Skip to main content
Erschienen in: BMC Complementary Medicine and Therapies 1/2022

Open Access 01.12.2022 | Research

Classical music restored fertility status in rat model of premature ovarian failure

verfasst von: Nahideh Nazdikbin Yamchi, Mohammad Mojtaba Alizadeh Ashrafi, Hamed Abbasi, Farhad Amjadi, Mohammad Hossein Geranmayeh, Reza Shirazi, Amin Tamadon, Reza Rahbarghazi, Mahdi Mahdipour

Erschienen in: BMC Complementary Medicine and Therapies | Ausgabe 1/2022

Abstract

Background:

The restorative effect of classical music was assessed on the cyclophosphamide-induced animal model of premature ovarian failure (POF).

Methods:

Mozart’s piano classical music (K.448) was used for up to 4 and 8 weeks. Rats were exposed to music 6 h every day using a stereo system with a volume of 65–70 dB. Sera and ovarian tissue samples were collected for the evaluation of FSH, LH, and E2 and histopathological examination. At the same time points, samples were taken from the hypothalamus and hippocampus to monitor the expression of Ntrk2, Crh, and Pomc using real-time PCR. Mating trial was performed to evaluate the fertility status of POF rats.

Results:

Histopathological examination revealed a significant increase (p < 0.05) in the numbers of morphologically normal follicles at all the developmental stages in POF rats after music therapy compared to the POF group (p < 0.05). Music therapy decreased FSH and LH levels to near-to-normal levels conidied with elevation of E2 (p < 0.05). Ntrk2, Crh, and Pomc expressions were down-regulated in POF rats. Music therapy increasaed the expression of Ntrk2 in the hypothalamus of POF rats (p < 0.05). In contrast, Crh and Pomc failed to reach the detection limit before intervention and four weeks after the intervention however, these genes were expressed eight weeks after music therapy. Fertility status was increased (p < 0.05) in terms of litter size in POF rats after being exposed to music compared to the non-treated POF control group (p < 0.05).

Conclusion:

Results showed that music can exert therapeutic effects on POF rats via the alteration of sex-related hormones.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12906-022-03759-y.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Premature ovarian failure (POF) is defined as an ovarian dysfunction, leading to the alteration of the development of ovarian follicles [1, 2]. Statistics have revealed that POF affects about 1% of women under 40 years old and about 0.1% of women under the age of 30 [3]. Both environmental and genetic factors are noted to cause POF, whereas chromosomal defects (fragile X syndrome), toxins (including chemotherapy and radiotherapy), autoimmune diseases, infections, and thyroid malfunction are reported to alleviate this disorder [3, 4]. In the POF patients, follicle-stimulating hormone (FSH) levels reach above 40 IU/mL while the content of anti-Mullerian hormone (AMH) declines below 1 ng/mL [5]. Different clinical symptoms such as amenorrhea, hypoestrogenism (estrogen reduction), and hyper-gonadotropism (increased levels of gonadotropins) can be manifested in POF women [6]. Until now, various pre-clinical strategies have been developed for the treatments of POF including hormone replacement therapy (HRT), gonadotropin-releasing hormone (GnRH) application, and modalities that are associated with the application of whole-cell, or cell-based products [714].
Despite the recent progress in the alleviation of POF, there is a great deal of emphasis on the use of complementary therapies. Among them, music therapy is at the center of attention. Music therapy has a long history and dates back to the writings of Plato, Pythagoras, and Aristotle, who were all aware of the power of prevention and treatment of music [15]. It has been indicated that this approach can lead to relaxation, accelerate the healing process of diseases, and improve mental function [1618]. Music exerts its effects through the coordination of different rhythms of the body and regulates physiological responses in different ways [19]. Music can stimulate the pituitary gland to release several hormones into the nervous system and bloodstream [20]. Among the musical genres, the physiological and behavioral effects of classical music were studied in rats [21]. Besides, studies have been conducted to investigate the effect of music on anxiety and biological factors using workpieces of musicians such as Bach, Beethoven, Mozart, etc. [22, 23]. Classical music therapy has been practiced successfully on mice animal models for stress [2426], diabetes mellitus [27], breast cancer [28], bone cancer [29], Alzheimer’s disease [20], autism [30], and schizophrenia [31].
Various signaling molecules are associated with POF including Ntrk2 in which loss of the Ntrk2/Kiss1r pathway in oocytes has been shown to cause POF conditions [32]. Previous studies have further shown this gene besides its unique influence on the development of the nervous system, is involved in controlling ovarian function. Thus, the ovaries of mice lacking Ntrk2 receptors show fewer primary follicles and causing deficiency in early follicular growth [33]. Also, the components of the corticotrophin-releasing factor (CRH) family, as a stress hormone receptor system, helps both initiate stress responses and restore systems to homeostasis after the removal of the stressor [34]. CRH can regulate steroidogenesis which is involved in follicular maturation, ovulation, and luteolysis [35]. Also, Proopiomelanocortin (POMC), is a precursor protein detected in the female reproductive system, from which peptides are synthesized in the ovary, and has been confirmed to play a significant role in ovarian function [36, 37].
Considering the positive effects of music therapy in various pathological conditions, in this study, we investigated the restorative effects of non-invasive music therapy on an experimentally induced rat model for POF. To this end, we explored the follicular counts, hormonal alterations as well as the expression of transcripts in the favor of regeneration of ovarian tissue and fertility preservation.

Materials and methods

Animal ethics

Here, 23 female Wistar rats (7–8 weeks old), weighing between 150 and 180 g, were purchased from Med Zist Company-Tehran. Rats were housed in the normal environment with a temperature of 22 ± 2 °C and 12 h of light/dark cycle and free access to standard pellet and water. Before the experiments, rats were kept untreated for 1 week for environmental adaptation. All experimental protocols were confirmed by the local ethics committee of Tabriz University of Medical Sciences (IR.TBZMED.VCR.REC.1398.361).

