Skip to main content
Erschienen in: Nuclear Medicine and Molecular Imaging 3/2019

18.02.2019 | Review

Quantitative Imaging of Alpha-Emitting Therapeutic Radiopharmaceuticals

verfasst von: Youngho Seo

Erschienen in: Nuclear Medicine and Molecular Imaging | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Targeted alpha therapy (TAT) is an active area of drug development as a highly specific and highly potent therapeutic modality that can be applied to many types of late-stage cancers. In order to properly evaluate its safety and efficacy, understanding biokinetics of alpha-emitting radiopharmaceuticals is essential. Quantitative imaging of alpha-emitting radiopharmaceuticals is often possible via imaging of gammas and positrons produced during complex decay chains of these radionuclides. Analysis of the complex decay chains for alpha-emitting radionuclides (Tb-149, At-211, Bi-212 (decayed from Pb-212), Bi-213, Ra-223, Ac-225, and Th-227) with relevance to imageable signals is attempted in this mini-review article. Gamma camera imaging, single-photon emission computed tomography, positron emission tomography, bremsstrahlung radiation imaging, Cerenkov luminescence imaging, and Compton cameras are briefly discussed as modalities for imaging alpha-emitting radiopharmaceuticals.
Literatur
1.
Zurück zum Zitat Elgqvist J, Frost S, Pouget JP, Albertsson P. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. Front Oncol. 2014;3:324.CrossRefPubMedPubMedCentral Elgqvist J, Frost S, Pouget JP, Albertsson P. The potential and hurdles of targeted alpha therapy - clinical trials and beyond. Front Oncol. 2014;3:324.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Nurdan TC, Nurdan K, Brill AB, Walenta AH. Design criteria for a high energy Compton camera and possible application to targeted cancer therapy. J Instrum. 2015;10. Nurdan TC, Nurdan K, Brill AB, Walenta AH. Design criteria for a high energy Compton camera and possible application to targeted cancer therapy. J Instrum. 2015;10.
3.
Zurück zum Zitat Beyer GJ, Miederer M, Vranjes-Duric S, Comor JJ, Kunzi G, Hartley O, et al. Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab. Eur J Nucl Med Mol Imaging. 2004;31:547–54.CrossRefPubMed Beyer GJ, Miederer M, Vranjes-Duric S, Comor JJ, Kunzi G, Hartley O, et al. Targeted alpha therapy in vivo: direct evidence for single cancer cell kill using 149Tb-rituximab. Eur J Nucl Med Mol Imaging. 2004;31:547–54.CrossRefPubMed
4.
Zurück zum Zitat Lassmann M, Eberlein U. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Ann ICRP. 2018;47:187–95.CrossRefPubMed Lassmann M, Eberlein U. Targeted alpha-particle therapy: imaging, dosimetry, and radiation protection. Ann ICRP. 2018;47:187–95.CrossRefPubMed
5.
Zurück zum Zitat Robertson AKH, Ramogida CF, Rodriguez-Rodriguez C, Blinder S, Kunz P, Sossi V, et al. Multi-isotope SPECT imaging of the (225)Ac decay chain: feasibility studies. Phys Med Biol. 2017;62:4406–20.CrossRefPubMed Robertson AKH, Ramogida CF, Rodriguez-Rodriguez C, Blinder S, Kunz P, Sossi V, et al. Multi-isotope SPECT imaging of the (225)Ac decay chain: feasibility studies. Phys Med Biol. 2017;62:4406–20.CrossRefPubMed
6.
Zurück zum Zitat Hamacher KA, Den RB, Den EI, Sgouros G. Cellular dose conversion factors for alpha-particle--emitting radionuclides of interest in radionuclide therapy. J Nucl Med. 2001;42:1216–21.PubMed Hamacher KA, Den RB, Den EI, Sgouros G. Cellular dose conversion factors for alpha-particle--emitting radionuclides of interest in radionuclide therapy. J Nucl Med. 2001;42:1216–21.PubMed
7.
Zurück zum Zitat Sofou S, Thomas JL, Lin HY, McDevitt MR, Scheinberg DA, Sgouros G. Engineered liposomes for potential alpha-particle therapy of metastatic cancer. J Nucl Med. 2004;45:253–60.PubMed Sofou S, Thomas JL, Lin HY, McDevitt MR, Scheinberg DA, Sgouros G. Engineered liposomes for potential alpha-particle therapy of metastatic cancer. J Nucl Med. 2004;45:253–60.PubMed
8.
