Skip to main content
Erschienen in: Clinical Pharmacokinetics 9/2019

03.05.2019 | Review Article

Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis

verfasst von: Ahmed Aliyu Abulfathi, Eric H. Decloedt, Elin M. Svensson, Andreas H. Diacon, Peter Donald, Helmuth Reuter

Erschienen in: Clinical Pharmacokinetics | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Abstract

The introduction of rifampicin (rifampin) into tuberculosis (TB) treatment five decades ago was critical for shortening the treatment duration for patients with pulmonary TB to 6 months when combined with pyrazinamide in the first 2 months. Resistance or hypersensitivity to rifampicin effectively condemns a patient to prolonged, less effective, more toxic, and expensive regimens. Because of cost and fears of toxicity, rifampicin was introduced at an oral daily dose of 600 mg (8–12 mg/kg body weight). At this dose, clinical trials in 1970s found cure rates of ≥ 95% and relapse rates of < 5%. However, recent papers report lower cure rates that might be the consequence of increased emergence of resistance. Several lines of evidence suggest that higher rifampicin doses, if tolerated and safe, could shorten treatment duration even further. We conducted a narrative review of rifampicin pharmacokinetics and pharmacodynamics in adults across a range of doses and highlight variables that influence its pharmacokinetics/pharmacodynamics. Rifampicin exposure has considerable inter- and intra-individual variability that could be reduced by administration during fasting. Several factors including malnutrition, HIV infection, diabetes mellitus, dose size, pharmacogenetic polymorphisms, hepatic cirrhosis, and substandard medicinal products alter rifampicin exposure and/or efficacy. Renal impairment has no influence on rifampicin pharmacokinetics when dosed at 600 mg. Rifampicin maximum (peak) concentration (Cmax) > 8.2 μg/mL is an independent predictor of sterilizing activity and therapeutic drug monitoring at 2, 4, and 6 h post-dose may aid in optimizing dosing to achieve the recommended rifampicin concentration of ≥ 8 µg/mL. A higher rifampicin Cmax is required for severe forms TB such as TB meningitis, with Cmax ≥ 22 μg/mL and area under the concentration–time curve (AUC) from time zero to 6 h (AUC6) ≥ 70 μg·h/mL associated with reduced mortality. More studies are needed to confirm whether doses achieving exposures higher than the current standard dosage could translate into faster sputum conversion, higher cure rates, lower relapse rates, and less mortality. It is encouraging that daily rifampicin doses up to 35 mg/kg were found to be safe and well-tolerated over a period of 12 weeks. High-dose rifampicin should thus be considered in future studies when constructing potentially shorter regimens. The studies should be adequately powered to determine treatment outcomes and should include surrogate markers of efficacy such as Cmax/MIC (minimum inhibitory concentration) and AUC/MIC.
Literatur
1.
Zurück zum Zitat Petersen E, Blumberg L, Wilson ME, Zumla A. Ending the global tuberculosis epidemic by 2030—the Moscow Declaration and achieving a major translational change in delivery of TB healthcare. Int J Infect Dis. 2017;65:156–8.PubMedCrossRef Petersen E, Blumberg L, Wilson ME, Zumla A. Ending the global tuberculosis epidemic by 2030—the Moscow Declaration and achieving a major translational change in delivery of TB healthcare. Int J Infect Dis. 2017;65:156–8.PubMedCrossRef
2.
Zurück zum Zitat WHO. Global tuberculosis report 2017. Geneva: WHO Press; 2017. WHO. Global tuberculosis report 2017. Geneva: WHO Press; 2017.
3.
Zurück zum Zitat Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7):e147–95.PubMedPubMedCentralCrossRef Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. Clin Infect Dis. 2016;63(7):e147–95.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat WHO. Guidelines for treatment of drug-susceptible tuberculosis and patient care (2017 update). Geneva: WHO; 2018. WHO. Guidelines for treatment of drug-susceptible tuberculosis and patient care (2017 update). Geneva: WHO; 2018.
5.
