Skip to main content
Erschienen in: Nuclear Medicine and Molecular Imaging 3/2019

15.01.2019 | Perspective

Clinical Personal Connectomics Using Hybrid PET/MRI

verfasst von: Dong Soo Lee

Erschienen in: Nuclear Medicine and Molecular Imaging | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Brain connectivity can now be studied with topological analysis using persistent homology. It overcame the arbitrariness of thresholding to make binary graphs for comparison between disease and normal control groups. Resting-state fMRI can yield personal interregional brain connectivity based on perfusion signal on MRI on individual subject bases and FDG PET produces the topography of glucose metabolism. Assuming metabolism perfusion coupling and disregarding the slight difference of representing time of metabolism (before image acquisition) and representing time of perfusion (during image acquisition), topography of brain metabolism on FDG PET and topologically analyzed brain connectivity on resting-state fMRI might be related to yield personal connectomics of individual subjects and even individual patients. The work of association of FDG PET/resting-state fMRI is yet to be warranted; however, the statistics behind the group comparison of connectivity on FDG PET or resting-state MRI was already developed. Before going further into the connectomics construction using directed weighted brain graphs of FDG PET or resting-state fMRI, I detailed in this review the plausibility of using hybrid PET/MRI to enable the interpretation of personal connectomics which can lead to the clinical use of brain connectivity in the near future.
Literatur
1.
Zurück zum Zitat Matsuda H. Voxel-based morphometry of brain MRI in normal aging and Alzheimer’s disease. Aging Dis. 2013;4:29–37.PubMed Matsuda H. Voxel-based morphometry of brain MRI in normal aging and Alzheimer’s disease. Aging Dis. 2013;4:29–37.PubMed
2.
Zurück zum Zitat Buchholz HG, Wenzel F, Gartenschläger M, Thiele F, Young S, Reuss S, et al. Construction and comparative evaluation of different activity detection methods in brain FDG-PET. Biomed Eng Online. 2015;14:79.CrossRefPubMedPubMedCentral Buchholz HG, Wenzel F, Gartenschläger M, Thiele F, Young S, Reuss S, et al. Construction and comparative evaluation of different activity detection methods in brain FDG-PET. Biomed Eng Online. 2015;14:79.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Lee Y, Bjørnstad JF. Extended likelihood approach to large-scale multiple testing. J R Stat Soc Ser B Stat Methodol. 2013;75:553–75.CrossRef Lee Y, Bjørnstad JF. Extended likelihood approach to large-scale multiple testing. J R Stat Soc Ser B Stat Methodol. 2013;75:553–75.CrossRef
4.
Zurück zum Zitat Lee D, Kang H, Kim E, Lee H, Kim H, Kim YK, et al. Optimal likelihood-ratio multiple testing with application to Alzheimer’s disease and questionable dementia. BMC Med Res Methodol. 2015;15:9.CrossRefPubMedPubMedCentral Lee D, Kang H, Kim E, Lee H, Kim H, Kim YK, et al. Optimal likelihood-ratio multiple testing with application to Alzheimer’s disease and questionable dementia. BMC Med Res Methodol. 2015;15:9.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Lee D, Lee Y. Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model. J Multivar Anal. 2016;151:1–3.CrossRef Lee D, Lee Y. Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model. J Multivar Anal. 2016;151:1–3.CrossRef
6.
7.
Zurück zum Zitat Choe AS, Jones CK, Joel SE, Muschelli J, Belegu V, Caffo BS, et al. Reproducibility and temporal structure in weekly resting-state fMRI over a period of 3.5 years. PLoS One. 2015;10:e0140134.CrossRefPubMedPubMedCentral Choe AS, Jones CK, Joel SE, Muschelli J, Belegu V, Caffo BS, et al. Reproducibility and temporal structure in weekly resting-state fMRI over a period of 3.5 years. PLoS One. 2015;10:e0140134.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Arganda-Carreras I, Turaga SC, Berger DR, Cireşan D, Giusti A, Gambardella LM, et al. Crowdsourcing the creation of image segmentation algorithms for connectomics. Front Neuroanat. 2015;9:142.CrossRefPubMedPubMedCentral Arganda-Carreras I, Turaga SC, Berger DR, Cireşan D, Giusti A, Gambardella LM, et al. Crowdsourcing the creation of image segmentation algorithms for connectomics. Front Neuroanat. 2015;9:142.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, et al. Functional connectomics from resting-state fMRI. Trends Cogn Sci. 2013;17:666–82.CrossRefPubMedPubMedCentral Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, et al. Functional connectomics from resting-state fMRI. Trends Cogn Sci. 2013;17:666–82.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Deco G, Kringelbach ML. Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron. 2014;84:892–905.CrossRefPubMed Deco G, Kringelbach ML. Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron. 2014;84:892–905.CrossRefPubMed
11.
