Skip to main content
Erschienen in: Journal of Clinical Immunology 3/2021

07.01.2021 | Original Article

Characterization of Infants with Idiopathic Transient and Persistent T Cell Lymphopenia Identified by Newborn Screening—a Single-Center Experience in New York State

verfasst von: Artemio M. Jongco III, Robert Sporter, Elise Hon, Omer Elshaigi, Shouling Zhang, Foysal Daian, Emily Bae, Amanda Innamorato, Catherine Capo, Brianne Navetta-Modrov, David W. Rosenthal, Vincent R. Bonagura

Erschienen in: Journal of Clinical Immunology | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Newborn screening (NBS) quantifies T cell receptor excision circles (TREC) and identifies infants with T cell lymphopenia (TCL). This study elucidates the demographics, laboratory characteristics, genetics, and clinical outcomes following live viral vaccine administration of term infants with transient or persistent idiopathic TCL.

Methods

A single-center retrospective analysis was performed from September 2010 through June 2018. Laboratory variables were compared with Mann-Whitney tests. Correlations between initial TREC levels and T cell counts were determined by Spearman tests.

Results

Twenty-two transient and 21 persistent TCL infants were identified. Males comprised 68% of the transient and 52% of the persistent TCL cohorts. Whites comprised 23% of the transient and 29% of the persistent cohorts. Median initial TREC levels did not differ (66 vs. 60 TRECs/μL of blood, P = 0.58). The transient cohort had higher median initial CD3+ (2135 vs. 1169 cells/μL, P < 0.001), CD4+ (1460 vs. 866 cells/μL, P < 0.001), and CD8+ (538 vs. 277 cells/μL, P < 0.001) counts. The median age of resolution for the transient cohort was 38 days. Genetic testing revealed 2 genes of interest which warrant further study and several variants of uncertain significance in immunology-related genes in the persistent cohort. 19 transient and 14 persistent subjects received the initial rotavirus and/or MMRV immunization. No adverse reactions to live viral vaccines were reported in either cohort.

