Skip to main content
Erschienen in: BMC Cancer 1/2011

Open Access 01.12.2011 | Research article

Clinical implication of HLA class I expression in breast cancer

verfasst von: Koichi Kaneko, Sumiya Ishigami, Yuko Kijima, Yawara Funasako, Munetsugu Hirata, Hiroshi Okumura, Hiroyuki Shinchi, Chihaya Koriyama, Shinichi Ueno, Heiji Yoshinaka, Shoji Natsugoe

Erschienen in: BMC Cancer | Ausgabe 1/2011

Abstract

Background

Human leukocyte antigen (HLA)-class I molecules on tumor cells have been regarded as crucial sites where cytotoxic T lymphocytes (CTL) can recognize tumor-specific antigens and are strongly associated with anti-tumor activity. However, the clinical impact of HLA class I expression in breast cancer has not been clarified.

Methods

A total of 212 breast cancer patients who received curative surgery from 1993 to 2003 were enrolled in the current study. HLA class I expression was examined immunohistochemically using an anti-HLA class I monoclonal antibody. The correlation between HLA class I positivity and clinical factors was analyzed.

Results

The downregulation of HLA class I expression in breast cancer was observed in 69 patients (32.5%). HLA class I downregulation was significantly associated with nodal involvement (p < 0.05), TNM stage (p < 0.05), lymphatic invasion (p < 0.01), and venous invasion (p < 0.05). Patients with preserved HLA class I had significantly better disease-free interval (DFI) than those with loss of HLA class I (p < 0.05). However, in multivariable analysis, HLA class I was not selected as one of the independent prognostic factors of disease-free interval.

Conclusion

The examination of HLA class I expression is useful for the prediction of tumor progression and recurrent risk of breast cancer via the antitumor immune system.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2407-11-454) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KY carried out the immuno histopathological studies and performed the statistical analysis. SI participated in its design and coordination. All authors read and approved the final manuscript.
Abkürzungen
ABC method
Avidin-biotin complex method
CTL
cytotoxic T lymphocytes
DFS
disease free survival
HLA
Human leukocyte antigen
OS
overall survival.

Background

The antitumor activity via cytotoxic T lymphocytes (CTL) or tumor antigen has been clarified in the oncological field. Activation of anti-tumor CTL requires the recognition of immunogenic epitopes presented on various types of human leukocyte antigen (HLA) class I molecules on the tumor [14]. The concept of immune surveillance is maintaining the relationship between tumor-associated antigens (TAA) complexing with the HLA class I and tumor-specific cytotoxic T cells. These activated tumor-specific cytotoxic T cells can eliminate cancer cells specifically. The loss of HLA class I on the tumor is believed to lead to malfunction of recognition by the CD8+ T cells. It is already known that malignancies exhibit altered or lost expression of histocompatible antigens on the tumor cells [57]. Loss of HLA class I antigens appears to be a significant mechanism by which tumor cells escape specific immune attack and causes problems in the design of antitumor immunotherapy [7]. The loss of HLA class I antigens on tumor cells has been reported in several human tumors [57], and the loss of HLA class I molecules has been discussed in the context of tumor aggressiveness, such as differentiation of histology [810], invasiveness, and metastatic potential [5, 11].
The non-covalent association with β 2-microglobulin (β 2 m) is essential for the structural stability and optimal function of HLA class I molecules [12]. Thus, several authors have used immunostaining of β 2 m for the analysis of overall surface expression of HLA class I molecules [9, 11, 13]. However, there are often difficulties in evaluating immunostaining using anti-MHC class I monoclonal antibodies (mAbs), such as W6/32, HC-10, or HC-A2, as these type of antibodies are not ideal for the immunostaining of formalin-fixed, paraffin-embedded tissue. Moreover, these antibodies are not fully recognized whole HLA class I properly. Recently, EMR8-5, a monoclonal antibody against HLA class I heavy chains (HLA-A, B, C), has been validated in HLA class I immunohistochemistry [1416], and used to investigate HLA class I expression in osteosarcoma [14], non-small cell lung cancer [15], and renal cell carcinoma [16]. The clinical implication of the HLA class I expression has been discussed and reviewed in breast cancer and it is not clarified [1721]. Moreover, there have been no studies on HLA class I expression of breast cancer by EMR8-5. The present study assessed HLA class I expression in invasive breast cancer by immunohistochemistry using the EMR8-5 antibody, analyzed associations with clinicopathological factors, and discussed the clinical implication of HLA class I-positive breast cancer.