Production of rat model of premature ovarian failure

To induce the rat model of POF, 20 rats were subjected to the intraperitoneally (IP) administration of cyclophosphamide (CTX; Cat no: RHRI404, Supelco) at a dose of 200 mg/kg on day 1 and 8 mg/kg on days 2 to day 14. CTX is an active substance and can destroy follicles by the mechanism of apoptosis and tissue necrosis [38]. According to previous protocols, 21 days after the last injections rats can exhibit POF features [39]. To confirm POF status, 3 rats were randomly selected from both POF and the control groups and euthanized using an overdose of Ketamine and Xylazine. The left 18 rats were arbitrarily allocated into Control, POF, and POF plus music therapy. The rats in the experimental group were kept in the music box for 4 and 8 weeks (Fig. 1A).

Acoustic music box

To make an enclosed environment with an adequate rate of ventilation, illumination, and temperature, we designed an insulated acoustic box equipped with a control panel to adjust light, ventilation, and sound systems similar to room conditions (Fig. 1B). The sound speakers were connected from outside to an mp3 stereo playback system. Before playing the music, the volume was measured with a decibel meter. Finally, Mozart’s Piano Classical Music (K 448) was played for 6 h every day from 4 to 10 pm with a volume of 65–70 decibel (dB) up to 4 and 8 weeks. The developed box could hold two cages.

Tissue and blood sampling

For euthanization, an overdose of Ketamine and Xylazine was administrated IP. Blood was taken directly from the heart to investigate the serum levels of hormones. For histopathological examination, tissues were collected, rinsed in phosphate-buffered saline (PBS) solution, and fixed in 10% formalin (Merck). For real-time PCR analysis, brain tissues (hypothalamus and hippocampus) were individually sampled in cryovials and stored at -80 until the analyses.

Histopathological evaluation

Formalin-fixed ovarian specimens were embedded in paraffin after dehydration in alcohol series and cut to a thickness of 5 μm using a microtome instrument (Leica). Hematoxylin and eosin (H&E) staining was performed to study the numbers and the quality of follicles at different developmental stages and corpus luteum (CL) [40]. Masson’s trichrome staining was also executed to evaluate collagen fiber deposition as a sign of tissue fibrosis [41]. After staining, follicular populations and the presence of collagen fibers were evaluated under an Olympus BX-51 light microscope and recorded using a digital camera.

Measurement of serum levels of FSH, LH, and E2

To measure serum levels of FSH, LH, and E2, blood samples were clotted in glass tubes and serum was collected after centrifugation for 20 min at 400xg and stored at -80 °C. Enzyme-linked immunosorbent assay (ELISA) method was performed using a commercial kit for measuring the levels of FSH (0334 − 96, Monobind), LH (0234 − 96, Monobind) and E2 (4925-300 A, Monobind(.

Real-time PCR assay

To evaluate the expression of Ntrk2, Crh, and Pomc, hypothalamus and hippocampus samples were subjected to RNA isolation according to the protocol (Traysol: 0000124, MaxZol). Then, the RNA was reverse-transcribed to cDNA (cDNA synthesis kit; YT4500, Yekta Tajhiz Azma). Specific primer pairs were designed using online software (www.​ncbi.​nlm.​nih.​gov/​tools/​primer-blast/​) by considering different variables for each gene (Table 1). Subsequently, a quantitative real-time polymerase chain reaction (qRT-PCR) was performed using cDNA and SYBR Green 2 × (5,000,850, Ampliqon) with the “Roche Light Cycler 96” system. The annealing temperature was detected using a gradient PCR. The PCR reaction program was performed in 45 cycles with denaturation, annealing, and extension (95, 60, and 72 °C respectively all last for 15 s). Finally, the specificity of each reaction was evaluated by analyzing the melting and propagation curves.
Table 1
Primers sequences designed for Real-time PCR
Gene/ NCBI accession number
Sequence (5’→3’)
Annealing
Temperature (˚C)
Ntrk2
NM_001163168.2
F
ACCTGCGGCACATCAATTTC
60
R
ACAAATCCTGAGTGTCGGGG
60
Crh
NM_031019.2
F
CTGATCCGCATGGGTGAAGA
60
R
GGAAAAAGTTAGCCGCAGCC
60
Pomc
NM_139326.3
F
ATAGACGTGTGGAGCTGGTG
60
R
CGGAAGTGACCCATGACGTA
60

Assessment of fertility status

Finally, the remaining three rats from both POF + music and POF control groups were mated with fertility-proven male rats in a ratio of 2:1 to assess their reproductive status. After examining the vaginal plug, the rats were placed individually in separate cages for 3 weeks. Finally, the litter size/rat was registered.

Data analysis

All the results presented in mean ± SEM were examined by Graph Pad Prism 8 software. To evaluate the statistical significance between groups, data were analyzed with one-way ANOVA with a post-hoc test (Fisher’s least significant difference, LSD). The student’s t-test was incorporated to analyze the significant differences between the two groups. P-values less than 0.05 were considered significant.

Result

Rat model of POF was successfully established

Following CTX injection, H&E staining was performed. The general follicular atresia was noted in the POF rats compared to the control group. The number of morphologically healthy follicles at all developmental stages was significantly declined in the POF rats (p < 0.05). Our findings illustrated that the CTX has successfully induced morphological conditions similar to the POF features (Fig. 2A, B). Masson trichrome staining also revealed general collagen fiber deposition within the ovarian tissue of the POF rats (Fig. 2C).