Conclusion

Transient and persistent TCL infants differ by demographic, laboratory, and clinical characteristics. Select transient and persistent TCL patients may safely receive live attenuated viral vaccines, but larger confirmatory studies are needed.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32(3):338–43.CrossRefPubMed Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32(3):338–43.CrossRefPubMed
2.
Zurück zum Zitat Routes JM, Grossman WJ, Verbsky J, Laessig RH, Hoffman GL, Brokopp CD, et al. Statewide newborn screening for severe T-cell lymphopenia. JAMA. 2009;302(22):2465–70.PubMedCrossRef Routes JM, Grossman WJ, Verbsky J, Laessig RH, Hoffman GL, Brokopp CD, et al. Statewide newborn screening for severe T-cell lymphopenia. JAMA. 2009;302(22):2465–70.PubMedCrossRef
3.
Zurück zum Zitat Comeau AM, Hale JE, Pai SY, Bonilla FA, Notarangelo LD, Pasternack MS, et al. Guidelines for implementation of population-based newborn screening for severe combined immunodeficiency. J Inherit Metab Dis. 2010;33(Suppl 2):S273–81.PubMedCrossRef Comeau AM, Hale JE, Pai SY, Bonilla FA, Notarangelo LD, Pasternack MS, et al. Guidelines for implementation of population-based newborn screening for severe combined immunodeficiency. J Inherit Metab Dis. 2010;33(Suppl 2):S273–81.PubMedCrossRef
4.
Zurück zum Zitat Gerstel-Thompson JL, Wilkey JF, Baptiste JC, Navas JS, Pai SY, Pass KA, et al. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening. Clin Chem. 2010;56(9):1466–74.PubMedCrossRef Gerstel-Thompson JL, Wilkey JF, Baptiste JC, Navas JS, Pai SY, Pass KA, et al. High-throughput multiplexed T-cell-receptor excision circle quantitative PCR assay with internal controls for detection of severe combined immunodeficiency in population-based newborn screening. Clin Chem. 2010;56(9):1466–74.PubMedCrossRef
5.
Zurück zum Zitat Accetta D, Syverson G, Bonacci B, Reddy S, Bengtson C, Surfus J, et al. Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. J Allergy Clin Immunol. 2011;127(2):535–8.e1–2.PubMedCrossRef Accetta D, Syverson G, Bonacci B, Reddy S, Bengtson C, Surfus J, et al. Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. J Allergy Clin Immunol. 2011;127(2):535–8.e1–2.PubMedCrossRef
6.
Zurück zum Zitat Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.PubMedPubMedCentralCrossRef Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Vogel BH, Bonagura V, Weinberg GA, Ballow M, Isabelle J, DiAntonio L, et al. Newborn screening for SCID in New York State: experience from the first two years. J Clin Immunol. 2014;34(3):289–303.PubMedPubMedCentralCrossRef Vogel BH, Bonagura V, Weinberg GA, Ballow M, Isabelle J, DiAntonio L, et al. Newborn screening for SCID in New York State: experience from the first two years. J Clin Immunol. 2014;34(3):289–303.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Buelow BJ, Verbsky JW, Routes JM. Newborn screening for SCID: lessons learned. Expert Rev Hematol. 2016;9(6):579–84.PubMedCrossRef Buelow BJ, Verbsky JW, Routes JM. Newborn screening for SCID: lessons learned. Expert Rev Hematol. 2016;9(6):579–84.PubMedCrossRef
9.
Zurück zum Zitat Amatuni GS, Currier RJ, Church JA, Bishop T, Grimbacher E, Nguyen AA, et al. Newborn Screening for Severe Combined Immunodeficiency and T-cell Lymphopenia in California, 2010–2017. Pediatrics. 2019;143(2). Amatuni GS, Currier RJ, Church JA, Bishop T, Grimbacher E, Nguyen AA, et al. Newborn Screening for Severe Combined Immunodeficiency and T-cell Lymphopenia in California, 2010–2017. Pediatrics. 2019;143(2).
10.
Zurück zum Zitat Serana F, Chiarini M, Zanotti C, Sottini A, Bertoli D, Bosio A, et al. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. J Transl Med. 2013;11:119.PubMedPubMedCentralCrossRef Serana F, Chiarini M, Zanotti C, Sottini A, Bertoli D, Bosio A, et al. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. J Transl Med. 2013;11:119.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Verbsky JW, Baker MW, Grossman WJ, Hintermeyer M, Dasu T, Bonacci B, et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008-2011). J Clin Immunol. 2012;32(1):82–8.PubMedCrossRef Verbsky JW, Baker MW, Grossman WJ, Hintermeyer M, Dasu T, Bonacci B, et al. Newborn screening for severe combined immunodeficiency; the Wisconsin experience (2008-2011). J Clin Immunol. 2012;32(1):82–8.PubMedCrossRef