Methods

Patients

A total of 212 breast cancer patients, who consecutively underwent curative operation for primary invasive breast cancer at Kagoshima University Hospital from 1993 and 2003, were enrolled in the current study. None of the patients received any preoperative systemic chemotherapy or endocrine therapy. Clinicopathological features were documented according to TNM classification [17]. All patients were female and their mean age was 56 (ranging from age 23 to 90). One hundred and fifty-three underwent mastectomy and the remaining 59 underwent partial resection. A total of 84 patients had nodal involvement, and the numbers of patients with stages I, II, and III were 70, 101, and 41, respectively. This study was approved by the Ethical Committee of the University of Kagoshima, and written informed consent was obtained from all individuals. Overexpression of the estrogen receptor (ER), progesterone receptor (PgR), and HER2 were examined by immunohistochemical staining using the appropriate primary antibodies. Distinct staining of the nucleus in more than 10% of tumor cells was recorded as positive for ER and PgR, and strong membrane staining in more than 10% of invasive lesions was recorded as positive for HER2.

Immunohistochemical analysis of HLA class I in breast cancer

HLA class I expression was investigated by immunohistochemical staining with the monoclonal anti-pan HLA-class I antibody 5 EMR8-5 (Cosmo Bio Co., Tokyo, Japan). EMR8-5 is an anti-pan HLA class I monoclonal antibody, which can recognize all of HLA A, B, and C heavy chain even in formalin-fixed tissue [22].
The avidin-biotin complex (ABC) method was used to visualize HLA class I expression in breast cancer. Human tonsil sections were used as positive controls for HLA class I, and in the negative controls, the primary antibody was replaced with buffer. The ABC method was performed in accordance with previous reports [1416]. Namely, 4 μm paraffin-embedded sections of breast cancer were de-paraffinized and soaked in PBS. The sections were treated with 3% H2O2 for 30 min in order to block endogenous tissue peroxidases, followed by treatment with rabbit serum for 60 min in order to reduce non-specific binding. Primary anti-HLA-class I antibody was diluted to 1:100 and incubated with the tonsil sections at 4°C overnight. Sections were rinsed in PBS and visualized using standard techniques for labeled avidin-biotin immunoperoxidase staining.
All specimens were reviewed independently using light microscopy for at least five areas at a 400 × magnification by two investigators (KK and SI) who were blinded with respect to the clinicopathological data. The intensity of HLA-class I staining was evaluated in accordance with a previous report [23], using the following criteria: strongly positive (positive), defined as complete membrane staining in 40% or more of tumor cells; weakly positive (negative), any lesser degree of staining appreciable in tumor cells; and absent (negative), no appreciable staining in tumor cells.

Survival analysis and statistical evaluation

Postoperative intervals were estimated by the Kaplan-Meier method. In the survival analysis, we excluded the cases that had not undergone curative resection. The endpoint of survival analysis was defined as the day of death of each patient from not only cancer-related events but also other causes. That of disease-free survival (DFS) was defined as a locoregional recurrence or distant metastasis of breast cancer in soft tissue, lymph nodes, liver, lung, brain, and/or bone by physical and/or pathological examination. Overall survival (OS) and DFS of 212 patients were 88.4% and 83.0%, respectively. Median and mean survivals of these patients were 71.9 and 76.2 months, respectively.
Significant differences of DFS and OS were calculated using the log-rank test, and significant differences in categorical variables were analyzed by the χ2-test. Univariate and multivariable analyses of the postoperative outcome were conducted using Cox's proportional hazards model. Differences were considered significant at p < 0.05. All statistical analyses were performed using Stat View 5.0 software.

Results

Expression and evaluation of HLA class I in breast cancer tissue

HLA class I positivity was found in not only the membrane of tumor cells but also in the cytoplasm of tumor cells (Figure 1). In addition, Some stromal lymphocytes also showed HLA class I positivity. Generally, there was little HLA class I positivity in normal mammary glands adjacent to cancerous tissue. According to the previously mentioned evaluation, 69 patients (32.5%) had strong HLA class I expression, 64 patients (30.2%) had weak expression, and the remaining 79 patients (37.3%) lacked expression. Patients with weak or no expression of HLA class I antigens in breast cancer were classified as the downregulated HLA class I group. In contrast, patients with more than 40% of HLA class I positivity were classified as the positive HLA class I group.