Music therapy improved ovarian function in POF rats

We also examined the follicle population of morphologically healthy and atretic follicles after the intervention. Our findings showed that the total number of morphologically healthy follicles was increased significantly in the music group four and eight weeks after exposure to classical music compared to the control POF rats (p < 0.01and p < 0.001 respectively; Fig. 3B). Similar to what we observed before starting the intervention (Fig. 3A). In contrast, the total number of atretic follicles significantly declined after intervention (p < 0.01; Fig. 4A). Further looking at follicular development stages of primordial, primary, secondary, and antral, a general significant improvement in the numbers of morphologically healthy follicles was noted. According to our data, the number of atretic follicles was increased following the induction of POF in rat ovarian tissue. This pattern was reversed 4 and 8 weeks post-music therapy (Supplementary Fig. 1). Our results showed that POF rats had a relatively lower number of CL compared to the control healthy rats (p < 0.05; Fig. 3 C). After exposure to music, the number of CL was increased. However, the differences were not statistically significant (p > 0.05; Fig. 3 C). In terms of fibrotic changes, our results showed the reduction in collagen fiber deposition in ovarian tissue of POF rats 8 weeks after being exposed to music (Fig. 4B).

Music therapy altered serum levels of FSH, LH, and E2

We examined the serum levels of FSH, LH, and E2 hormones in POF rats before and after music intervention. In POF rats, FSH level was elevated significantly in response to the CTX administration (p < 0.05). Along with these changes, LH and E2 levels were increased and decreased respectively, however, the differences were not statistically significant (p > 0.05). In POF rats exposed to music therapy, serum levels of FSH were statistically significant differences at week 8 (p < 0.05). A significant decrease pattern was also noted in terms of LH levels (p < 0.01) at week 4 post music intervention. Despite the increase of E2 in music-treated POF rats at both time points, the changes were not statistically significant (Fig. 5).

Music therapy altered the expression of genes involved ovary function

Real-time PCR results showed that Ntrk2, Crh, and Pomc genes were down-regulated in hypothalamus and hippocampus tissues following the induction of POF. Notably, the differences were only statistically significant for Ntrk2 (p < 0.05; Fig. 6). In the hypothalamus, Ntrk2 expression was interestingly up-regulated 4 weeks after music therapy (p < 0.01). In contrast, both Crh and Pomc genes did not reach the detection limit at this time point. Nevertheless, non-significant differences were noted regarding the expression of subjected genes in the hypothalamus 8 weeks after music therapy (Fig. 6 A). In hippocampus tissue, only the expression of the Ntrk2 gene was detected 4 weeks after therapy without significant changes compared to the POF rats (p > 0.05). Eight weeks after music therapy, Crh and Pomc expression were down-regulated with only significant changes for Pomc (p < 0.05) (Fig. 6B).

Music therapy improved the fertility status of POF rats

To evaluate the fertility status in rats, three remaining rats from the music group and three rats from the POF control group were mated to examine the number of offspring eight weeks after music therapy. In the music group, rats gave birth to 7, 6 and 9 healthy babies, however, only one rat gave birth to 5 babies which were in total statistically significant when the two groups were compared (p < 0.05; Fig. 6 C).

Discussion

POF is one of the main causes of infertility in different countries with great clinical and economical concerns [42]. To date, routine therapeutics have been not effective enough to restore the function of ovarian tissue [43]. Therefore, various strategies have been practiced to regenerate ovarian tissue including cell and cell-product-based approaches mostly in animal setups [5]. The creation of chemotherapy-induced POF models has received a great deal of attention in recent years. Chemical compounds like Busulfan, Cisplatin, and CTX are shown to cause follicular atresia and depletion in ovarian tissue, mimicking POF-like conditions [4446]. Here, we successfully induced a rat model for POF using CTX [47]. Biochemical analysis showed that the levels of FSH and LH hormones were significantly increased in the POF conditions. In contrast, the induction of ovarian insufficiency can lead to the reduction of E2 [48, 49]. According to changes in serum levels of sex-related hormones, effective treatment should focus on the regulation of these hormones. Based on our data, music therapy can reduce increased levels of FSH and LH in POF rats 8 weeks after treatment with music [50]. Statistically significant differences were notified between FSH, LH, and E2 levels in the music-treated POF rats compared to the non-treated POF group. These data showed that music can alter serum levels of sex-related hormones in the POF rats.
Folliculogenesis is an important part of ovarian function and provides oocytes for reproduction [14]. In the POF conditions, the population of healthy follicles declines due to general atresia, leading to massive fibrosis. In the present study, healthy primordial, primary, secondary, and antral follicles were increased in POF rats four and eight weeks after being exposed to music. We also monitored the expression of Ntrk2, Crh, and Pomc in both the hypothalamus and hippocampus tissues. We noted that the POF condition can reduce the expression of these genes in both target tissues whereas even in some cases the expression level did not fall within the detection limit. In line with our findings, various studies have shown that Ntrk1, 2 are putative players in controlling ovarian function in addition to developing the nervous system [51]. Likewise, other researchers have reported that TrkA and B receptors encoded by Ntrk1, 2 facilitate follicle accumulation and early follicular growth in rat ovaries whereas ovaries of mice lacking the Ntrk gene had fewer primary and secondary follicles [33, 52]. Dorfman et al. stated that deletion of the Ntrk2 gene in mice oocytes resulted in POF conditions [53]. These findings show that the hypothalamic-pituitary-adrenocortical axis is altered shortly when animals failed to proceed with their normal oogenesis. We found that the expression of Ntrk2 was up-regulated 4 weeks after music therapy while the expression of Crh and Pomc were not quantifiable. After 8 weeks, however, the expression reached to close to the control POF group except Pomc gene in which significant reduction was noted (p < 0.05). Components of the corticotrophin-releasing factor (CRH) family, a stress hormone receptor system, help both initiate stress responses and restore systems to homeostasis after the removal of stressors [34]. This gene has also been identified in the reproductive system (ovary, endometrium, placenta, and testis). In the human ovary, receptors are detected in stromal cells and follicular fluid. CRH regulates the ovary in steroidogenesis and is involved in follicular maturation, ovulation, and luteolysis [35]. In a study by Calogero et al., the Crh gene was shown to be able to suppress estrogen production in mouse and human granulosa cells in vitro [54]. The results of our investigation also showed that the Crh gene is not expressed in the hypothalamus and hippocampus after the production of the POF model and also four weeks after receiving music, however not significant, expressed eight weeks after music therapy, probably due to the short timing exposure to the music. The expression of Pomc transcript expression has been confirmed in the ovary by various studies [37, 55]. In a study conducted by Galinelli and co-workers, the expression of Pomc was revealed in the ovaries of women of fertile age to be higher than women in post-menopausal states [37]. Chen et al. noted that the expression of the Pomc gene is regulated by gonadotropins in the ovaries, and experiments on rats showed that Pomc-derived peptides were more abundant during pregnancy than in immature rats [36]. In this experiment, Pomc expression was not quantifiable shortly after induction of POF model similar to Crh results. Eight weeks after music therapy, Pomc transcript was detected in both target samples in which significant downregulation was registered the hypothalamus tissue of music-treated POF group compared to the control POF rats (p < 0.05). This could be probably a sign of tissue rejuvenation as a result of therapy. Finally, the fertility of music-treated mice was assessed after eight weeks. According to the results of previous studies, we also showed that the number of offspring in POF rats exposed to music was more related to the non-treated POF group [9, 12, 56].