12.
Zurück zum Zitat Verbsky J, Thakar M, Routes J. The Wisconsin approach to newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol. 2012;129(3):622–7.PubMedCrossRef Verbsky J, Thakar M, Routes J. The Wisconsin approach to newborn screening for severe combined immunodeficiency. J Allergy Clin Immunol. 2012;129(3):622–7.PubMedCrossRef
13.
15.
Zurück zum Zitat Albin-Leeds S, Ochoa J, Mehta H, Vogel BH, Caggana M, Bonagura V, et al. Idiopathic T cell lymphopenia identified in New York State Newborn Screening. Clin Immunol. 2017;183:36–40.PubMedPubMedCentralCrossRef Albin-Leeds S, Ochoa J, Mehta H, Vogel BH, Caggana M, Bonagura V, et al. Idiopathic T cell lymphopenia identified in New York State Newborn Screening. Clin Immunol. 2017;183:36–40.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Aluri J, Gupta MR, Dalvi A, Mhatre S, Kulkarni M, Desai M, et al. Lymphopenia and severe combined immunodeficiency (SCID) - think before you ink. Indian J Pediatr. 2019;86:584–9.PubMedCrossRef Aluri J, Gupta MR, Dalvi A, Mhatre S, Kulkarni M, Desai M, et al. Lymphopenia and severe combined immunodeficiency (SCID) - think before you ink. Indian J Pediatr. 2019;86:584–9.PubMedCrossRef
17.
Zurück zum Zitat Rios X, Chinn IK, Orange JS, Hanson CI, Rider NL. T-cell lymphopenia detected by newborn screening in two siblings with an Xq13.1 duplication. Front Pediatr. 2017;5:156.PubMedPubMedCentralCrossRef Rios X, Chinn IK, Orange JS, Hanson CI, Rider NL. T-cell lymphopenia detected by newborn screening in two siblings with an Xq13.1 duplication. Front Pediatr. 2017;5:156.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Patrawala M, Kobrynski L. Nonsevere combined immunodeficiency T-cell lymphopenia identified through newborn screening. Curr Opin Allergy Clin Immunol. 2019;19(6):586–93.PubMedCrossRef Patrawala M, Kobrynski L. Nonsevere combined immunodeficiency T-cell lymphopenia identified through newborn screening. Curr Opin Allergy Clin Immunol. 2019;19(6):586–93.PubMedCrossRef
19.
Zurück zum Zitat Kobrynski LJ. Identification of non-severe combined immune deficiency T-cell lymphopenia at newborn screening for severe combined immune deficiency. Ann Allergy Asthma Immunol. 2019;123(5):424–7.PubMedCrossRef Kobrynski LJ. Identification of non-severe combined immune deficiency T-cell lymphopenia at newborn screening for severe combined immune deficiency. Ann Allergy Asthma Immunol. 2019;123(5):424–7.PubMedCrossRef
20.
Zurück zum Zitat Gholamin M, Bazi A, Abbaszadegan MR. Idiopathic lymphopenia. Curr Opin Hematol. 2015;22(1):46–52.PubMed Gholamin M, Bazi A, Abbaszadegan MR. Idiopathic lymphopenia. Curr Opin Hematol. 2015;22(1):46–52.PubMed
21.
Zurück zum Zitat Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112(5):973–80.PubMedCrossRef Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112(5):973–80.PubMedCrossRef
22.
Zurück zum Zitat Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol. 2011;193(1):81–95.PubMedPubMedCentralCrossRef Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol. 2011;193(1):81–95.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Rodriges Blanko E, Kadyrova LY, Kadyrov FA. DNA mismatch repair interacts with CAF-1- and ASF1A-H3-H4-dependent histone (H3-H4)2 tetramer deposition. J Biol Chem. 2016;291(17):9203–17.PubMedPubMedCentralCrossRef Rodriges Blanko E, Kadyrova LY, Kadyrov FA. DNA mismatch repair interacts with CAF-1- and ASF1A-H3-H4-dependent histone (H3-H4)2 tetramer deposition. J Biol Chem. 2016;291(17):9203–17.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Takahashi D, Hase K, Kimura S, Nakatsu F, Ohmae M, Mandai Y, et al. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology. 2011;141(2):621–32.PubMedCrossRef Takahashi D, Hase K, Kimura S, Nakatsu F, Ohmae M, Mandai Y, et al. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology. 2011;141(2):621–32.PubMedCrossRef
