Skip to main content
Erschienen in: Journal of Neuro-Oncology 1/2018

28.10.2017 | Topic Review

Clinical implications of in silico mathematical modeling for glioblastoma: a critical review

verfasst von: Maria Protopapa, Anna Zygogianni, Georgios S. Stamatakos, Christos Antypas, Christina Armpilia, Nikolaos K. Uzunoglu, Vassilis Kouloulias

Erschienen in: Journal of Neuro-Oncology | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Glioblastoma remains a clinical challenge in spite of years of extensive research. Novel approaches are needed in order to integrate the existing knowledge. This is the potential role of mathematical oncology. This paper reviews mathematical models on glioblastoma from the clinical doctor’s point of view, with focus on 3D modeling approaches of radiation response of in vivo glioblastomas based on contemporary imaging techniques. As these models aim to provide a clinically useful tool in the era of personalized medicine, the integration of the latest advances in molecular and imaging science and in clinical practice by the in silico models is crucial for their clinical relevance. Our aim is to indicate areas of GBM research that have not yet been addressed by in silico models and to point out evidence that has come up from in silico experiments, which may be worth considering in the clinic. This review examines how close these models have come in predicting the outcome of treatment protocols and in shaping the future of radiotherapy treatments.
Literatur
1.
Zurück zum Zitat Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G (2014) High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25:93–101. doi:10.1093/annonc/mdu050 CrossRef Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G (2014) High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25:93–101. doi:10.​1093/​annonc/​mdu050 CrossRef
5.
11.
Zurück zum Zitat Swanson KR, Harpold HLP, Peacock DL et al (2008) Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle. Clin Oncol 20(4):301–308. doi:10.1016/j.clon.2008.01.006 CrossRef Swanson KR, Harpold HLP, Peacock DL et al (2008) Velocity of radial expansion of contrast-enhancing gliomas and the effectiveness of radiotherapy in individual patients: a proof of principle. Clin Oncol 20(4):301–308. doi:10.​1016/​j.​clon.​2008.​01.​006 CrossRef
18.
Zurück zum Zitat Swanson KR, Rostomily RC, Alvord EC (2008) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98:113–119. doi:10.1038/sj.bjc.6604125 CrossRefPubMed Swanson KR, Rostomily RC, Alvord EC (2008) A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. Br J Cancer 98:113–119. doi:10.​1038/​sj.​bjc.​6604125 CrossRefPubMed
21.
Zurück zum Zitat Rockne R, Rochhill J, Mrugala M et al (2010) Predicting efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55(12):3271–3285CrossRefPubMedPubMedCentral Rockne R, Rochhill J, Mrugala M et al (2010) Predicting efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Phys Med Biol 55(12):3271–3285CrossRefPubMedPubMedCentral
22.
25.
26.
Zurück zum Zitat Neal ML, Trister AD, Cloke T et al (2013) Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric. PLoS ONE. doi:10.1371/journal.pone.0051951 Neal ML, Trister AD, Cloke T et al (2013) Discriminating survival outcomes in patients with glioblastoma using a simulation-based, patient-specific response metric. PLoS ONE. doi:10.​1371/​journal.​pone.​0051951
31.
34.
38.
Zurück zum Zitat Colombo MC, Giverso C, Faggiano E, Boffano C, Acerbi F, Ciarletta P (2015) Towards the personalized treatment of glioblastoma: integrating patient-specific clinical data in a continuous mechanical model. PLoS ONE 10(7):1–23. doi:10.1371/journal.pone.0132887 CrossRef Colombo MC, Giverso C, Faggiano E, Boffano C, Acerbi F, Ciarletta P (2015) Towards the personalized treatment of glioblastoma: integrating patient-specific clinical data in a continuous mechanical model. PLoS ONE 10(7):1–23. doi:10.​1371/​journal.​pone.​0132887 CrossRef
39.
Zurück zum Zitat Düchting W, Ulmer W, Lehrig R, Ginsberg T, Dedeleit E (1992) Computer simulation and modelling of tumor spheroid growth and their relevance for optimization of fractionated radiotherapy. Strahlenther Onkol 168(6):354–360. http://www.ncbi.nlm.nih.gov/pubmed/1320297. Accessed 13 March 2017 Düchting W, Ulmer W, Lehrig R, Ginsberg T, Dedeleit E (1992) Computer simulation and modelling of tumor spheroid growth and their relevance for optimization of fractionated radiotherapy. Strahlenther Onkol 168(6):354–360. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​1320297. Accessed 13 March 2017