Conclusion

To the best of our knowledge, there is no enough data associated with the therapeutic effects of classical music on the restoration of POF consequences either in animal models or human counterparts. Our findings highlighted the positive effects of music on POF rats done via the improvement of ovarian function in terms of healthy follicles and hormonal activity. Music therapy can facilitate the restoration of fertility and diminish the possibility of tissue fibrosis via the changes in levels of sex-related hormones. It can be proposed that music therapy, as a non-invasive and complementary modality, can be considered as an alternative and/or combined approach for various fertility-related complications notably POF patients.

Acknowledgements

The authors thank the Stem Cell Research Center of Tabriz University of Medical Sciences for supporting this work.

Declarations

All experimental protocols were approved by Local Ethics Committee of Tabriz University of Medical Sciences [IR.TBZMED.VCR.REC.1398.361]. All methods were carried out in accordance with previously published principle [NIH, 1986]. The study was carried out in compliance with the ARRIVE guidelines.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
2.
Zurück zum Zitat Chon SJ, Umair Z, Yoon M-S. Premature ovarian insufficiency: past, present, and future. Front Cell Dev Biol. 2021; 9: 672890. Chon SJ, Umair Z, Yoon M-S. Premature ovarian insufficiency: past, present, and future. Front Cell Dev Biol. 2021; 9: 672890.
3.
Zurück zum Zitat Dolmans M-M, Donnez J. Fertility preservation in women for medical and social reasons: Oocytes vs ovarian tissue. Best Pract Res Clin Obstet Gynecol. 2021;70:63–80.CrossRef Dolmans M-M, Donnez J. Fertility preservation in women for medical and social reasons: Oocytes vs ovarian tissue. Best Pract Res Clin Obstet Gynecol. 2021;70:63–80.CrossRef
4.
Zurück zum Zitat Beck-Peccoz P, Persani L. Premature ovarian failure. Orphanet J Rare Dis. 2006;1(1):1–5.CrossRef Beck-Peccoz P, Persani L. Premature ovarian failure. Orphanet J Rare Dis. 2006;1(1):1–5.CrossRef
6.
Zurück zum Zitat Asbagh FA, Ebrahimi M. A case report of spontaneous pregnancy during hormonal replacement therapy for premature ovarian failure. Iran J Reproductive Med. 2011;9(1):47. Asbagh FA, Ebrahimi M. A case report of spontaneous pregnancy during hormonal replacement therapy for premature ovarian failure. Iran J Reproductive Med. 2011;9(1):47.
7.
Zurück zum Zitat Lee JH, Choi YS. The role of gonadotropin-releasing hormone agonists in female fertility preservation. Clin Experimental Reproductive Med. 2021;48(1):11.CrossRef Lee JH, Choi YS. The role of gonadotropin-releasing hormone agonists in female fertility preservation. Clin Experimental Reproductive Med. 2021;48(1):11.CrossRef
8.
Zurück zum Zitat Odeh OM, Awwad J, Khalife D, Ghunaim S. The use of GnRH analogs in preserving ovarian function during chemotherapy. Middle East Fertility Society Journal. 2021;26(1):1–11.CrossRef Odeh OM, Awwad J, Khalife D, Ghunaim S. The use of GnRH analogs in preserving ovarian function during chemotherapy. Middle East Fertility Society Journal. 2021;26(1):1–11.CrossRef
9.
Zurück zum Zitat Ahmadian S, Sheshpari S, Pazhang M, Bedate AM, Beheshti R, Abbasi MM, Nouri M, Rahbarghazi R, Mahdipour M. Intra-ovarian injection of platelet-rich plasma into ovarian tissue promoted rejuvenation in the rat model of premature ovarian insufficiency and restored ovulation rate via angiogenesis modulation. Reproductive Biology and Endocrinology. 2020;18(1):1–13.CrossRef Ahmadian S, Sheshpari S, Pazhang M, Bedate AM, Beheshti R, Abbasi MM, Nouri M, Rahbarghazi R, Mahdipour M. Intra-ovarian injection of platelet-rich plasma into ovarian tissue promoted rejuvenation in the rat model of premature ovarian insufficiency and restored ovulation rate via angiogenesis modulation. Reproductive Biology and Endocrinology. 2020;18(1):1–13.CrossRef
10.
Zurück zum Zitat Piccioni P, Scirpa P, D’Emilio I, Sora F, Scarciglia M, Laurenti L, De Matteis S, Sica S, Leone G, Chiusolo P. Hormonal replacement therapy after stem cell transplantation. Maturitas. 2004;49(4):327–33.PubMedCrossRef Piccioni P, Scirpa P, D’Emilio I, Sora F, Scarciglia M, Laurenti L, De Matteis S, Sica S, Leone G, Chiusolo P. Hormonal replacement therapy after stem cell transplantation. Maturitas. 2004;49(4):327–33.PubMedCrossRef
11.