Zurück zum Zitat Ruslami R, Ganiem AR, Dian S, et al. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect Dis. 2013;13(1):27–35.PubMedCrossRef Ruslami R, Ganiem AR, Dian S, et al. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect Dis. 2013;13(1):27–35.PubMedCrossRef
6.
Zurück zum Zitat Te Brake L, Dian S, Ganiem AR, et al. Pharmacokinetic/pharmacodynamic analysis of an intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis. Int J Antimicrob Agents. 2015;45:496–503.CrossRef Te Brake L, Dian S, Ganiem AR, et al. Pharmacokinetic/pharmacodynamic analysis of an intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis. Int J Antimicrob Agents. 2015;45:496–503.CrossRef
7.
8.
Zurück zum Zitat van Ingen J, Aarnoutse RE, Donald PR, et al. Why do we use 600 mg of rifampicin in tuberculosis treatment? Clin Infect Dis. 2011;52(9):e194–9.PubMedCrossRef van Ingen J, Aarnoutse RE, Donald PR, et al. Why do we use 600 mg of rifampicin in tuberculosis treatment? Clin Infect Dis. 2011;52(9):e194–9.PubMedCrossRef
9.
Zurück zum Zitat Controlled clinical trial of four short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Third report. East African-British Medical Research Councils. Lancet. 1974;2(7875):237–40. Controlled clinical trial of four short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Third report. East African-British Medical Research Councils. Lancet. 1974;2(7875):237–40.
10.
Zurück zum Zitat Controlled clinical trial of short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Lancet. 1972;299(7760):1079–1085. Controlled clinical trial of short-course (6-month) regimens of chemotherapy for treatment of pulmonary tuberculosis. Lancet. 1972;299(7760):1079–1085.
11.
Zurück zum Zitat Goutelle S, Bourguignon L, Maire PH, Van Guilder M, Conte JE, Jelliffe RW. Population modeling and Monte Carlo simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of rifampin in lungs. Antimicrob Agents Chemother. 2009;53(7):2974–81.PubMedPubMedCentralCrossRef Goutelle S, Bourguignon L, Maire PH, Van Guilder M, Conte JE, Jelliffe RW. Population modeling and Monte Carlo simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of rifampin in lungs. Antimicrob Agents Chemother. 2009;53(7):2974–81.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Jayaram R, Gaonkar S, Kaur P, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47(7):2118–24.PubMedPubMedCentralCrossRef Jayaram R, Gaonkar S, Kaur P, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47(7):2118–24.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Gumbo T, Louie A, Deziel MR, et al. Concentration-dependent mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–8.PubMedPubMedCentralCrossRef Gumbo T, Louie A, Deziel MR, et al. Concentration-dependent mycobacterium tuberculosis killing and prevention of resistance by rifampin. Antimicrob Agents Chemother. 2007;51(11):3781–8.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Sloan DJ, McCallum AD, Schipani A, et al. Genetic determinants of the pharmacokinetic variability of rifampin in malawian adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2017;61(7):e00210–7.PubMedPubMedCentralCrossRef Sloan DJ, McCallum AD, Schipani A, et al. Genetic determinants of the pharmacokinetic variability of rifampin in malawian adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2017;61(7):e00210–7.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Jeanes CW, Jessamine AG, Eidus L. Treatment of chronic drug-resistant pulmonary tuberculosis with rifampin and ethambutol. Can Med Assoc J. 1972;106(8):884–8.PubMedPubMedCentral Jeanes CW, Jessamine AG, Eidus L. Treatment of chronic drug-resistant pulmonary tuberculosis with rifampin and ethambutol. Can Med Assoc J. 1972;106(8):884–8.PubMedPubMedCentral
16.
Zurück zum Zitat Boeree MJ, Diacon AH, Dawson R, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191(9):1058–65.PubMedCrossRef Boeree MJ, Diacon AH, Dawson R, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191(9):1058–65.PubMedCrossRef
17.
Zurück zum Zitat Curci G, Bergamini N, Delli Veneri F, Ninni A, Nitti V. Half-life of rifampicin after repeated administration of different doses in humans. Chemotherapy. 1972;17(6):373–81.PubMedCrossRef Curci G, Bergamini N, Delli Veneri F, Ninni A, Nitti V. Half-life of rifampicin after repeated administration of different doses in humans. Chemotherapy. 1972;17(6):373–81.PubMedCrossRef
18.