43.
Zurück zum Zitat Duchting W, Ginsberg T, Ulmer W (1995) Chapter 7: Biomathematical engineering of cell renewal systems: modeling of radiogenic responses induced by fractionated irradiation in malignant and normal tissue. Stem Cells 13(S1):301–306. doi:10.1002/stem.5530130737 CrossRefPubMed Duchting W, Ginsberg T, Ulmer W (1995) Chapter 7: Biomathematical engineering of cell renewal systems: modeling of radiogenic responses induced by fractionated irradiation in malignant and normal tissue. Stem Cells 13(S1):301–306. doi:10.​1002/​stem.​5530130737 CrossRefPubMed
44.
Zurück zum Zitat Düchting W, Ginsberg T, Ulmerb W (1995) Modeling of radiogenic responses induced by fractionated irradiation in malignant and normal tissue. Stem Cells 13:301–306CrossRefPubMed Düchting W, Ginsberg T, Ulmerb W (1995) Modeling of radiogenic responses induced by fractionated irradiation in malignant and normal tissue. Stem Cells 13:301–306CrossRefPubMed
45.
Zurück zum Zitat Dionysiou DD, Stamatakos GS, Uzunoglu NK, Nikita KS, Marioli A (2004) A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J Theor Biol 230(1):1–20. doi:10.1016/j.jtbi.2004.03.024 CrossRefPubMed Dionysiou DD, Stamatakos GS, Uzunoglu NK, Nikita KS, Marioli A (2004) A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J Theor Biol 230(1):1–20. doi:10.​1016/​j.​jtbi.​2004.​03.​024 CrossRefPubMed
46.
Zurück zum Zitat Dionysiou DD, Peristeris T, Stamatakos GS, Nikita KS, Uzunoglu NK (2004) The genetic profile of a tumor as a determinant of its response to radiotherapy: a computer simulation of two different radiotherapeutic schemes. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vols 1–7. 26(gap 2):3035–3038 Dionysiou DD, Peristeris T, Stamatakos GS, Nikita KS, Uzunoglu NK (2004) The genetic profile of a tumor as a determinant of its response to radiotherapy: a computer simulation of two different radiotherapeutic schemes. In: Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vols 1–7. 26(gap 2):3035–3038
50.
51.
Zurück zum Zitat Dionysiou DD, Stamatakos GS (2006) Applying a 4D multiscale in vivo tumor growth model to the exploration of radiotherapy scheduling: the effects of weekend treatment gaps and p53 gene status on the response of fast growing solid tumors. Cancer Inform 2:113–121CrossRef Dionysiou DD, Stamatakos GS (2006) Applying a 4D multiscale in vivo tumor growth model to the exploration of radiotherapy scheduling: the effects of weekend treatment gaps and p53 gene status on the response of fast growing solid tumors. Cancer Inform 2:113–121CrossRef
54.
62.
Zurück zum Zitat Hawkins-Daarud A, Rockne R, Corwin D, Anderson ARA, Kinahan P, Swanson KR (2015) In silico analysis suggests differential response to bevacizumab and radiation combination therapy in newly diagnosed glioblastoma. J Royal Soc Interface 12(109):20150388. doi:10.1098/rsif.2015.0388 CrossRef Hawkins-Daarud A, Rockne R, Corwin D, Anderson ARA, Kinahan P, Swanson KR (2015) In silico analysis suggests differential response to bevacizumab and radiation combination therapy in newly diagnosed glioblastoma. J Royal Soc Interface 12(109):20150388. doi:10.​1098/​rsif.​2015.​0388 CrossRef
63.
Zurück zum Zitat Antipas VP, Stamatakos GS, Uzunoglu NK, Dionysiou DD, Dale RG (2004) A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: parametric validation concerning oxygen enhancement ratio and cell cycle duration. Phys Med Biol 49(8):1485–1504CrossRefPubMed Antipas VP, Stamatakos GS, Uzunoglu NK, Dionysiou DD, Dale RG (2004) A spatio-temporal simulation model of the response of solid tumours to radiotherapy in vivo: parametric validation concerning oxygen enhancement ratio and cell cycle duration. Phys Med Biol 49(8):1485–1504CrossRefPubMed
Metadaten
Titel
Clinical implications of in silico mathematical modeling for glioblastoma: a critical review
verfasst von
Maria Protopapa
Anna Zygogianni
Georgios S. Stamatakos
Christos Antypas
Christina Armpilia
Nikolaos K. Uzunoglu
Vassilis Kouloulias
Publikationsdatum
28.10.2017
Verlag
Springer US
Erschienen in
Journal of Neuro-Oncology / Ausgabe 1/2018
Print ISSN: 0167-594X
Elektronische ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-017-2650-2

Weitere Artikel der Ausgabe 1/2018

Journal of Neuro-Oncology 1/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.