Zurück zum Zitat Jonasdottir TJ, Fisher DR, Borrebaek J, Bruland OS, Larsen RH. First in vivo evaluation of liposome-encapsulated 223Ra as a potential alpha-particle-emitting cancer therapeutic agent. Anticancer Res. 2006;26:2841–8.PubMed Jonasdottir TJ, Fisher DR, Borrebaek J, Bruland OS, Larsen RH. First in vivo evaluation of liposome-encapsulated 223Ra as a potential alpha-particle-emitting cancer therapeutic agent. Anticancer Res. 2006;26:2841–8.PubMed
9.
Zurück zum Zitat Woodward J, Kennel SJ, Stuckey A, Osborne D, Wall J, Rondinone AJ, et al. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjug Chem. 2011;22:766–76.CrossRefPubMed Woodward J, Kennel SJ, Stuckey A, Osborne D, Wall J, Rondinone AJ, et al. LaPO4 nanoparticles doped with actinium-225 that partially sequester daughter radionuclides. Bioconjug Chem. 2011;22:766–76.CrossRefPubMed
10.
Zurück zum Zitat Sgouros G, Ballangrud AM, Jurcic JG, McDevitt MR, Humm JL, Erdi YE, et al. Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J Nucl Med. 1999;40:1935–46.PubMed Sgouros G, Ballangrud AM, Jurcic JG, McDevitt MR, Humm JL, Erdi YE, et al. Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J Nucl Med. 1999;40:1935–46.PubMed
11.
Zurück zum Zitat Miederer M, McDevitt MR, Sgouros G, Kramer K, Cheung NK, Scheinberg DA. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med. 2004;45:129–37.PubMed Miederer M, McDevitt MR, Sgouros G, Kramer K, Cheung NK, Scheinberg DA. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J Nucl Med. 2004;45:129–37.PubMed
12.
Zurück zum Zitat Confino H, Hochman I, Efrati M, Schmidt M, Umansky V, Kelson I, et al. Tumor ablation by intratumoral Ra-224-loaded wires induces anti-tumor immunity against experimental metastatic tumors. Cancer Immunol Immunother. 2015;64:191–9.CrossRefPubMed Confino H, Hochman I, Efrati M, Schmidt M, Umansky V, Kelson I, et al. Tumor ablation by intratumoral Ra-224-loaded wires induces anti-tumor immunity against experimental metastatic tumors. Cancer Immunol Immunother. 2015;64:191–9.CrossRefPubMed
13.
Zurück zum Zitat De Kruijff RM, Wolterbeek HT, Denkova AG. A critical review of alpha radionuclide therapy-how to deal with recoiling daughters? Pharmaceuticals. 2015;8:321–36.CrossRefPubMedPubMedCentral De Kruijff RM, Wolterbeek HT, Denkova AG. A critical review of alpha radionuclide therapy-how to deal with recoiling daughters? Pharmaceuticals. 2015;8:321–36.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative imaging for targeted radionuclide therapy dosimetry - technical review. Theranostics. 2017;7:4551–65.CrossRefPubMedPubMedCentral Li T, Ao ECI, Lambert B, Brans B, Vandenberghe S, Mok GSP. Quantitative imaging for targeted radionuclide therapy dosimetry - technical review. Theranostics. 2017;7:4551–65.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Rong X, Ghaly M, Frey EC. Optimization of energy window for 90Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch. Med Phys. 2013;40:062502.CrossRefPubMedPubMedCentral Rong X, Ghaly M, Frey EC. Optimization of energy window for 90Y bremsstrahlung SPECT imaging for detection tasks using the ideal observer with model-mismatch. Med Phys. 2013;40:062502.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Minarik D, Sjogreen-Gleisner K, Linden O, Wingardh K, Tennvall J, Strand SE, et al. 90Y bremsstrahlung imaging for absorbed-dose assessment in high-dose radioimmunotherapy. J Nucl Med. 2010;51:1974–8.CrossRefPubMed Minarik D, Sjogreen-Gleisner K, Linden O, Wingardh K, Tennvall J, Strand SE, et al. 90Y bremsstrahlung imaging for absorbed-dose assessment in high-dose radioimmunotherapy. J Nucl Med. 2010;51:1974–8.CrossRefPubMed
17.