Zurück zum Zitat Kim E, Kang H, Lee H, Lee HJ, Suh MW, Song JJ, et al. Morphological brain network assessed using graph theory and network filtration in deaf adults. Hear Res. 2014;315:88–98.CrossRefPubMed Kim E, Kang H, Lee H, Lee HJ, Suh MW, Song JJ, et al. Morphological brain network assessed using graph theory and network filtration in deaf adults. Hear Res. 2014;315:88–98.CrossRefPubMed
12.
Zurück zum Zitat Lee DS, Kang H, Kim H, Park H, Oh JS, Lee JS, et al. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults. Eur J Nucl Med Mol Imaging. 2008;35:1681–91.CrossRefPubMed Lee DS, Kang H, Kim H, Park H, Oh JS, Lee JS, et al. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults. Eur J Nucl Med Mol Imaging. 2008;35:1681–91.CrossRefPubMed
13.
Zurück zum Zitat Lee H, Kang H, Chung MK, Kim BN, Lee DS. Persistent brain network homology from the perspective of dendrogram. IEEE Trans Med Imaging. 2012;31:2267–77.CrossRefPubMed Lee H, Kang H, Chung MK, Kim BN, Lee DS. Persistent brain network homology from the perspective of dendrogram. IEEE Trans Med Imaging. 2012;31:2267–77.CrossRefPubMed
14.
Zurück zum Zitat Lee H, Kang H, Chung MK, Kim BN, Lee DS. Weighted functional brain network modeling via network filtration. In NIPS Workshop on Algebraic Topology and Machine Learning 2012 (vol. 3). Citeseer. Lee H, Kang H, Chung MK, Kim BN, Lee DS. Weighted functional brain network modeling via network filtration. In NIPS Workshop on Algebraic Topology and Machine Learning 2012 (vol. 3). Citeseer.
15.
Zurück zum Zitat Kim H, Hahm J, Lee H, Kang E, Kang H, Lee DS. Brain networks engaged in audiovisual integration during speech perception revealed by persistent homology-based network filtration. Brain Connect. 2015;5:245–58.CrossRefPubMedPubMedCentral Kim H, Hahm J, Lee H, Kang E, Kang H, Lee DS. Brain networks engaged in audiovisual integration during speech perception revealed by persistent homology-based network filtration. Brain Connect. 2015;5:245–58.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Hahm J, Lee H, Park H, Kang E, Kim YK, Chung CK, et al. Gating of memory encoding of time-delayed cross-frequency MEG networks revealed by graph filtration based on persistent homology. Sci Rep. 2017;7:41592.CrossRefPubMedPubMedCentral Hahm J, Lee H, Park H, Kang E, Kim YK, Chung CK, et al. Gating of memory encoding of time-delayed cross-frequency MEG networks revealed by graph filtration based on persistent homology. Sci Rep. 2017;7:41592.CrossRefPubMedPubMedCentral
17.
18.
Zurück zum Zitat Im HJ, Hahm J, Kang H, Choi H, Lee H, Kim EE, et al. Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson’s disease examined using persistent homology-based analysis. Sci Rep. 2016;6:33875.CrossRefPubMedPubMedCentral Im HJ, Hahm J, Kang H, Choi H, Lee H, Kim EE, et al. Disrupted brain metabolic connectivity in a 6-OHDA-induced mouse model of Parkinson’s disease examined using persistent homology-based analysis. Sci Rep. 2016;6:33875.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Caron F, Fox EB. Sparse graphs using exchangeable random measures. J R Stat Soc Ser B Stat Methodol. 2017;79:1295–366.CrossRef Caron F, Fox EB. Sparse graphs using exchangeable random measures. J R Stat Soc Ser B Stat Methodol. 2017;79:1295–366.CrossRef
20.
Zurück zum Zitat Hallquist MN, Hillary FG. Graph theory approaches to functional network organization in brain disorders: a critique for a brave new small-world. Netw Neurosci. 2018;3:1–26.PubMedPubMedCentral Hallquist MN, Hillary FG. Graph theory approaches to functional network organization in brain disorders: a critique for a brave new small-world. Netw Neurosci. 2018;3:1–26.PubMedPubMedCentral
21.