Association between HLA class I and clinicopathological factors

The downregulation of HLA class I expression in breast cancer was significantly associated with nodal metastasis, TNM, lymphatic invasion, and venous invasion (p = 0.04, p = 0.01, p = 0.006, and p = 0.04, respectively) (Table 1). There was no significant association between HLA class I expression and histology or hormonal status.
Table 1
Association between clinical factors and HLA class I expression in 212 breast cancer patients
 
Positive (n = 69)
Negative (n = 143)
p value
Age (years)
   
< 50
23 (11%)
59 (28%)
0.2669
51 <
46 (22%)
84 (40%)
 
Tumor size
   
T1
35 (17%)
51 (24%)
0.0641
T2
31 (15%)
72 (34%)
 
T3
1
12 (57%)
 
T4
2
8 (4%)
 
Nodal invasion
   
Negative
49 (23%)
79 (37%)
0.0278
Positive
20 (9%)
64 (30%)
 
Estrogen receptor
   
Negative
18 (8%)
53 (25%)
0.1126
Positive
51 (24%)
90 (42%)
 
Progesterone receptor
   
Negative
25 (12%)
64 (30%)
0.2387
Positive
44 (21%)
79 (37%)
 
Lymphatic invasion
   
Negative
46 (22%)
67 (32%)
0.0067
Positive
23 (11%)
76 (36%)
 
Venous invation
   
Negative
66 (31%)
122 (58%)
0.0260
Positive
3 (1%)
21 (10%)
 
TNM
   
I
31 (15%)
39 (18%)
0.0110
II
31 (15%)
70 (33%)
 
III
7 (3%)
34 (16%)
 
Histology
   
IDC
67 (32%)
142 (67%)
0.2040
ILC
2
1
 
HER2 receptor
   
Negative
63 (30%)
123 (58%)
0.4539
Positive
6 (3%)
17 (8%)
 
Patients' overall survival (OS) and disease-free survival (DFS) with or without HLA class I expression in breast cancer
Postoperative OS was not significantly different according to HLA class I expression. However, patients with HLA class I positivity had significantly longer DFS than those without HLA class I positivity (p < 0.05) (Figure 2). Using univariate analysis, seven clinical factors, including HLA class I expression, were selected as significant for DFS (Table 2). According to multivariable analysis using these seven factors, lymph node metastasis, progesterone receptor, and vascular invasion were independent prognostic factors. HLA class I expression was not selected as an independent factor for DFS (Table 2).
Table 2
Univariate and multivariable analyses for DFS
  
Univariate analysis
Multivariable analysis
  
Disease free interval
Disease free interval
Variables
Categories
HR (95% confidence interval)
p value
HR (95% confidence interval)
p value
Tumor size
T3+T4 (vs T1+T2)
0.249 (0.120 - 0.514)
P = 0.0020
0.459 (0.212 - 0.995)
P = 0.0485
Nodal involvement
N1 (vs N0)
0.148 (0.068 - 0.324)
P < 0.0001
0.230 (0.092 - 0.574)
P = 0.0016
Estrogen receptor
Positive (vs negative)
1.656 (0.872 - 3.146)
0.1231
  
Progesterone receptor
Positive (vs negative)
1.932 (1.019 - 3.664)
P = 0.0437
2.168 (1.109 - 4.240)
P = 0.0237
Lymphatic invasion
Positive (vs negative)
0.246 (0.117 - 0.521)
P = 0.0020
0.871 (0.346 - 2.194)
0.7689
Vascular invasion
Positive (vs negative)
0.184 (0.094 - 0.361)
P < 0.0001
0.423 (0.198 - 0.904)
P = 0.0264
HER2 receptor
Positive (vs negative)
0.653 (0.272 - 1.565)
0.3390
  
HLA class I expression
Negative (vs positive)
2.513 (1.050 - 6.012)
P = 0.0384
1.691 (0.696 - 4.110)
0.2462