Zurück zum Zitat Nitti V. Antituberculosis activity of rifampin. Report of studies performed and in progress (1966–1971). Chest. 1972;61(6):589–98. Nitti V. Antituberculosis activity of rifampin. Report of studies performed and in progress (1966–1971). Chest. 1972;61(6):589–98.
19.
Zurück zum Zitat Svensson RJ, Aarnoutse RE, Diacon AH, et al. A population pharmacokinetic model incorporating saturable pharmacokinetics and autoinduction for high rifampicin doses. Clin Pharmacol Ther. 2018;103(4):674–83.PubMedCrossRef Svensson RJ, Aarnoutse RE, Diacon AH, et al. A population pharmacokinetic model incorporating saturable pharmacokinetics and autoinduction for high rifampicin doses. Clin Pharmacol Ther. 2018;103(4):674–83.PubMedCrossRef
20.
Zurück zum Zitat Furesz S, Scotti R, Pallanza R, Mapelli E. Rifampicin: a new rifamycin. 3. Absorption, distribution, and elimination in man. Arzneimittelforschung. 1967;17(5):534–7. Furesz S, Scotti R, Pallanza R, Mapelli E. Rifampicin: a new rifamycin. 3. Absorption, distribution, and elimination in man. Arzneimittelforschung. 1967;17(5):534–7.
21.
Zurück zum Zitat Verbist L, Gyselen A. Antituberculous activity of rifampin in vitro and in vivo and the concentrations attained in human blood. Am Rev Respir Dis. 1968;98(6):923–32.PubMed Verbist L, Gyselen A. Antituberculous activity of rifampin in vitro and in vivo and the concentrations attained in human blood. Am Rev Respir Dis. 1968;98(6):923–32.PubMed
22.
Zurück zum Zitat Acocella G, Pagani V, Marchetti M, Baroni GC, Nicolis FB. Kinetic studies on rifampicin. I. Serum concentration analysis in subjects treated with different oral doses over a period of two weeks. Chemotherapy. 1971;16(6):356–70. Acocella G, Pagani V, Marchetti M, Baroni GC, Nicolis FB. Kinetic studies on rifampicin. I. Serum concentration analysis in subjects treated with different oral doses over a period of two weeks. Chemotherapy. 1971;16(6):356–70.
23.
Zurück zum Zitat Garnham JC, Taylor T, Turner P, Chasseaud LF. Serum concentrations and bioavailability of rifampicin and isoniazid in combination. Br J Clin Pharmacol. 1976;3(5):897–902.PubMedPubMedCentralCrossRef Garnham JC, Taylor T, Turner P, Chasseaud LF. Serum concentrations and bioavailability of rifampicin and isoniazid in combination. Br J Clin Pharmacol. 1976;3(5):897–902.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Dickinson JM, Mitchison DA, Lee SK, et al. Serum rifampicin concentration related to dose size and to the incidence of the “flu” syndrome during intermittent rifampicin administration. J Antimicrob Chemother. 1977;3(5):445–52.PubMedCrossRef Dickinson JM, Mitchison DA, Lee SK, et al. Serum rifampicin concentration related to dose size and to the incidence of the “flu” syndrome during intermittent rifampicin administration. J Antimicrob Chemother. 1977;3(5):445–52.PubMedCrossRef
25.
Zurück zum Zitat Milstein M, Lecca L, Peloquin C, et al. Evaluation of high-dose rifampin in patients with new, smear-positive tuberculosis (HIRIF): study protocol for a randomized controlled trial. BMC Infect Dis. 2016;16(1):453.PubMedPubMedCentralCrossRef Milstein M, Lecca L, Peloquin C, et al. Evaluation of high-dose rifampin in patients with new, smear-positive tuberculosis (HIRIF): study protocol for a randomized controlled trial. BMC Infect Dis. 2016;16(1):453.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Sirgel FA, Fourie PB, Donald PR, et al. The early bactericidal activities of rifampin and rifapentine in pulmonary tuberculosis. Am J Respir Crit Care Med. 2005;172(1):128–35.PubMedCrossRef Sirgel FA, Fourie PB, Donald PR, et al. The early bactericidal activities of rifampin and rifapentine in pulmonary tuberculosis. Am J Respir Crit Care Med. 2005;172(1):128–35.PubMedCrossRef
27.