22.
Zurück zum Zitat Weber M, Saucan E, Jost J. Characterizing complex networks with Forman-Ricci curvature and associated geometric flows. J Complex Netw. 2017;5:527–50.CrossRef Weber M, Saucan E, Jost J. Characterizing complex networks with Forman-Ricci curvature and associated geometric flows. J Complex Netw. 2017;5:527–50.CrossRef
23.
Zurück zum Zitat Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87:198701.CrossRefPubMed Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87:198701.CrossRefPubMed
24.
Zurück zum Zitat Choi H, Kang H, Lee DS. Alzheimer’s Disease Neuroimaging Initiative. Predicting aging of brain metabolic topography using variational autoencoder. Front Aging Neurosci. 2018;10:212.CrossRefPubMedPubMedCentral Choi H, Kang H, Lee DS. Alzheimer’s Disease Neuroimaging Initiative. Predicting aging of brain metabolic topography using variational autoencoder. Front Aging Neurosci. 2018;10:212.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Choi H, Ha S, Kang HJ, Lee H, Lee DS, Alzheimer’s Disease Neuroimaging Initiative. Deep learning only by normal brain PET identify unheralded brain anomalies. 2019. Submitted. Choi H, Ha S, Kang HJ, Lee H, Lee DS, Alzheimer’s Disease Neuroimaging Initiative. Deep learning only by normal brain PET identify unheralded brain anomalies. 2019. Submitted.
26.
Zurück zum Zitat Santoro A, Raposo D, Barrett DG, Malinowski M, Pascanu R, Battaglia P, et al. A simple neural network module for relational reasoning. Adv Neural Inf Proces Syst. 2017;30:4967–76. Santoro A, Raposo D, Barrett DG, Malinowski M, Pascanu R, Battaglia P, et al. A simple neural network module for relational reasoning. Adv Neural Inf Proces Syst. 2017;30:4967–76.
27.
Zurück zum Zitat Santoro A, Faulkner R, Raposo D, Rae J, Chrzanowski M, Weber T, et al. Relational recurrent neural networks. arXiv:1806.01822. 2018. Santoro A, Faulkner R, Raposo D, Rae J, Chrzanowski M, Weber T, et al. Relational recurrent neural networks. arXiv:1806.01822. 2018.
28.
Zurück zum Zitat Kipf T, Fetaya E, Wang KC, Welling M, Zemel R. Neural relational inference for interacting systems. arXiv:1802.04687. 2018. Kipf T, Fetaya E, Wang KC, Welling M, Zemel R. Neural relational inference for interacting systems. arXiv:1802.04687. 2018.
29.
Zurück zum Zitat Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J. Graph convolutional neural networks for web-scale recommender systems. arXiv:1806.01973. 2018. Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J. Graph convolutional neural networks for web-scale recommender systems. arXiv:1806.01973. 2018.
30.
Zurück zum Zitat Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25.CrossRefPubMed Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25.CrossRefPubMed
31.
Zurück zum Zitat Lee H, Chung MK, Kang H, Kim BN, Lee DS. Computing the shape of brain networks using graph filtration and Gromov-Hausdorff metric, Med Image Comput Comput Assist Interv. Berlin: Springer; 2011. p. 302–9. Lee H, Chung MK, Kang H, Kim BN, Lee DS. Computing the shape of brain networks using graph filtration and Gromov-Hausdorff metric, Med Image Comput Comput Assist Interv. Berlin: Springer; 2011. p. 302–9.
32.
Zurück zum Zitat Chung MK, Lee H, Gritsenko A, DiChristofano A, Pluta D, Ombao H, et al. Topological brain network distances. arXiv:1809.03878. 2018. Chung MK, Lee H, Gritsenko A, DiChristofano A, Pluta D, Ombao H, et al. Topological brain network distances. arXiv:1809.03878. 2018.
33.
Zurück zum Zitat Krioukov D, Papadopoulos F, Kitsak M, Vahdat A, Boguná M. Hyperbolic geometry of complex networks. Phys Rev E. 2010;82:036106.CrossRef Krioukov D, Papadopoulos F, Kitsak M, Vahdat A, Boguná M. Hyperbolic geometry of complex networks. Phys Rev E. 2010;82:036106.CrossRef
34.