Discussion

The monoclonal antibody EMR8-5 can recognize all of HLA A, B, and C heavy chain even in formalin-fixed tissue. In this context, EMR8-5 can recognize whole HLA molecules, and its validity was supported by the immunostaining performed in our current studies. Cordon et al. reported that HLA class I positivity examined using the conventional HLA class I antibody W6/32, which also recognizes all HLA class I antigens, was 30% of HLA class I positivity in breast cancer, similar to that shown in our present study [24]. In contrast, Madjd et al. investigated HLA class I expression in breast cancer using a HC-10 antibody [24], and demonstrated that HLA class I negativity correlated with a better postoperative outcome. These results conflicted with the data in our studies. This discrepancy may be explained by the fact that whereas the HC10 mAb scarcely reacts with HLA-A alleles, the anti- HLA class I heavy chain mAb EMR8-5 can detect all recombinant proteins of HLA-A, B, and C alleles by immunoblot analysis [25]. In addition, EMR8-5 can be applied to paraffin-fixed specimens, so in this context it is an ideal antibody for evaluating cancerous HLA class I antigen expression.
In our current study, the downregulation of HLA class I expression in breast cancer was 66%, which was more than that in gastric (32%) [22] and esophageal cancer (43%) [26], and osteosarcoma (55%) [14], but less than the downregulation in lung cancer (70%) [15]. The degree of HLA class I loss may be affected by organ specificity. For example, Ishigami et al. speculated that highly preserved HLA class I expression in gastric cancer is partly due to exogenous stimulation from gastritis or bacterial infection of Helicobacter pylori [22]. The differences in HLA class I expression in breast cancer may also be explained by the possible inflammation and proteolysis that can occur at the sites of breast cancer origin. These are important steps linked both to HLA loss and cancer aggressiveness. In this study, there was little HLA class I positivity in normal mammary gland tissue. In contrast, HLA class I antigens were preserved in early breast cancer, and cancerous HLA class I antigens were newly expressed or reduced according to the tumor extension. Although T1 tumors had 41% HLA class I positivity, T3-4 tumors only showed 15% positivity. According to tumor extension, preservation of HLA class I of the tumor was reduced. This clinical trait was also reported in other types of malignancies, such as gastrointestinal cancer [22, 26] and sarcoma [14]. It is possible that, in the process of tumor extension, tumors that lost HLA class I survived and escaped from antigen-specific CTL-mediated lysis leading to tumor dissemination and metastasis. However, these results do not fully explain the relationship with metastasis, therefore we need to perform more analyses comparing the results among in situ, lobular and ductal breast cancers on key parameters, such as VEGF, MMP etc.
In the current study, the downregulation of HLA class I expression was significantly associated with lymphatic and nodal invasion. Mizukami et al. showed that when HLA class I-positive esophageal cancer metastasized to the lymph node, tumor cells completely lost HLA class I expression in this system [22]. Zia et al. investigated the immunological characteristics of isolated cancer cells (ITC) in bone marrow and found that ITCs with the HLA class I downregulation phenotype were often derived from poorly differentiated primary breast carcinomas which was associated with a short survival period in breast cancer [27]. Therefore, cancerous HLA class I downregulation seems to be conducive to metastasis to other organs.
Patients with positive HLA class I expression showed a better DFS in comparison with those with downregulation of HLA class I expression. This result differs from that for esophageal cancer [26]. In breast cancer, the average OS is generally better than those in other malignancies; DFS is often used to evaluate aggressiveness of biological markers in breast cancer. In this context, significant differentiation in DFS seems to be meaningful.
It has been clarified that HLA molecule inactivity depends not only on the expression of HLA class I molecules themselves, but also on the post-transcriptional course that mainly affects β2-microglobulin gene expression. Aptsiauri et al. [28] showed that if apparent tumor cells expressed HLA class I, various types of HLA class I alterations were found in malignancies and in the molecular mechanisms that underlie these defects. In this context, the HLA class I molecules preserved in these breast cancers may exhibit altered expression and dysfunction as antigen presentation molecules. It seems to be difficult to precisely evaluate HLA class I expression, however, in the current study, we evaluate HLA expression including in β2 microglobulin expression using the EMR8-5 antibody.