Zurück zum Zitat Benetti-Pinto CL, Soares Júnior JM, Maciel GA, Nácul AP, Yela DA. Premature ovarian insufficiency: A hormonal treatment approach. Revista Brasileira de Ginecologia e Obstetrícia. 2020;42:511–8.PubMedCrossRef Benetti-Pinto CL, Soares Júnior JM, Maciel GA, Nácul AP, Yela DA. Premature ovarian insufficiency: A hormonal treatment approach. Revista Brasileira de Ginecologia e Obstetrícia. 2020;42:511–8.PubMedCrossRef
12.
Zurück zum Zitat Yamchi NN, Rahbarghazi R, Bedate AM, Mahdipour M, Nouri M, Khanbabaee R. Menstrual blood CD146 + mesenchymal stem cells reduced fibrosis rate in the rat model of premature ovarian failure. Cell Biochem Funct. 2021;39(8):998–1008.PubMedCrossRef Yamchi NN, Rahbarghazi R, Bedate AM, Mahdipour M, Nouri M, Khanbabaee R. Menstrual blood CD146 + mesenchymal stem cells reduced fibrosis rate in the rat model of premature ovarian failure. Cell Biochem Funct. 2021;39(8):998–1008.PubMedCrossRef
13.
Zurück zum Zitat Li Z, Zhang M, Tian Y, Li Q, Huang X. Mesenchymal stem cells in premature ovarian insufficiency: Mechanisms and prospects. Front Cell Dev Biol. 2021 Aug 3;9:718192. Li Z, Zhang M, Tian Y, Li Q, Huang X. Mesenchymal stem cells in premature ovarian insufficiency: Mechanisms and prospects. Front Cell Dev Biol. 2021 Aug 3;9:718192.
14.
Zurück zum Zitat Wang J, Liu W, Yu D, Yang Z, Li S, Sun X. Research Progress on the Treatment of Premature Ovarian Failure Using Mesenchymal Stem Cells: A Literature Review. Front Cell Dev Biology. 2021;9:749822–2.CrossRef Wang J, Liu W, Yu D, Yang Z, Li S, Sun X. Research Progress on the Treatment of Premature Ovarian Failure Using Mesenchymal Stem Cells: A Literature Review. Front Cell Dev Biology. 2021;9:749822–2.CrossRef
15.
16.
Zurück zum Zitat Maratos A, Gold C, Wang X, Crawford M. Music therapy for depression. Cochrane Database Syst Rev. 2017; 11(11):CD004517. Maratos A, Gold C, Wang X, Crawford M. Music therapy for depression. Cochrane Database Syst Rev. 2017; 11(11):CD004517.
17.
Zurück zum Zitat Kern P, Rivera NR, Chandler A, Humpal M. Music therapy services for individuals with autism spectrum disorder: A survey of clinical practices and training needs. J Music Ther. 2013;50(4):274–303.PubMedCrossRef Kern P, Rivera NR, Chandler A, Humpal M. Music therapy services for individuals with autism spectrum disorder: A survey of clinical practices and training needs. J Music Ther. 2013;50(4):274–303.PubMedCrossRef
18.
Zurück zum Zitat Koelsch S. A neuroscientific perspective on music therapy. Ann N Y Acad Sci. 2009;1169(1):374–84.PubMedCrossRef Koelsch S. A neuroscientific perspective on music therapy. Ann N Y Acad Sci. 2009;1169(1):374–84.PubMedCrossRef
19.
Zurück zum Zitat Rahimi Z, Bakhshayesh AR, Salehzadeh M. The Effectiveness of Music Therapy on the Quality of Life and Improvement of Syndrome in Women Suffering from Dysthymia. JSBCH 2019, 3(2):369-377 Rahimi Z, Bakhshayesh AR, Salehzadeh M. The Effectiveness of Music Therapy on the Quality of Life and Improvement of Syndrome in Women Suffering from Dysthymia. JSBCH 2019, 3(2):369-377
20.
Zurück zum Zitat Goyal A, Yadav G, Yadav S. Music therapy: a useful therapeutic tool for health, physical and mental music therapy: a useful therapeutic tool for health, physical and mental growth. Int J Music Ther. 2012;2(1–2):13–8. Goyal A, Yadav G, Yadav S. Music therapy: a useful therapeutic tool for health, physical and mental music therapy: a useful therapeutic tool for health, physical and mental growth. Int J Music Ther. 2012;2(1–2):13–8.
21.
Zurück zum Zitat Psyrdellis M, Diaz Abrahan VM, Cetratelli C, Justel N. Rock influences spatial memory in adult rats. while classical music do not; 2017. Psyrdellis M, Diaz Abrahan VM, Cetratelli C, Justel N. Rock influences spatial memory in adult rats. while classical music do not; 2017.
22.
Zurück zum Zitat Trappe H-J. The effects of music on the cardiovascular system and cardiovascular health. Heart. 2010;96(23):1868–71.PubMedCrossRef Trappe H-J. The effects of music on the cardiovascular system and cardiovascular health. Heart. 2010;96(23):1868–71.PubMedCrossRef
23.
Zurück zum Zitat Lai HL, Hwang MJ, Chen CJ, Chang KF, Peng TC, Chang FM. Randomised controlled trial of music on state anxiety and physiological indices in patients undergoing root canal treatment. J Clin Nurs. 2008;17(19):2654–60.PubMedCrossRef Lai HL, Hwang MJ, Chen CJ, Chang KF, Peng TC, Chang FM. Randomised controlled trial of music on state anxiety and physiological indices in patients undergoing root canal treatment. J Clin Nurs. 2008;17(19):2654–60.PubMedCrossRef
24.
Zurück zum Zitat da Cruz JN, de Lima DD, Dal Magro DD, da Cruz JGP. The power of classic music to reduce anxiety in rats treated with simvastatin. Basic and Clinical Neuroscience. 2011;2(4):5. da Cruz JN, de Lima DD, Dal Magro DD, da Cruz JGP. The power of classic music to reduce anxiety in rats treated with simvastatin. Basic and Clinical Neuroscience. 2011;2(4):5.