Zurück zum Zitat Muscoloni A, Thomas JM, Ciucci S, Bianconi G, Cannistraci CV. Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat Commun. 2017;8:1615.CrossRefPubMedPubMedCentral Muscoloni A, Thomas JM, Ciucci S, Bianconi G, Cannistraci CV. Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat Commun. 2017;8:1615.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Tadić B, Andjelković M, Šuvakov M. Origin of hyperbolicity in brain-to-brain coordination networks. Front Phys. 2018;6:7.CrossRef Tadić B, Andjelković M, Šuvakov M. Origin of hyperbolicity in brain-to-brain coordination networks. Front Phys. 2018;6:7.CrossRef
36.
Zurück zum Zitat Kaiser A, Schreiber T. Information transfer in continuous processes. Physica D. 2002;166:43–62. Kaiser A, Schreiber T. Information transfer in continuous processes. Physica D. 2002;166:43–62.
37.
Zurück zum Zitat Vicente R, Wibral M, Lindner M, Pipa G. Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci. 2011;30:45–67.CrossRefPubMed Vicente R, Wibral M, Lindner M, Pipa G. Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci. 2011;30:45–67.CrossRefPubMed
38.
Zurück zum Zitat Lindner M, Vicente R, Priesemann V, Wibral M. TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC Neurosci. 2011;12:119.CrossRefPubMedPubMedCentral Lindner M, Vicente R, Priesemann V, Wibral M. TRENTOOL: a Matlab open source toolbox to analyse information flow in time series data with transfer entropy. BMC Neurosci. 2011;12:119.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Lee H, Kim E, Ha S, Kang H, Huh Y, Lee Y, et al. Volume entropy for modeling information flow in a brain graph. Sci Rep. 2019; accepted. Lee H, Kim E, Ha S, Kang H, Huh Y, Lee Y, et al. Volume entropy for modeling information flow in a brain graph. Sci Rep. 2019; accepted.
40.
Zurück zum Zitat Yue T, Wang H. Deep learning for genomics: a concise overview. arXiv:1802.00810. 2018. Yue T, Wang H. Deep learning for genomics: a concise overview. arXiv:1802.00810. 2018.
41.
Zurück zum Zitat Park J, Hwang D, Kim KY, Kang SK, Kim YK, Lee JS. Computed tomography super-resolution using deep convolutional neural network. Phys Med Biol. 2018;63:145011.CrossRefPubMed Park J, Hwang D, Kim KY, Kang SK, Kim YK, Lee JS. Computed tomography super-resolution using deep convolutional neural network. Phys Med Biol. 2018;63:145011.CrossRefPubMed
43.
Zurück zum Zitat Choi H, Lee DS, Alzheimer’s Disease Neuroimaging Initiative. Generation of structural MR images from amyloid PET: application to MR-less quantification. J Nucl Med. 2018;59:1111–7.CrossRefPubMedPubMedCentral Choi H, Lee DS, Alzheimer’s Disease Neuroimaging Initiative. Generation of structural MR images from amyloid PET: application to MR-less quantification. J Nucl Med. 2018;59:1111–7.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59:1624–9.CrossRefPubMed Hwang D, Kim KY, Kang SK, Seo S, Paeng JC, Lee DS, et al. Improving the accuracy of simultaneously reconstructed activity and attenuation maps using deep learning. J Nucl Med. 2018;59:1624–9.CrossRefPubMed
45.
Zurück zum Zitat Lee H, Chung MK, Kang H, Lee DS. Hole detection in metabolic connectivity of Alzheimer’s disease using k− Laplacian. In Med Image Comput Comput Assist Interv. 2014. pp. 297-304. Springer, Champions. Lee H, Chung MK, Kang H, Lee DS. Hole detection in metabolic connectivity of Alzheimer’s disease using k− Laplacian. In Med Image Comput Comput Assist Interv. 2014. pp. 297-304. Springer, Champions.
46.
Zurück zum Zitat Lee H, Ma Z, Wang Y, Chung MK. Topological distances between networks and its application to brain imaging. arXiv:1701.04171. 2017. Lee H, Ma Z, Wang Y, Chung MK. Topological distances between networks and its application to brain imaging. arXiv:1701.04171. 2017.
47.
Zurück zum Zitat Lee H, Chung MK, Kang H, Choi H, Kim YK, Lee DS. Abnormal hole detection in brain connectivity by kernel density of persistence diagram and Hodge Laplacian. In Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on 2018. (pp. 20-23). IEEE. Lee H, Chung MK, Kang H, Choi H, Kim YK, Lee DS. Abnormal hole detection in brain connectivity by kernel density of persistence diagram and Hodge Laplacian. In Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on 2018. (pp. 20-23). IEEE.
48.