Conclusions

The downregulation of HLA class I expression frequently occurred in breast cancer, in a similar manner to what has been seen in several other cancers, and it may also be associated with tumor progression and relapse. Therefore HLA class I status may be useful with other well-known prognostic factors like nodal involvement and hormone status to evaluate postoperative outcomes in breast cancer.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

KY carried out the immuno histopathological studies and performed the statistical analysis. SI participated in its design and coordination. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S: Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000, 74: 181-273.CrossRefPubMed Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S: Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000, 74: 181-273.CrossRefPubMed
2.
Zurück zum Zitat Tangri S, Ishioka GY, Huang X, Sidney J, Southwood S, Fikes J, Sette A: Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J Exp Med. 2001, 194: 833-846. 10.1084/jem.194.6.833.CrossRefPubMedPubMedCentral Tangri S, Ishioka GY, Huang X, Sidney J, Southwood S, Fikes J, Sette A: Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J Exp Med. 2001, 194: 833-846. 10.1084/jem.194.6.833.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Cabrera T, Maleno I, Collado A, Lopez Nevot MA, Tait BD, Garrido F: Analysis of HLA class I alterations in tumors: choosing a strategy based on known patterns of underlying molecular mechanisms. Tissue Antigens. 2007, 69 (Suppl 1): 264-268.CrossRefPubMed Cabrera T, Maleno I, Collado A, Lopez Nevot MA, Tait BD, Garrido F: Analysis of HLA class I alterations in tumors: choosing a strategy based on known patterns of underlying molecular mechanisms. Tissue Antigens. 2007, 69 (Suppl 1): 264-268.CrossRefPubMed
4.
Zurück zum Zitat Nagorsen D, Thiel E: HLA typing demands for peptide-based anti-cancer vaccine. Cancer Immunol Immunother. 2008, 57: 1903-1910. 10.1007/s00262-008-0493-6.CrossRefPubMed Nagorsen D, Thiel E: HLA typing demands for peptide-based anti-cancer vaccine. Cancer Immunol Immunother. 2008, 57: 1903-1910. 10.1007/s00262-008-0493-6.CrossRefPubMed
5.
Zurück zum Zitat Garrido F, Cabrera T, Concha A, Glew S, Ruiz-Cabello F, Stern PL: Natural history of HLA expression during tumour development. Immunol Today. 1993, 14: 491-499. 10.1016/0167-5699(93)90264-L.CrossRefPubMed Garrido F, Cabrera T, Concha A, Glew S, Ruiz-Cabello F, Stern PL: Natural history of HLA expression during tumour development. Immunol Today. 1993, 14: 491-499. 10.1016/0167-5699(93)90264-L.CrossRefPubMed
6.
Zurück zum Zitat Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL: Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today. 1997, 18: 89-95. 10.1016/S0167-5699(96)10075-X.CrossRefPubMed Garrido F, Ruiz-Cabello F, Cabrera T, Perez-Villar JJ, Lopez-Botet M, Duggan-Keen M, Stern PL: Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol Today. 1997, 18: 89-95. 10.1016/S0167-5699(96)10075-X.CrossRefPubMed
7.
Zurück zum Zitat Hicklin DJ, Marincola FM, Ferrone S: HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999, 5: 178-186. 10.1016/S1357-4310(99)01451-3.CrossRefPubMed Hicklin DJ, Marincola FM, Ferrone S: HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today. 1999, 5: 178-186. 10.1016/S1357-4310(99)01451-3.CrossRefPubMed
8.
Zurück zum Zitat Eyal A, Levin I, Segal S, Levi I, Klein B, Kuperman O: Variation of HLA-ABC surface antigen expression on adenocarcinoma of the colon in correlation with the degree of differentiation. Nat Immun Cell Growth Regul. 1990, 9: 222-227.PubMed Eyal A, Levin I, Segal S, Levi I, Klein B, Kuperman O: Variation of HLA-ABC surface antigen expression on adenocarcinoma of the colon in correlation with the degree of differentiation. Nat Immun Cell Growth Regul. 1990, 9: 222-227.PubMed