25.
Zurück zum Zitat Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001;7(2):273–82.PubMedCrossRef Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol Cell. 2001;7(2):273–82.PubMedCrossRef
26.
Zurück zum Zitat Xia F, Taghian DG, DeFrank JS, Zeng ZC, Willers H, Iliakis G, et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci U S A. 2001;98(15):8644–9.PubMedPubMedCentralCrossRef Xia F, Taghian DG, DeFrank JS, Zeng ZC, Willers H, Iliakis G, et al. Deficiency of human BRCA2 leads to impaired homologous recombination but maintains normal nonhomologous end joining. Proc Natl Acad Sci U S A. 2001;98(15):8644–9.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Bergmann C, Fliegauf M, Brüchle NO, Frank V, Olbrich H, Kirschner J, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82(4):959–70.PubMedPubMedCentralCrossRef Bergmann C, Fliegauf M, Brüchle NO, Frank V, Olbrich H, Kirschner J, et al. Loss of nephrocystin-3 function can cause embryonic lethality, Meckel-Gruber-like syndrome, situs inversus, and renal-hepatic-pancreatic dysplasia. Am J Hum Genet. 2008;82(4):959–70.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Moylett EH, Wasan AN, Noroski LM, Shearer WT. Live viral vaccines in patients with partial DiGeorge syndrome: clinical experience and cellular immunity. Clin Immunol. 2004;112(1):106–12.PubMedCrossRef Moylett EH, Wasan AN, Noroski LM, Shearer WT. Live viral vaccines in patients with partial DiGeorge syndrome: clinical experience and cellular immunity. Clin Immunol. 2004;112(1):106–12.PubMedCrossRef
29.
Zurück zum Zitat Waters V, Peterson KS, LaRussa P. Live viral vaccines in a DiGeorge syndrome patient. Arch Dis Child. 2007;96(6):519–20.CrossRef Waters V, Peterson KS, LaRussa P. Live viral vaccines in a DiGeorge syndrome patient. Arch Dis Child. 2007;96(6):519–20.CrossRef
30.
Zurück zum Zitat Markert ML. Defects in thymic development. In: Sullivan KE, Stiehm RE, editors. Stiehm’s Immune Deficiencies. Second ed. London: Elsevier; 2020. p. 357–80.CrossRef Markert ML. Defects in thymic development. In: Sullivan KE, Stiehm RE, editors. Stiehm’s Immune Deficiencies. Second ed. London: Elsevier; 2020. p. 357–80.CrossRef
31.
Zurück zum Zitat Perez EE, Bokszczanin A, McDonald-McGinn D, Zackai EH, Sullivan KE. Safety of live viral vaccines in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Pediatrics. 2003;122(4):e325.CrossRef Perez EE, Bokszczanin A, McDonald-McGinn D, Zackai EH, Sullivan KE. Safety of live viral vaccines in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Pediatrics. 2003;122(4):e325.CrossRef
32.
Zurück zum Zitat Azzari C, Gambineri E, Resti M, Moriondo M, Betti L, Saldias LR, et al. Safety and immunogenicity of measles-mumps-rubella vaccine in children with congenital immunodeficiency (DiGeorge syndrome). Vaccine. 2005;23(14):1668–71.PubMedCrossRef Azzari C, Gambineri E, Resti M, Moriondo M, Betti L, Saldias LR, et al. Safety and immunogenicity of measles-mumps-rubella vaccine in children with congenital immunodeficiency (DiGeorge syndrome). Vaccine. 2005;23(14):1668–71.PubMedCrossRef
33.
Zurück zum Zitat Davis CM, Kancherla VS, Reddy A, Chan W, Yeh HW, Noroski LM, et al. Development of specific T-cell responses to Candida and tetanus antigens in partial DiGeorge syndrome. J Allergy Clin Immunol. 2008;122(6):1194–9.PubMedCrossRef Davis CM, Kancherla VS, Reddy A, Chan W, Yeh HW, Noroski LM, et al. Development of specific T-cell responses to Candida and tetanus antigens in partial DiGeorge syndrome. J Allergy Clin Immunol. 2008;122(6):1194–9.PubMedCrossRef
36.
Zurück zum Zitat Gans MD, Gavrilova T. Retrospective analysis of a New York newborn screen severe combined immunodeficiency referral center. J Clin Immunol. 2020;40(3):456–65.PubMedCrossRef Gans MD, Gavrilova T. Retrospective analysis of a New York newborn screen severe combined immunodeficiency referral center. J Clin Immunol. 2020;40(3):456–65.PubMedCrossRef
