridium difficile strains carrying binary toxingenes in China. Sci Rep. 2017;7:43555.CrossRef
42.
Zurück zum Zitat Luo Y, Zhang W, Cheng JW, Xiao M, Sun GR, Guo CJ, et al. Molecular epidemiology of Clostridium difficile in two tertiary care hospitals in Shandong Province, China. Infect Drug Resist. 2018;11:489–500.CrossRef Luo Y, Zhang W, Cheng JW, Xiao M, Sun GR, Guo CJ, et al. Molecular epidemiology of Clostridium difficile in two tertiary care hospitals in Shandong Province, China. Infect Drug Resist. 2018;11:489–500.CrossRef
Metadaten
Titel
Characteristics of Clostridium difficile isolates and the burden of hospital-acquired Clostridium difficile infection in a tertiary teaching hospital in Chongqing, Southwest China
verfasst von
Wei Dai
Tianxiang Yang
Li Yan
Siqiang Niu
Chuanming Zhang
Jide Sun
Zhu Wang
Yun Xia
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2020
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-020-05014-6

Weitere Artikel der Ausgabe 1/2020

BMC Infectious Diseases 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.