9.
Zurück zum Zitat Levin I, Klein T, Goldstein J, Kuperman O, Kanetti J, Klein B: Expression of class I histocompatibility antigens in transitional cell carcinoma of the urinary bladder in relation to survival. Cancer. 1991, 68: 2591-2594. 10.1002/1097-0142(19911215)68:12<2591::AID-CNCR2820681212>3.0.CO;2-L.CrossRefPubMed Levin I, Klein T, Goldstein J, Kuperman O, Kanetti J, Klein B: Expression of class I histocompatibility antigens in transitional cell carcinoma of the urinary bladder in relation to survival. Cancer. 1991, 68: 2591-2594. 10.1002/1097-0142(19911215)68:12<2591::AID-CNCR2820681212>3.0.CO;2-L.CrossRefPubMed
10.
Zurück zum Zitat Concha A, Cabrera T, Ruiz-Cabello F, Garrido F: Can the HLA phenotype be used as a prognostic factor in breast carcinomas?. Int J Cancer Suppl. 1991, 6: 146-154.CrossRefPubMed Concha A, Cabrera T, Ruiz-Cabello F, Garrido F: Can the HLA phenotype be used as a prognostic factor in breast carcinomas?. Int J Cancer Suppl. 1991, 6: 146-154.CrossRefPubMed
11.
Zurück zum Zitat Petersen BL, Petersen CL, Braendstrup O, Mouritsen S, Engel AM, Svane IM, Werdelin O: Expression of beta 2-microglobulin by premalignant epithelium. APMIS. 1993, 101: 529-536. 10.1111/j.1699-0463.1993.tb00142.x.CrossRefPubMed Petersen BL, Petersen CL, Braendstrup O, Mouritsen S, Engel AM, Svane IM, Werdelin O: Expression of beta 2-microglobulin by premalignant epithelium. APMIS. 1993, 101: 529-536. 10.1111/j.1699-0463.1993.tb00142.x.CrossRefPubMed
12.
Zurück zum Zitat Pedersen LO, Stryhn A, Holter TL, Etzerodt M, Gerwien J, Nissen MH, Thogersen HC, Buus S: The interaction of beta 2-microglobulin (beta 2 m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2 m. Eur J Immunol. 1995, 25: 1609-1616. 10.1002/eji.1830250621.CrossRefPubMed Pedersen LO, Stryhn A, Holter TL, Etzerodt M, Gerwien J, Nissen MH, Thogersen HC, Buus S: The interaction of beta 2-microglobulin (beta 2 m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2 m. Eur J Immunol. 1995, 25: 1609-1616. 10.1002/eji.1830250621.CrossRefPubMed
13.
Zurück zum Zitat Cabrera T, Angustias Fernandez M, Sierra A, Garrido A, Herruzo A, Escobedo A, Fabra A, Garrido F: High frequency of altered HLA class I phenotypes in invasive breast carcinomas. Hum Immunol. 1996, 50: 127-134. 10.1016/0198-8859(96)00145-0.CrossRefPubMed Cabrera T, Angustias Fernandez M, Sierra A, Garrido A, Herruzo A, Escobedo A, Fabra A, Garrido F: High frequency of altered HLA class I phenotypes in invasive breast carcinomas. Hum Immunol. 1996, 50: 127-134. 10.1016/0198-8859(96)00145-0.CrossRefPubMed
14.
Zurück zum Zitat Tsukahara T, Kawaguchi S, Torigoe T, Asanuma H, Nakazawa E, Shimozawa K, Nabeta Y, Kimura S, Kaya M, Nagoya S, Wada T, Yamashita T, Sato N: Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8-5. Cancer Sci. 2006, 97: 1374-1380. 10.1111/j.1349-7006.2006.00317.x.CrossRefPubMed Tsukahara T, Kawaguchi S, Torigoe T, Asanuma H, Nakazawa E, Shimozawa K, Nabeta Y, Kimura S, Kaya M, Nagoya S, Wada T, Yamashita T, Sato N: Prognostic significance of HLA class I expression in osteosarcoma defined by anti-pan HLA class I monoclonal antibody, EMR8-5. Cancer Sci. 2006, 97: 1374-1380. 10.1111/j.1349-7006.2006.00317.x.CrossRefPubMed
15.