37.
Zurück zum Zitat Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature. 2015;528(7581):218–24.PubMedPubMedCentralCrossRef Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, et al. The histone chaperone CAF-1 safeguards somatic cell identity. Nature. 2015;528(7581):218–24.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Ng C, Aichinger M, Nguyen T, Au C, Najar T, Wu L, et al. The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain. Genes Dev. 2019;33(11–12):669–83.PubMedPubMedCentralCrossRef Ng C, Aichinger M, Nguyen T, Au C, Najar T, Wu L, et al. The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain. Genes Dev. 2019;33(11–12):669–83.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Bosticardo M, Yamazaki Y, Cowan J, Giardino G, Corsino C, Scalia G, et al. Heterozygous FOXN1 variants cause low TRECs and severe T cell lymphopenia, revealing a crucial role of FOXN1 in supporting early thymopoiesis. Am J Hum Genet. 2019;105(3):549–61.PubMedPubMedCentralCrossRef Bosticardo M, Yamazaki Y, Cowan J, Giardino G, Corsino C, Scalia G, et al. Heterozygous FOXN1 variants cause low TRECs and severe T cell lymphopenia, revealing a crucial role of FOXN1 in supporting early thymopoiesis. Am J Hum Genet. 2019;105(3):549–61.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Quinn J, Modell V, Holle J, Truty R, Aradhya S, Johnson B, et al. Jeffrey’s insights: Jeffrey Modell Foundation’s global genetic sequencing pilot program to identify specific primary immunodeficiency defects to optimize disease management and treatment. Immunol Res. 2020;68(3):126–34.PubMedPubMedCentralCrossRef Quinn J, Modell V, Holle J, Truty R, Aradhya S, Johnson B, et al. Jeffrey’s insights: Jeffrey Modell Foundation’s global genetic sequencing pilot program to identify specific primary immunodeficiency defects to optimize disease management and treatment. Immunol Res. 2020;68(3):126–34.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, et al. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: a working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2020;145(1):46–69.PubMedCrossRef Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, et al. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: a working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2020;145(1):46–69.PubMedCrossRef
43.
Zurück zum Zitat Zhang S, Elshaigi O, Daian F, Bae E, Innamorato A, Navetta-Modrov B, et al. Describing single nucleotide polymorphisms (SNPs) transient T cell lymphopenia in the United States Immunodeficiency Network (USIDNET) following infants with low lymphocytes (FILL) program and a single referral center from 2010-2017. J Clin Immunol. 2019;39(Suppl 1):S13. Zhang S, Elshaigi O, Daian F, Bae E, Innamorato A, Navetta-Modrov B, et al. Describing single nucleotide polymorphisms (SNPs) transient T cell lymphopenia in the United States Immunodeficiency Network (USIDNET) following infants with low lymphocytes (FILL) program and a single referral center from 2010-2017. J Clin Immunol. 2019;39(Suppl 1):S13.
44.
Zurück zum Zitat Gans MD, Saavedra-Matiz CA, Bernstein L. A single nucleotide polymorphism in the T-cell receptor excision circle. J Allergy Clin Immunol Pract. 2020;8(2):803–5.e1.PubMedCrossRef Gans MD, Saavedra-Matiz CA, Bernstein L. A single nucleotide polymorphism in the T-cell receptor excision circle. J Allergy Clin Immunol Pract. 2020;8(2):803–5.e1.PubMedCrossRef
45.