25.
Zurück zum Zitat Saghari H, Sheibani V, Esmaeilpour K, ur Rehman N. Music Alleviates Learning and Memory Impairments in an Animal Model of Post-Traumatic Stress Disorder. Biointerface Res Appl Chem. 2020;11(1):7775–84.CrossRef Saghari H, Sheibani V, Esmaeilpour K, ur Rehman N. Music Alleviates Learning and Memory Impairments in an Animal Model of Post-Traumatic Stress Disorder. Biointerface Res Appl Chem. 2020;11(1):7775–84.CrossRef
26.
Zurück zum Zitat Escribano B, Quero I, Feijóo M, Tasset I, Montilla P, Túnez I. Role of noise and music as anxiety modulators: Relationship with ovarian hormones in the rat. Appl Anim Behav Sci. 2014;152:73–82.CrossRef Escribano B, Quero I, Feijóo M, Tasset I, Montilla P, Túnez I. Role of noise and music as anxiety modulators: Relationship with ovarian hormones in the rat. Appl Anim Behav Sci. 2014;152:73–82.CrossRef
27.
Zurück zum Zitat Luo C, Fan H, Li S, Zou Y. Therapeutic of Candesartan and Music Therapy in Diabetic Retinopathy with Depression in Rats. Evid Based Complement Alternat Med. 2021; 2021:5570356. Luo C, Fan H, Li S, Zou Y. Therapeutic of Candesartan and Music Therapy in Diabetic Retinopathy with Depression in Rats. Evid Based Complement Alternat Med. 2021; 2021:5570356.
28.
Zurück zum Zitat Jia L, Guo L, Zheng Z, Yu J, You J, Ganesan K, Lin Y, Chen J. Music Therapy in Traditional Chinese Medicine Attenuates the Depression-Associated Breast Cancer Development in MMTV-PyMT Nice and Clinics. Int J Med Res Healt Sci. 2021;10(3):110–21. Jia L, Guo L, Zheng Z, Yu J, You J, Ganesan K, Lin Y, Chen J. Music Therapy in Traditional Chinese Medicine Attenuates the Depression-Associated Breast Cancer Development in MMTV-PyMT Nice and Clinics. Int J Med Res Healt Sci. 2021;10(3):110–21.
29.
Zurück zum Zitat Gao J, Chen S, Lin S, Han H. Effect of music therapy on pain behaviors in rats with bone cancer pain. J BUON. 2016;21(2):466–72.PubMed Gao J, Chen S, Lin S, Han H. Effect of music therapy on pain behaviors in rats with bone cancer pain. J BUON. 2016;21(2):466–72.PubMed
30.
Zurück zum Zitat Halim S. Music as a complementary therapy in medical treatment. Med J Indonesia. 2002;11(4):250–8.CrossRef Halim S. Music as a complementary therapy in medical treatment. Med J Indonesia. 2002;11(4):250–8.CrossRef
31.
Zurück zum Zitat Ahmadi M, Banazadeh Dardashti M, Karimzadeh F. The anti-aggressive effect of music therapy in an animal model of schizophrenia. Neurosci J Shefaye Khatam. 2014;2(1):51–5.CrossRef Ahmadi M, Banazadeh Dardashti M, Karimzadeh F. The anti-aggressive effect of music therapy in an animal model of schizophrenia. Neurosci J Shefaye Khatam. 2014;2(1):51–5.CrossRef
33.
Zurück zum Zitat Kerr B, Garcia-Rudaz C, Dorfman M, Paredes A, Ojeda SR. TrkA and TrkB receptors facilitate follicle assembly and early follicular development in the mouse ovary. Reprod (Cambridge England). 2009;138(1):131.CrossRef Kerr B, Garcia-Rudaz C, Dorfman M, Paredes A, Ojeda SR. TrkA and TrkB receptors facilitate follicle assembly and early follicular development in the mouse ovary. Reprod (Cambridge England). 2009;138(1):131.CrossRef
34.
Zurück zum Zitat Vuppaladhadiam L, Ehsan C, Akkati M, Bhargava A. Corticotropin-releasing factor family: a stress hormone-receptor system’s emerging role in mediating sex-specific signaling. Cells. 2020;9(4):839.PubMedCentralCrossRef Vuppaladhadiam L, Ehsan C, Akkati M, Bhargava A. Corticotropin-releasing factor family: a stress hormone-receptor system’s emerging role in mediating sex-specific signaling. Cells. 2020;9(4):839.PubMedCentralCrossRef
35.
Zurück zum Zitat Kiapekou E, Zapanti E, Mastorakos G, Loutradis D. Update on the role of ovarian corticotropin-releasing hormone. Ann N Y Acad Sci. 2010;1205(1):225–9.PubMedCrossRef Kiapekou E, Zapanti E, Mastorakos G, Loutradis D. Update on the role of ovarian corticotropin-releasing hormone. Ann N Y Acad Sci. 2010;1205(1):225–9.PubMedCrossRef
36.
Zurück zum Zitat CHEN C-LC, CHANG C-C, KRIEGER DT, BARDIN CW. Expression and regulation of proopiomelanocortin-like gene in the ovary and placenta: comparison with the testis. Endocrinology. 1986;118(6):2382–9.CrossRef CHEN C-LC, CHANG C-C, KRIEGER DT, BARDIN CW. Expression and regulation of proopiomelanocortin-like gene in the ovary and placenta: comparison with the testis. Endocrinology. 1986;118(6):2382–9.CrossRef
37.