Zurück zum Zitat Kikuchi E, Yamazaki K, Torigoe T, Cho Y, Miyamoto M, Oizumi S, Hommura F, Dosaka-Akita H, Nishimura M: HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer. Cancer Sci. 2007, 98: 1424-1430. 10.1111/j.1349-7006.2007.00558.x.CrossRefPubMed Kikuchi E, Yamazaki K, Torigoe T, Cho Y, Miyamoto M, Oizumi S, Hommura F, Dosaka-Akita H, Nishimura M: HLA class I antigen expression is associated with a favorable prognosis in early stage non-small cell lung cancer. Cancer Sci. 2007, 98: 1424-1430. 10.1111/j.1349-7006.2007.00558.x.CrossRefPubMed
16.
Zurück zum Zitat Kitamura H, Honma I, Torigoe T, Asanuma H, Sato N, Tsukamoto T: Down-regulation of HLA class I antigen is an independent prognostic factor for clear cell renal cell carcinoma. J Urol. 2007, 177: 1269-1272. 10.1016/j.juro.2006.11.082.CrossRefPubMed Kitamura H, Honma I, Torigoe T, Asanuma H, Sato N, Tsukamoto T: Down-regulation of HLA class I antigen is an independent prognostic factor for clear cell renal cell carcinoma. J Urol. 2007, 177: 1269-1272. 10.1016/j.juro.2006.11.082.CrossRefPubMed
17.
Zurück zum Zitat Campoli M, Ferrone S: HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008, 27: 5869-85. 10.1038/onc.2008.273.CrossRefPubMedPubMedCentral Campoli M, Ferrone S: HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008, 27: 5869-85. 10.1038/onc.2008.273.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat de Kruijf EM, Sajet A, van Nes JG, Natanov R, Putter H, Smit VT, Liefers GJ, van den Elsen PJ, van de Velde CJ, Kuppen PJ: HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol. 2010, 185: 7452-9. 10.4049/jimmunol.1002629.CrossRefPubMed de Kruijf EM, Sajet A, van Nes JG, Natanov R, Putter H, Smit VT, Liefers GJ, van den Elsen PJ, van de Velde CJ, Kuppen PJ: HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients. J Immunol. 2010, 185: 7452-9. 10.4049/jimmunol.1002629.CrossRefPubMed
19.
Zurück zum Zitat Boomsma MF, Garssen B, Slot E, Berbee M, Berkhof J, Meezenbroek Ede J, Slieker W, Visser A, Meijer S, Beelen RH: Breast cancer surgery-induced immunomodulation. J Surg Oncol. 2010, 102 (6): 640-8. 10.1002/jso.21662.CrossRefPubMed Boomsma MF, Garssen B, Slot E, Berbee M, Berkhof J, Meezenbroek Ede J, Slieker W, Visser A, Meijer S, Beelen RH: Breast cancer surgery-induced immunomodulation. J Surg Oncol. 2010, 102 (6): 640-8. 10.1002/jso.21662.CrossRefPubMed
20.
Zurück zum Zitat de Kruijf EM, van Nes JG, Sajet A, Tummers QR, Putter H, Osanto S, Speetjens FM, Smit VT, Liefers GJ, van de Velde CJ, Kuppen PJ: The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res. 2010, 16: 1272-80. 10.1158/1078-0432.CCR-09-1844.CrossRefPubMed de Kruijf EM, van Nes JG, Sajet A, Tummers QR, Putter H, Osanto S, Speetjens FM, Smit VT, Liefers GJ, van de Velde CJ, Kuppen PJ: The predictive value of HLA class I tumor cell expression and presence of intratumoral Tregs for chemotherapy in patients with early breast cancer. Clin Cancer Res. 2010, 16: 1272-80. 10.1158/1078-0432.CCR-09-1844.CrossRefPubMed
21.
Zurück zum Zitat Lavado-Valenzuela R, Benavides M, Carabantes F, Alonso A, Caballero A: MHC class I chain-related gene A transmembrane polymorphism in Spanish women with breast cancer. Tissue Antigens. 2009, 74: 46-9. 10.1111/j.1399-0039.2009.01254.x.CrossRefPubMed Lavado-Valenzuela R, Benavides M, Carabantes F, Alonso A, Caballero A: MHC class I chain-related gene A transmembrane polymorphism in Spanish women with breast cancer. Tissue Antigens. 2009, 74: 46-9. 10.1111/j.1399-0039.2009.01254.x.CrossRefPubMed
22.
Zurück zum Zitat Ishigami S, Natsugoe S, Nakajo A, Arigami T, Kitazono M, Okumura H, Matsumoto M, Uchikado Y, Setoyama T, Sasaki K, Aikou T: HLA-class I expression in gastric cancer. J Surg Oncol. 2008, 97: 605-608. 10.1002/jso.21029.CrossRefPubMed Ishigami S, Natsugoe S, Nakajo A, Arigami T, Kitazono M, Okumura H, Matsumoto M, Uchikado Y, Setoyama T, Sasaki K, Aikou T: HLA-class I expression in gastric cancer. J Surg Oncol. 2008, 97: 605-608. 10.1002/jso.21029.CrossRefPubMed