Zurück zum Zitat Minarik D, Ljungberg M, Segars P, Gleisner KS. Evaluation of quantitative planar 90Y bremsstrahlung whole-body imaging. Phys Med Biol. 2009;54:5873–83.CrossRefPubMed Minarik D, Ljungberg M, Segars P, Gleisner KS. Evaluation of quantitative planar 90Y bremsstrahlung whole-body imaging. Phys Med Biol. 2009;54:5873–83.CrossRefPubMed
18.
19.
Zurück zum Zitat Rong X, Du Y, Frey EC. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging. Phys Med Biol. 2012;57:3711–25.CrossRefPubMedPubMedCentral Rong X, Du Y, Frey EC. A method for energy window optimization for quantitative tasks that includes the effects of model-mismatch on bias: application to Y-90 bremsstrahlung SPECT imaging. Phys Med Biol. 2012;57:3711–25.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Siegel JA, Zeiger LS, Order SE, Wallner PE. Quantitative bremsstrahlung single photon emission computed tomographic imaging: use for volume, activity, and absorbed dose calculations. Int J Radiat Oncol Biol Phys. 1995;31:953–8.CrossRefPubMed Siegel JA, Zeiger LS, Order SE, Wallner PE. Quantitative bremsstrahlung single photon emission computed tomographic imaging: use for volume, activity, and absorbed dose calculations. Int J Radiat Oncol Biol Phys. 1995;31:953–8.CrossRefPubMed
21.
Zurück zum Zitat Shen S, DeNardo GL, DeNardo SJ. Quantitative bremsstrahlung imaging of yttrium-90 using a Wiener filter. Med Phys. 1994;21:1409–17.CrossRefPubMed Shen S, DeNardo GL, DeNardo SJ. Quantitative bremsstrahlung imaging of yttrium-90 using a Wiener filter. Med Phys. 1994;21:1409–17.CrossRefPubMed
22.
Zurück zum Zitat Siegel JA. Quantitative bremsstrahlung SPECT imaging: attenuation-corrected activity determination. J Nucl Med. 1994;35:1213–6.PubMed Siegel JA. Quantitative bremsstrahlung SPECT imaging: attenuation-corrected activity determination. J Nucl Med. 1994;35:1213–6.PubMed
23.
Zurück zum Zitat Lim H, Fessler JA, Wilderman SJ, Brooks AF, Dewaraja YK. Y-90 SPECT ML image reconstruction with a new model for tissue-dependent bremsstrahlung production using CT information: a proof-of-concept study. Phys Med Biol. 2018;63:115001.CrossRefPubMedPubMedCentral Lim H, Fessler JA, Wilderman SJ, Brooks AF, Dewaraja YK. Y-90 SPECT ML image reconstruction with a new model for tissue-dependent bremsstrahlung production using CT information: a proof-of-concept study. Phys Med Biol. 2018;63:115001.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Muller C, Vermeulen C, Koster U, Johnston K, Turler A, Schibli R, et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm Chem. 2017;1:5.CrossRefPubMed Muller C, Vermeulen C, Koster U, Johnston K, Turler A, Schibli R, et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm Chem. 2017;1:5.CrossRefPubMed
25.
26.
Zurück zum Zitat Wood V, Ackerman NL. Cherenkov light production from the alpha-emitting decay chains of (223)Ra, (212)Pb, and (149)Tb for Cherenkov luminescence imaging. Appl Radiat Isot. 2016;118:354–60.CrossRefPubMed Wood V, Ackerman NL. Cherenkov light production from the alpha-emitting decay chains of (223)Ra, (212)Pb, and (149)Tb for Cherenkov luminescence imaging. Appl Radiat Isot. 2016;118:354–60.CrossRefPubMed
27.
Zurück zum Zitat Boschi F, De Sanctis F, Spinelli AE. Optical emission of (223) radium: in vitro and in vivo preclinical applications. J Biophotonics. 2018;11:e201700209.CrossRefPubMed Boschi F, De Sanctis F, Spinelli AE. Optical emission of (223) radium: in vitro and in vivo preclinical applications. J Biophotonics. 2018;11:e201700209.CrossRefPubMed
28.