Zurück zum Zitat Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol. 2017;139(3):733–42.PubMedPubMedCentralCrossRef Dorsey MJ, Dvorak CC, Cowan MJ, Puck JM. Treatment of infants identified as having severe combined immunodeficiency by means of newborn screening. J Allergy Clin Immunol. 2017;139(3):733–42.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Amatuni GS, Sciortino S, Currier RJ, Naides SJ, Church JA, Puck JM. Reference intervals for lymphocyte subsets in preterm and term neonates without immune defects. J Allergy Clin Immunol. 2019;144(6):1674–83.PubMedPubMedCentralCrossRef Amatuni GS, Sciortino S, Currier RJ, Naides SJ, Church JA, Puck JM. Reference intervals for lymphocyte subsets in preterm and term neonates without immune defects. J Allergy Clin Immunol. 2019;144(6):1674–83.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Shoenfeld Y, Alkan ML, Asaly A, Carmeli Y, Katz M. Benign familial leukopenia and neutropenia in different ethnic groups. Eur J Haematol. 1988;41(3):273–7.PubMedCrossRef Shoenfeld Y, Alkan ML, Asaly A, Carmeli Y, Katz M. Benign familial leukopenia and neutropenia in different ethnic groups. Eur J Haematol. 1988;41(3):273–7.PubMedCrossRef
48.
Zurück zum Zitat Gitlin D, Janeway CA. Agammaglobulinemia, congenital, acquired and transient forms. Prog Hematol. 1956;1:318–29.PubMed Gitlin D, Janeway CA. Agammaglobulinemia, congenital, acquired and transient forms. Prog Hematol. 1956;1:318–29.PubMed
49.
Zurück zum Zitat Zonios DI, Falloon J, Bennett JE, Shaw PA, Chaitt D, Baseler MW, et al. Idiopathic CD4+ lymphocytopenia: natural history and prognostic factors. Blood. 2008;112(2):287–94.PubMedPubMedCentralCrossRef Zonios DI, Falloon J, Bennett JE, Shaw PA, Chaitt D, Baseler MW, et al. Idiopathic CD4+ lymphocytopenia: natural history and prognostic factors. Blood. 2008;112(2):287–94.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Busch MP, Valinsky JE, Paglieroni T, Prince HE, Crutcher GJ, Gjerset GF, et al. Screening blood donors for idiopthic CD4+ T-lymphocyotpenia. Transfusion. 1994;34(3):192–7.PubMedCrossRef Busch MP, Valinsky JE, Paglieroni T, Prince HE, Crutcher GJ, Gjerset GF, et al. Screening blood donors for idiopthic CD4+ T-lymphocyotpenia. Transfusion. 1994;34(3):192–7.PubMedCrossRef
51.
Zurück zum Zitat Lisco A, Freeman AF, Sereti I. Idiopathic CD4 lymphopenia. In: Sullivan KE, Stiehm RE, editors. Stiehm’s immune deficiencies. Second ed. London: Elsevier; 2020. p. 381–92.CrossRef Lisco A, Freeman AF, Sereti I. Idiopathic CD4 lymphopenia. In: Sullivan KE, Stiehm RE, editors. Stiehm’s immune deficiencies. Second ed. London: Elsevier; 2020. p. 381–92.CrossRef
52.
Zurück zum Zitat Walker UA, Warnatz K. Idiopathic CD4 lymphocytopenia. Curr Opin Rheumatol. 2006;18(4):389–95.PubMedCrossRef Walker UA, Warnatz K. Idiopathic CD4 lymphocytopenia. Curr Opin Rheumatol. 2006;18(4):389–95.PubMedCrossRef
53.
Zurück zum Zitat Régent A, Autran B, Carcelain G, Cheynier R, Terrier B, Charmeteau-De Muylder B, et al. Idiopathic CD4 lymphocytopenia: clinical and immunologic characteristics and follow-up of 40 patients. Medicine (Baltimore). 2014;93(2):61–72.CrossRef Régent A, Autran B, Carcelain G, Cheynier R, Terrier B, Charmeteau-De Muylder B, et al. Idiopathic CD4 lymphocytopenia: clinical and immunologic characteristics and follow-up of 40 patients. Medicine (Baltimore). 2014;93(2):61–72.CrossRef
54.
Zurück zum Zitat Kuo CY, Garcia-Lloret MI, Slev P, Bohnsack JF, Chen K. Profound T-cell lymphopenia associated with prenatal exposure to purine antagonists detected by TREC newborn screening. J Allergy Clin Immunol Pract. 2017;5(1):198–200.PubMedPubMedCentralCrossRef Kuo CY, Garcia-Lloret MI, Slev P, Bohnsack JF, Chen K. Profound T-cell lymphopenia associated with prenatal exposure to purine antagonists detected by TREC newborn screening. J Allergy Clin Immunol Pract. 2017;5(1):198–200.PubMedPubMedCentralCrossRef
Metadaten
Titel
Characterization of Infants with Idiopathic Transient and Persistent T Cell Lymphopenia Identified by Newborn Screening—a Single-Center Experience in New York State
verfasst von
Artemio M. Jongco III
Robert Sporter
Elise Hon
Omer Elshaigi
Shouling Zhang
Foysal Daian
Emily Bae
Amanda Innamorato
Catherine Capo
Brianne Navetta-Modrov
David W. Rosenthal
Vincent R. Bonagura
Publikationsdatum
07.01.2021
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 3/2021
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-020-00957-6

Weitere Artikel der Ausgabe 3/2021

Journal of Clinical Immunology 3/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.