Zurück zum Zitat Ruslami R, Nijland HMJ, Alisjahbana B, Parwati I, van Crevel R, Aarnoutse RE. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2007;51(7):2546–51.PubMedPubMedCentralCrossRef Ruslami R, Nijland HMJ, Alisjahbana B, Parwati I, van Crevel R, Aarnoutse RE. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2007;51(7):2546–51.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Chirehwa MT, Rustomjee R, Mthiyane T, et al. Erratum for Chirehwa et al., Model-based evaluation of higher doses of rifampin using a semimechanistic model incorporating autoinduction and saturation of hepatic extraction. Antimicrob Agents Chemother. 2016;60(5):3262. Chirehwa MT, Rustomjee R, Mthiyane T, et al. Erratum for Chirehwa et al., Model-based evaluation of higher doses of rifampin using a semimechanistic model incorporating autoinduction and saturation of hepatic extraction. Antimicrob Agents Chemother. 2016;60(5):3262.
29.
Zurück zum Zitat Constans P, Saint-Paul M, Morin Y, Bonnaud G, Bariéty M. Rifampicin: initial study of plasma levels during prolonged treatment of pulmonary tuberculosis patients [in French]. Rev Tuberc Pneumol (Paris). 1968;32(8):991–1006.PubMed Constans P, Saint-Paul M, Morin Y, Bonnaud G, Bariéty M. Rifampicin: initial study of plasma levels during prolonged treatment of pulmonary tuberculosis patients [in French]. Rev Tuberc Pneumol (Paris). 1968;32(8):991–1006.PubMed
30.
Zurück zum Zitat Verbist L. Rifampicin blood levels in man. Acta Tuberc Pneumol Belg. 1969;60(3):288–98.PubMed Verbist L. Rifampicin blood levels in man. Acta Tuberc Pneumol Belg. 1969;60(3):288–98.PubMed
31.
Zurück zum Zitat Mouton RP, Mattie H, Swart K, Kreukniet J, de Wael J. Blood levels of rifampicin, desacetylrifampicin and isoniazid during combined therapy. J Antimicrob Chemother. 1979;5(4):447–54.PubMedCrossRef Mouton RP, Mattie H, Swart K, Kreukniet J, de Wael J. Blood levels of rifampicin, desacetylrifampicin and isoniazid during combined therapy. J Antimicrob Chemother. 1979;5(4):447–54.PubMedCrossRef
32.
Zurück zum Zitat Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327–41.PubMedCrossRef Burman WJ, Gallicano K, Peloquin C. Comparative pharmacokinetics and pharmacodynamics of the rifamycin antibacterials. Clin Pharmacokinet. 2001;40(5):327–41.PubMedCrossRef
33.
Zurück zum Zitat Strolin Benedetti M, Dostert P. Induction and autoinduction properties of rifamycin derivatives: a review of animal and human studies. Environ Health Perspect. 1994;102(Suppl 9):101–5.PubMedPubMedCentralCrossRef Strolin Benedetti M, Dostert P. Induction and autoinduction properties of rifamycin derivatives: a review of animal and human studies. Environ Health Perspect. 1994;102(Suppl 9):101–5.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Smythe W, Khandelwal A, Merle C, et al. A semimechanistic pharmacokinetic-enzyme turnover model for rifampin autoinduction in adult tuberculosis patients. Antimicrob Agents Chemother. 2012;56(4):2091–8.PubMedPubMedCentralCrossRef Smythe W, Khandelwal A, Merle C, et al. A semimechanistic pharmacokinetic-enzyme turnover model for rifampin autoinduction in adult tuberculosis patients. Antimicrob Agents Chemother. 2012;56(4):2091–8.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Clewe O, Goutelle S, Conte JE, Simonsson USH. A pharmacometric pulmonary model predicting the extent and rate of distribution from plasma to epithelial lining fluid and alveolar cells—using rifampicin as an example. Eur J Clin Pharmacol. 2015;71(3):313–9.PubMedPubMedCentralCrossRef Clewe O, Goutelle S, Conte JE, Simonsson USH. A pharmacometric pulmonary model predicting the extent and rate of distribution from plasma to epithelial lining fluid and alveolar cells—using rifampicin as an example. Eur J Clin Pharmacol. 2015;71(3):313–9.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Graham Douglas J, McLeod M-J. Pharmacokinetic factors in the modern drug treatment of tuberculosis. Clin Pharmacokinet. 1999;37(2):127–46.CrossRef Graham Douglas J, McLeod M-J. Pharmacokinetic factors in the modern drug treatment of tuberculosis. Clin Pharmacokinet. 1999;37(2):127–46.CrossRef
37.