Zurück zum Zitat Pandya DN, Hantgan R, Budzevich MM, Kock ND, Morse DL, Batista I, et al. Preliminary therapy evaluation of (225)Ac-DOTA-c(RGDyK) demonstrates that Cerenkov radiation derived from (225)Ac daughter decay can be detected by optical imaging for in vivo tumor visualization. Theranostics. 2016;6:698–709.CrossRefPubMedPubMedCentral Pandya DN, Hantgan R, Budzevich MM, Kock ND, Morse DL, Batista I, et al. Preliminary therapy evaluation of (225)Ac-DOTA-c(RGDyK) demonstrates that Cerenkov radiation derived from (225)Ac daughter decay can be detected by optical imaging for in vivo tumor visualization. Theranostics. 2016;6:698–709.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Cistaro A, Quartuccio N, Caobelli F, Piccardo A, Paratore R, Coppolino P, et al. 124I-MIBG: a new promising positron-emitting radiopharmaceutical for the evaluation of neuroblastoma. Nucl Med Rev Cent East Eur. 2015;18:102–6.CrossRefPubMed Cistaro A, Quartuccio N, Caobelli F, Piccardo A, Paratore R, Coppolino P, et al. 124I-MIBG: a new promising positron-emitting radiopharmaceutical for the evaluation of neuroblastoma. Nucl Med Rev Cent East Eur. 2015;18:102–6.CrossRefPubMed
30.
Zurück zum Zitat Moroz MA, Serganova I, Zanzonico P, Ageyeva L, Beresten T, Dyomina E, et al. Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med. 2007;48:827–36.CrossRefPubMed Moroz MA, Serganova I, Zanzonico P, Ageyeva L, Beresten T, Dyomina E, et al. Imaging hNET reporter gene expression with 124I-MIBG. J Nucl Med. 2007;48:827–36.CrossRefPubMed
31.
Zurück zum Zitat Ott RJ, Tait D, Flower MA, Babich JW, Lambrecht RM. Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. Br J Radiol. 1992;65:787–91.CrossRefPubMed Ott RJ, Tait D, Flower MA, Babich JW, Lambrecht RM. Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. Br J Radiol. 1992;65:787–91.CrossRefPubMed
32.
Zurück zum Zitat Seo Y, Gustafson WC, Dannoon SF, Nekritz EA, Lee CL, Murphy ST, et al. Tumor dosimetry using [124I]m-iodobenzylguanidine microPET/CT for [131I]m-iodobenzylguanidine treatment of neuroblastoma in a murine xenograft model. Mol Imaging Biol. 2012;14:735–42.CrossRefPubMedPubMedCentral Seo Y, Gustafson WC, Dannoon SF, Nekritz EA, Lee CL, Murphy ST, et al. Tumor dosimetry using [124I]m-iodobenzylguanidine microPET/CT for [131I]m-iodobenzylguanidine treatment of neuroblastoma in a murine xenograft model. Mol Imaging Biol. 2012;14:735–42.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Lee CL, Wahnishe H, Sayre GA, Cho HM, Kim HJ, Hernandez-Pampaloni M, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys. 2010;37:4861–7.CrossRefPubMedPubMedCentral Lee CL, Wahnishe H, Sayre GA, Cho HM, Kim HJ, Hernandez-Pampaloni M, et al. Radiation dose estimation using preclinical imaging with 124I-metaiodobenzylguanidine (MIBG) PET. Med Phys. 2010;37:4861–7.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Vaidyanathan G, Affleck DJ, Alston KL, Zhao XG, Hens M, Hunter DH, et al. A kit method for the high level synthesis of [211At]MABG. Bioorg Med Chem. 2007;15:3430–6.CrossRefPubMedPubMedCentral Vaidyanathan G, Affleck DJ, Alston KL, Zhao XG, Hens M, Hunter DH, et al. A kit method for the high level synthesis of [211At]MABG. Bioorg Med Chem. 2007;15:3430–6.CrossRefPubMedPubMedCentral
Metadaten
Titel
Quantitative Imaging of Alpha-Emitting Therapeutic Radiopharmaceuticals
verfasst von
Youngho Seo
Publikationsdatum
18.02.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Nuclear Medicine and Molecular Imaging / Ausgabe 3/2019
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-019-00589-8

Weitere Artikel der Ausgabe 3/2019

Nuclear Medicine and Molecular Imaging 3/2019 Zur Ausgabe