23.
Zurück zum Zitat Cordon-Cardo C, Fuks Z, Drobnjak M, Moreno C, Eisenbach L, Feldman M: Expression of HLA-A,B,C antigens on primary and metastatic tumor cell populations of human carcinomas. Cancer Res. 1991, 51: 6372-6380.PubMed Cordon-Cardo C, Fuks Z, Drobnjak M, Moreno C, Eisenbach L, Feldman M: Expression of HLA-A,B,C antigens on primary and metastatic tumor cell populations of human carcinomas. Cancer Res. 1991, 51: 6372-6380.PubMed
24.
Zurück zum Zitat Madjd Z, Spendlove I, Pinder SE, Ellis IO, Durrant LG: Total loss of MHC class I is an independent indicator of good prognosis in breast cancer. Int J Cancer. 2005, 117: 248-55. 10.1002/ijc.21163.CrossRefPubMed Madjd Z, Spendlove I, Pinder SE, Ellis IO, Durrant LG: Total loss of MHC class I is an independent indicator of good prognosis in breast cancer. Int J Cancer. 2005, 117: 248-55. 10.1002/ijc.21163.CrossRefPubMed
25.
Zurück zum Zitat Sato N, Hirohashi Y, Tsukahara T, Kikuchi T, Sahara H, Kamiguchi K, Ichimiya S, Tamura Y, Torigoe T: Molecular pathological approaches to human tumor immunology. Pathology International. 2009, 59: 205-217. 10.1111/j.1440-1827.2009.02353.x.CrossRefPubMed Sato N, Hirohashi Y, Tsukahara T, Kikuchi T, Sahara H, Kamiguchi K, Ichimiya S, Tamura Y, Torigoe T: Molecular pathological approaches to human tumor immunology. Pathology International. 2009, 59: 205-217. 10.1111/j.1440-1827.2009.02353.x.CrossRefPubMed
26.
Zurück zum Zitat Mizukami Y, Kono K, Maruyama T, Watanabe M, Kawaguchi Y, Kamimura K, Fujii H: Downregulation of HLA Class I molecules in the tumour is associated with a poor prognosis in patients with oesophageal squamous cell carcinoma. Br J Cancer. 2008, 99: 1462-1467. 10.1038/sj.bjc.6604715.CrossRefPubMedPubMedCentral Mizukami Y, Kono K, Maruyama T, Watanabe M, Kawaguchi Y, Kamimura K, Fujii H: Downregulation of HLA Class I molecules in the tumour is associated with a poor prognosis in patients with oesophageal squamous cell carcinoma. Br J Cancer. 2008, 99: 1462-1467. 10.1038/sj.bjc.6604715.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Zia A, Schildberg FW, Funke I: MHC class I negative phenotype of disseminated tumor cells in bone marrow is associated with poor survival in R0M0 breast cancer patients. Int J Cancer. 2001, 93: 566-570. 10.1002/ijc.1362.CrossRefPubMed Zia A, Schildberg FW, Funke I: MHC class I negative phenotype of disseminated tumor cells in bone marrow is associated with poor survival in R0M0 breast cancer patients. Int J Cancer. 2001, 93: 566-570. 10.1002/ijc.1362.CrossRefPubMed
28.
Zurück zum Zitat Aptsiauri N, Cabrera T, Mendez R, Garcia-Lor A, Ruiz-Cabello F, Garrido F: Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol. 2007, 601: 123-131. 10.1007/978-0-387-72005-0_13.CrossRefPubMed Aptsiauri N, Cabrera T, Mendez R, Garcia-Lor A, Ruiz-Cabello F, Garrido F: Role of altered expression of HLA class I molecules in cancer progression. Adv Exp Med Biol. 2007, 601: 123-131. 10.1007/978-0-387-72005-0_13.CrossRefPubMed
Metadaten
Titel
Clinical implication of HLA class I expression in breast cancer
verfasst von
Koichi Kaneko
Sumiya Ishigami
Yuko Kijima
Yawara Funasako
Munetsugu Hirata
Hiroshi Okumura
Hiroyuki Shinchi
Chihaya Koriyama
Shinichi Ueno
Heiji Yoshinaka
Shoji Natsugoe
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2011
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-454

Weitere Artikel der Ausgabe 1/2011

BMC Cancer 1/2011 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.