Zurück zum Zitat Acocella G, Bonollo L, Garimoldi M, Mainardi M, Tenconi LT, Nicolis FB. Kinetics of rifampicin and isoniazid administered alone and in combination to normal subjects and patients with liver disease. Gut. 1972;13(1):47–53.PubMedPubMedCentralCrossRef Acocella G, Bonollo L, Garimoldi M, Mainardi M, Tenconi LT, Nicolis FB. Kinetics of rifampicin and isoniazid administered alone and in combination to normal subjects and patients with liver disease. Gut. 1972;13(1):47–53.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.PubMedPubMedCentralCrossRef McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Mcilleron H, Wash P, Burger A, Folb P, Smith P. Widespread distribution of a single drug rifampicin formulation of inferior bioavailability in South Africa. Int J Tuberc Lung Dis. 2002;6(4):356–61.PubMed Mcilleron H, Wash P, Burger A, Folb P, Smith P. Widespread distribution of a single drug rifampicin formulation of inferior bioavailability in South Africa. Int J Tuberc Lung Dis. 2002;6(4):356–61.PubMed
40.
Zurück zum Zitat Boman G, Ringberger VA. Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol. 1974;7(5):369–73.PubMedCrossRef Boman G, Ringberger VA. Binding of rifampicin by human plasma proteins. Eur J Clin Pharmacol. 1974;7(5):369–73.PubMedCrossRef
41.
Zurück zum Zitat Woo J, Cheung W, Chan R, Chan HS, Cheng A, Chan K. In vitro protein binding characteristics of isoniazid, rifampicin, and pyrazinamide to whole plasma, albumin, and alpha-1-acid glycoprotein. Clin Biochem. 1996;29(2):175–7.PubMedCrossRef Woo J, Cheung W, Chan R, Chan HS, Cheng A, Chan K. In vitro protein binding characteristics of isoniazid, rifampicin, and pyrazinamide to whole plasma, albumin, and alpha-1-acid glycoprotein. Clin Biochem. 1996;29(2):175–7.PubMedCrossRef
42.
Zurück zum Zitat Donald PR. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis. 2010;90(5):279–92.PubMedCrossRef Donald PR. Cerebrospinal fluid concentrations of antituberculosis agents in adults and children. Tuberculosis. 2010;90(5):279–92.PubMedCrossRef
43.
Zurück zum Zitat Ellard GA, Humphries MJ, Allen BW. Cerebrospinal fluid drug concentrations and the treatment of tuberculous meningitis. Am Rev Respir Dis. 1993;148(3):650–5.PubMedCrossRef Ellard GA, Humphries MJ, Allen BW. Cerebrospinal fluid drug concentrations and the treatment of tuberculous meningitis. Am Rev Respir Dis. 1993;148(3):650–5.PubMedCrossRef
44.
Zurück zum Zitat D’Oliveira JJG. Cerebrospinal fluid concentrations of rifampin in meningeal tuberculosis. Am Rev Respir Dis. 1972;106(3):432–7.PubMedCrossRef D’Oliveira JJG. Cerebrospinal fluid concentrations of rifampin in meningeal tuberculosis. Am Rev Respir Dis. 1972;106(3):432–7.PubMedCrossRef
45.