Zurück zum Zitat Yu M, Hillebrand A, Gouw AA, Stam CJ. Horizontal visibility graph transfer entropy (HVG-TE): a novel metric to characterize directed connectivity in large-scale brain networks. NeuroImage. 2017;156:249–64.CrossRefPubMed Yu M, Hillebrand A, Gouw AA, Stam CJ. Horizontal visibility graph transfer entropy (HVG-TE): a novel metric to characterize directed connectivity in large-scale brain networks. NeuroImage. 2017;156:249–64.CrossRefPubMed
49.
Zurück zum Zitat Bielczyk NZ, Uithol S, van Mourik T, Anderson P, Glennon JC, Buitelaar JK. Disentangling casual webs in the brain using functional magnetic resonance imaging: a review of current approaches. Netw Neurosci. 2018:1–37. Bielczyk NZ, Uithol S, van Mourik T, Anderson P, Glennon JC, Buitelaar JK. Disentangling casual webs in the brain using functional magnetic resonance imaging: a review of current approaches. Netw Neurosci. 2018:1–37.
50.
Zurück zum Zitat Frässle S, Lomakina EI, Kasper L, Manjaly ZM, Leff A, Pruessmann KP, et al. A generative model of whole-brain effective connectivity. NeuroImage. 2018;179:505–29.CrossRefPubMed Frässle S, Lomakina EI, Kasper L, Manjaly ZM, Leff A, Pruessmann KP, et al. A generative model of whole-brain effective connectivity. NeuroImage. 2018;179:505–29.CrossRefPubMed
51.
52.
Zurück zum Zitat Nielsen AN, Lauritzen M. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J Physiol. 2001;533:773–85.CrossRefPubMedCentral Nielsen AN, Lauritzen M. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J Physiol. 2001;533:773–85.CrossRefPubMedCentral
53.
Zurück zum Zitat Vafaee MS, Meyer E, Marrett S, Paus T, Evans AC, Gjedde A. Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex. J Cereb Blood Flow Metab. 1999;19:272–7.CrossRefPubMed Vafaee MS, Meyer E, Marrett S, Paus T, Evans AC, Gjedde A. Frequency-dependent changes in cerebral metabolic rate of oxygen during activation of human visual cortex. J Cereb Blood Flow Metab. 1999;19:272–7.CrossRefPubMed
54.
Zurück zum Zitat Lee DS, Lee JS, Kang KW, Jang MJ, Lee SK, Chung JK, et al. Disparity of perfusion and glucose metabolism of epileptogenic zones in temporal lobe epilepsy demonstrated by SPM/SPAM analysis on 15O water PET,[18F] FDG-PET, and [99mTc]-HMPAO SPECT. Epilepsia. 2001;42:1515–22.CrossRefPubMed Lee DS, Lee JS, Kang KW, Jang MJ, Lee SK, Chung JK, et al. Disparity of perfusion and glucose metabolism of epileptogenic zones in temporal lobe epilepsy demonstrated by SPM/SPAM analysis on 15O water PET,[18F] FDG-PET, and [99mTc]-HMPAO SPECT. Epilepsia. 2001;42:1515–22.CrossRefPubMed
55.
Zurück zum Zitat Sheth SA, Nemoto M, Guiou M, Walker M, Pouratian N, Toga AW. Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron. 2004;42:347–55.CrossRefPubMed Sheth SA, Nemoto M, Guiou M, Walker M, Pouratian N, Toga AW. Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and hemodynamic responses. Neuron. 2004;42:347–55.CrossRefPubMed
56.
Zurück zum Zitat Berthelot D, Schumm T, Metz L. BEGAN: boundary equilibrium generative adversarial networks. arXiv:1703.10717. 2017. Berthelot D, Schumm T, Metz L. BEGAN: boundary equilibrium generative adversarial networks. arXiv:1703.10717. 2017.
57.
Zurück zum Zitat Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, et al. Mastering the game of Go without human knowledge. Nature. 2017;550:354.CrossRefPubMed Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, et al. Mastering the game of Go without human knowledge. Nature. 2017;550:354.CrossRefPubMed
Metadaten
Titel
Clinical Personal Connectomics Using Hybrid PET/MRI
verfasst von
Dong Soo Lee
Publikationsdatum
15.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Nuclear Medicine and Molecular Imaging / Ausgabe 3/2019
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-019-00572-3

Weitere Artikel der Ausgabe 3/2019

Nuclear Medicine and Molecular Imaging 3/2019 Zur Ausgabe