Zurück zum Zitat Gallinelli A, Garuti G, Matteo M, Genazzani A, Facchinetti F. Genetics: Expression of pro-opiomelanocortin gene in human ovarian tissue. Hum Reprod. 1995;10(5):1085–9.PubMedCrossRef Gallinelli A, Garuti G, Matteo M, Genazzani A, Facchinetti F. Genetics: Expression of pro-opiomelanocortin gene in human ovarian tissue. Hum Reprod. 1995;10(5):1085–9.PubMedCrossRef
38.
Zurück zum Zitat Chen X-Y, Xia H-X, Guan H-Y, Li B, Zhang W. Follicle loss and apoptosis in cyclophosphamide-treated mice: what’s the matter? Int J Mol Sci. 2016;17(6):836.PubMedCentralCrossRef Chen X-Y, Xia H-X, Guan H-Y, Li B, Zhang W. Follicle loss and apoptosis in cyclophosphamide-treated mice: what’s the matter? Int J Mol Sci. 2016;17(6):836.PubMedCentralCrossRef
39.
Zurück zum Zitat Elnahas KH, Aziza SA, El-Senosi YA, Aggag MA. Curcumin and Hesperidin alleviates oxidative stress and hormonal alterations in a rat model of cyclophosphamide-induced premature ovarian failure. Benha Veterinary Medical Journal. 2020;39(1):95–100.CrossRef Elnahas KH, Aziza SA, El-Senosi YA, Aggag MA. Curcumin and Hesperidin alleviates oxidative stress and hormonal alterations in a rat model of cyclophosphamide-induced premature ovarian failure. Benha Veterinary Medical Journal. 2020;39(1):95–100.CrossRef
40.
Zurück zum Zitat Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. In: Histopathology. Springer; 2014. pp. 31–43. Feldman AT, Wolfe D. Tissue processing and hematoxylin and eosin staining. In: Histopathology. Springer; 2014. pp. 31–43.
41.
Zurück zum Zitat Foot NC. The Masson trichrome staining methods in routine laboratory use. Stain Technol. 1933;8(3):101–10.CrossRef Foot NC. The Masson trichrome staining methods in routine laboratory use. Stain Technol. 1933;8(3):101–10.CrossRef
42.
Zurück zum Zitat SAIT M, COSAN M. Effect of chemotherapy on primordial follicular reserve of rat: an animal model of premature ovarian failure and infertility. Aust N Z J Obstet Gynaecol. 2004; 44(1):6-9. SAIT M, COSAN M. Effect of chemotherapy on primordial follicular reserve of rat: an animal model of premature ovarian failure and infertility. Aust N Z J Obstet Gynaecol. 2004; 44(1):6-9.
43.
Zurück zum Zitat Huang Q-y, Chen S-r, Chen J-m, Shi Q-y, Lin S. Therapeutic options for premature ovarian insufficiency: an updated review. Reproductive Biology and Endocrinology. 2022;20(1):1–16.CrossRef Huang Q-y, Chen S-r, Chen J-m, Shi Q-y, Lin S. Therapeutic options for premature ovarian insufficiency: an updated review. Reproductive Biology and Endocrinology. 2022;20(1):1–16.CrossRef
44.
Zurück zum Zitat Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Ligumsky H, Paglin S, Wolf I, Kanety H, Sredni B, Meirow D. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5(185):185ra162–2.CrossRef Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Ligumsky H, Paglin S, Wolf I, Kanety H, Sredni B, Meirow D. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5(185):185ra162–2.CrossRef
45.
Zurück zum Zitat Mohamed SA, Shalaby SM, Abdelaziz M, Brakta S, Hill WD, Ismail N, Al-Hendy A. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reproductive Sci. 2018;25(1):51–63.CrossRef Mohamed SA, Shalaby SM, Abdelaziz M, Brakta S, Hill WD, Ismail N, Al-Hendy A. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reproductive Sci. 2018;25(1):51–63.CrossRef
46.
Zurück zum Zitat Wang S, Sun M, Yu L, Wang Y, Yao Y, Wang D. Niacin inhibits apoptosis and rescues premature ovarian failure. Cell Physiol Biochem. 2018;50(6):2060–70.PubMedCrossRef Wang S, Sun M, Yu L, Wang Y, Yao Y, Wang D. Niacin inhibits apoptosis and rescues premature ovarian failure. Cell Physiol Biochem. 2018;50(6):2060–70.PubMedCrossRef
47.
Zurück zum Zitat Liu H, Yang H, Qin Z, Chen Y, Yu H, Li W, Zhu X, Cai J, Chen J, Zhang M. Exploration of the Danggui Buxue Decoction Mechanism Regulating the Balance of ESR and AR in the TP53-AKT Signaling Pathway in the Prevention and Treatment of POF. Evid Based Complement Alternat Med 2021; 2021:4862164. Liu H, Yang H, Qin Z, Chen Y, Yu H, Li W, Zhu X, Cai J, Chen J, Zhang M. Exploration of the Danggui Buxue Decoction Mechanism Regulating the Balance of ESR and AR in the TP53-AKT Signaling Pathway in the Prevention and Treatment of POF. Evid Based Complement Alternat Med 2021; 2021:4862164.
48.
Zurück zum Zitat Elfayomy AK, Almasry SM, El-Tarhouny SA, Eldomiaty MA. Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: possible direct and indirect effects. Tissue Cell. 2016;48(4):370–82.PubMedCrossRef Elfayomy AK, Almasry SM, El-Tarhouny SA, Eldomiaty MA. Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: possible direct and indirect effects. Tissue Cell. 2016;48(4):370–82.PubMedCrossRef
49.