Zurück zum Zitat Larbaoui D, Boulahbal F, Ait-Khaled A, Baghbagha D, Benseman H, Bensafar SA. Serum and cerebrospinal fluid levels of rifampicin (R AMP) [in French]. Arch Inst Pasteur Alger. 1972;50–51:171–81.PubMed Larbaoui D, Boulahbal F, Ait-Khaled A, Baghbagha D, Benseman H, Bensafar SA. Serum and cerebrospinal fluid levels of rifampicin (R AMP) [in French]. Arch Inst Pasteur Alger. 1972;50–51:171–81.PubMed
46.
Zurück zum Zitat Mikhail IA, Girgis NI, Bourgeois LA, Lissner CR. Cerebrospinal fluid and serum concentrations of rifampin in meningeal tuberculosis after intravenous administration. Chemioterapia. 1987;6(2 Suppl):309–10.PubMed Mikhail IA, Girgis NI, Bourgeois LA, Lissner CR. Cerebrospinal fluid and serum concentrations of rifampin in meningeal tuberculosis after intravenous administration. Chemioterapia. 1987;6(2 Suppl):309–10.PubMed
47.
Zurück zum Zitat Nau R, Prange HW, Menck S, Kolenda H, Visser K, Seydel JK. Penetration of rifampicin into the cerebrospinal fluid of adults with uninflamed meninges. J Antimicrob Chemother. 1992;29(6):719–24.PubMedCrossRef Nau R, Prange HW, Menck S, Kolenda H, Visser K, Seydel JK. Penetration of rifampicin into the cerebrospinal fluid of adults with uninflamed meninges. J Antimicrob Chemother. 1992;29(6):719–24.PubMedCrossRef
48.
Zurück zum Zitat Yunivita V, Dian S, Ganiem AR, et al. Pharmacokinetics and safety/tolerability of higher oral and intravenous doses of rifampicin in adult tuberculous meningitis patients. Int J Antimicrob Agents. 2016;48(4):415–21.PubMedCrossRef Yunivita V, Dian S, Ganiem AR, et al. Pharmacokinetics and safety/tolerability of higher oral and intravenous doses of rifampicin in adult tuberculous meningitis patients. Int J Antimicrob Agents. 2016;48(4):415–21.PubMedCrossRef
49.
Zurück zum Zitat Gurumurthy P, Rahman F, Narayana AS, Sarma GR. Salivary levels of isoniazid and rifampicin in tuberculous patients. Tubercle. 1990;71(1):29–33.PubMedCrossRef Gurumurthy P, Rahman F, Narayana AS, Sarma GR. Salivary levels of isoniazid and rifampicin in tuberculous patients. Tubercle. 1990;71(1):29–33.PubMedCrossRef
50.
Zurück zum Zitat Shenje J, Ifeoma Adimora-Nweke F, Ross IL, et al. Poor penetration of antibiotics into pericardium in pericardial tuberculosis. EBioMedicine. 2015;2(11):1640–9.PubMedPubMedCentralCrossRef Shenje J, Ifeoma Adimora-Nweke F, Ross IL, et al. Poor penetration of antibiotics into pericardium in pericardial tuberculosis. EBioMedicine. 2015;2(11):1640–9.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Donald PR. The chemotherapy of tuberculous meningitis in children and adults. Tuberculosis. 2010;90(6):375–92.PubMedCrossRef Donald PR. The chemotherapy of tuberculous meningitis in children and adults. Tuberculosis. 2010;90(6):375–92.PubMedCrossRef
52.
Zurück zum Zitat Binda G, Domenichini E, Gottardi A, et al. Rifampicin, a general review. Arzneimittelforschung. 1971;21(12):1907–77.PubMed Binda G, Domenichini E, Gottardi A, et al. Rifampicin, a general review. Arzneimittelforschung. 1971;21(12):1907–77.PubMed
53.
Zurück zum Zitat Conte JE, Golden JA, Kipps JE, Lin ET, Zurlinden E. Effect of sex and AIDS status on the plasma and intrapulmonary pharmacokinetics of rifampicin. Clin Pharmacokinet. 2004;43(6):395–404.PubMedCrossRef Conte JE, Golden JA, Kipps JE, Lin ET, Zurlinden E. Effect of sex and AIDS status on the plasma and intrapulmonary pharmacokinetics of rifampicin. Clin Pharmacokinet. 2004;43(6):395–404.PubMedCrossRef
54.