Zurück zum Zitat Fu XY, Chen HH, Zhang N, Ding MX, Qiu YE, Pan XM, Fang YS, Lin YP, Zheng Q, Wang WQ. Effects of chronic unpredictable mild stress on ovarian reserve in female rats: Feasibility analysis of a rat model of premature ovarian failure. Mol Med Rep. 2018;18(1):532–40.PubMed Fu XY, Chen HH, Zhang N, Ding MX, Qiu YE, Pan XM, Fang YS, Lin YP, Zheng Q, Wang WQ. Effects of chronic unpredictable mild stress on ovarian reserve in female rats: Feasibility analysis of a rat model of premature ovarian failure. Mol Med Rep. 2018;18(1):532–40.PubMed
50.
Zurück zum Zitat Sameni HR, Seiri M, Safari M, Amjad MHT, Khanmohammadi N, Zarbakhsh S. Bone marrow stromal cells with the granulocyte colony-stimulating factor in the management of chemotherapy-induced ovarian failure in a rat model. Iran J Med Sci. 2019;44(2):135.PubMed Sameni HR, Seiri M, Safari M, Amjad MHT, Khanmohammadi N, Zarbakhsh S. Bone marrow stromal cells with the granulocyte colony-stimulating factor in the management of chemotherapy-induced ovarian failure in a rat model. Iran J Med Sci. 2019;44(2):135.PubMed
51.
Zurück zum Zitat Li W-J, Yu H, Yang J-M, Gao J, Jiang H, Feng M, Zhao Y-X, Chen Z-Y. Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice. Brain Res. 2010;1347:71–9.PubMedCrossRef Li W-J, Yu H, Yang J-M, Gao J, Jiang H, Feng M, Zhao Y-X, Chen Z-Y. Anxiolytic effect of music exposure on BDNFMet/Met transgenic mice. Brain Res. 2010;1347:71–9.PubMedCrossRef
52.
Zurück zum Zitat Dorfman MD, Kerr B, Garcia-Rudaz C, Paredes AH, Dissen GA, Ojeda SR. Neurotrophins acting via TRKB receptors activate the JAGGED1-NOTCH2 cell-cell communication pathway to facilitate early ovarian development. Endocrinology. 2011;152(12):5005–16.PubMedPubMedCentralCrossRef Dorfman MD, Kerr B, Garcia-Rudaz C, Paredes AH, Dissen GA, Ojeda SR. Neurotrophins acting via TRKB receptors activate the JAGGED1-NOTCH2 cell-cell communication pathway to facilitate early ovarian development. Endocrinology. 2011;152(12):5005–16.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Dorfman MD, Garcia-Rudaz C, Alderman Z, Kerr B, Lomniczi A, Dissen GA, Castellano JM, Garcia-Galiano D, Gaytan F, Xu B. Loss of Ntrk2/Kiss1r signaling in oocytes causes premature ovarian failure. Endocrinology. 2014;155(8):3098–111.PubMedPubMedCentralCrossRef Dorfman MD, Garcia-Rudaz C, Alderman Z, Kerr B, Lomniczi A, Dissen GA, Castellano JM, Garcia-Galiano D, Gaytan F, Xu B. Loss of Ntrk2/Kiss1r signaling in oocytes causes premature ovarian failure. Endocrinology. 2014;155(8):3098–111.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Calogero AE, Burrello N, Negri-Cesi P, Papale L, Palumbo MA, Cianci A, Sanfilippo S, D’Agata R. Effects of corticotropin-releasing hormone on ovarian estrogen production in vitro. Endocrinology. 1996;137(10):4161–6.PubMedCrossRef Calogero AE, Burrello N, Negri-Cesi P, Papale L, Palumbo MA, Cianci A, Sanfilippo S, D’Agata R. Effects of corticotropin-releasing hormone on ovarian estrogen production in vitro. Endocrinology. 1996;137(10):4161–6.PubMedCrossRef
55.
Zurück zum Zitat DeBold CR, Menefee JK, Nicholson WE, Orth DN. Proopiomelanocortin gene is expressed in many normal human tissues and in tumors not associated with ectopic adrenocorticotropin syndrome. Mol Endocrinol. 1988;2(9):862–70.PubMedCrossRef DeBold CR, Menefee JK, Nicholson WE, Orth DN. Proopiomelanocortin gene is expressed in many normal human tissues and in tumors not associated with ectopic adrenocorticotropin syndrome. Mol Endocrinol. 1988;2(9):862–70.PubMedCrossRef
56.
Zurück zum Zitat Sheshpari S, Shahnazi M, Ahmadian S, Nouri M, Abbasi MM, Beheshti R, Rahbarghazi R, Honaramooz A, Mahdipour M. (2021) Intra-ovarian injection of bone marrow-derived c-Kit + cells for ovarian rejuvenation in menopausal rats. Bioimpacts. 2022;12(4):325-335. Sheshpari S, Shahnazi M, Ahmadian S, Nouri M, Abbasi MM, Beheshti R, Rahbarghazi R, Honaramooz A, Mahdipour M. (2021) Intra-ovarian injection of bone marrow-derived c-Kit + cells for ovarian rejuvenation in menopausal rats. Bioimpacts. 2022;12(4):325-335.
Metadaten
Titel
Classical music restored fertility status in rat model of premature ovarian failure
verfasst von
Nahideh Nazdikbin Yamchi
Mohammad Mojtaba Alizadeh Ashrafi
Hamed Abbasi
Farhad Amjadi
Mohammad Hossein Geranmayeh
Reza Shirazi
Amin Tamadon
Reza Rahbarghazi
Mahdi Mahdipour
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Complementary Medicine and Therapies / Ausgabe 1/2022
Elektronische ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-022-03759-y

Weitere Artikel der Ausgabe 1/2022

BMC Complementary Medicine and Therapies 1/2022 Zur Ausgabe