Zurück zum Zitat Siegler DI, Bryant M, Burley DM, Citron KM, Standen SM. Effect of meals on rifampicin absorption. Lancet. 1974;2(7874):197–8.PubMedCrossRef Siegler DI, Bryant M, Burley DM, Citron KM, Standen SM. Effect of meals on rifampicin absorption. Lancet. 1974;2(7874):197–8.PubMedCrossRef
55.
Zurück zum Zitat Polasa K, Krishnaswamy K. Effect of food on bioavailability of rifampicin. J Clin Pharmacol. 1983;23(10):433–7.PubMedCrossRef Polasa K, Krishnaswamy K. Effect of food on bioavailability of rifampicin. J Clin Pharmacol. 1983;23(10):433–7.PubMedCrossRef
56.
Zurück zum Zitat Zent C, Smith P. Study of the effect of concomitant food on the bioavailability of rifampicin, isoniazid and pyrazinamide. Tuber Lung Dis. 1995;76(2):109–13.PubMedCrossRef Zent C, Smith P. Study of the effect of concomitant food on the bioavailability of rifampicin, isoniazid and pyrazinamide. Tuber Lung Dis. 1995;76(2):109–13.PubMedCrossRef
57.
Zurück zum Zitat Peloquin CA, Namdar R, Singleton MD, Nix DE. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest. 1999;115(1):12–8.PubMedCrossRef Peloquin CA, Namdar R, Singleton MD, Nix DE. Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids. Chest. 1999;115(1):12–8.PubMedCrossRef
58.
Zurück zum Zitat Buniva G, Pagani V, Carozzi A. Bioavailability of rifampicin capsules. Int J Clin Pharmacol Ther Toxicol. 1983;21(8):404–9.PubMed Buniva G, Pagani V, Carozzi A. Bioavailability of rifampicin capsules. Int J Clin Pharmacol Ther Toxicol. 1983;21(8):404–9.PubMed
59.
Zurück zum Zitat Lin H-C, Yu M-C, Liu H-J, Bai K-J. Impact of food intake on the pharmacokinetics of first-line antituberculosis drugs in Taiwanese tuberculosis patients. J Formos Med Assoc. 2014;113(5):291–7.PubMedCrossRef Lin H-C, Yu M-C, Liu H-J, Bai K-J. Impact of food intake on the pharmacokinetics of first-line antituberculosis drugs in Taiwanese tuberculosis patients. J Formos Med Assoc. 2014;113(5):291–7.PubMedCrossRef
60.
Zurück zum Zitat Vello GP, Vittori G. Ricerche sull’assorbimento orale e sulla eliminaxione urinaria della rifampicina. Gaz Intern Med Chirurg. 1968;73:2799–804. Vello GP, Vittori G. Ricerche sull’assorbimento orale e sulla eliminaxione urinaria della rifampicina. Gaz Intern Med Chirurg. 1968;73:2799–804.
61.
Zurück zum Zitat Purohit SD, Johri SC, Gupta PR, Mehta YR, Bhatnagar M. Ranitidine–rifampicin interaction. J Assoc Physicians India. 1992;40(5):308–10.PubMed Purohit SD, Johri SC, Gupta PR, Mehta YR, Bhatnagar M. Ranitidine–rifampicin interaction. J Assoc Physicians India. 1992;40(5):308–10.PubMed
62.
Zurück zum Zitat Gengiah TN, Botha JH, Soowamber D, Naidoo K, Abdool Karim SS. Low rifampicin concentrations in tuberculosis patients with HIV infection. J Infect Dev Ctries. 2014;8(8):987–93.PubMedCrossRef Gengiah TN, Botha JH, Soowamber D, Naidoo K, Abdool Karim SS. Low rifampicin concentrations in tuberculosis patients with HIV infection. J Infect Dev Ctries. 2014;8(8):987–93.PubMedCrossRef
63.
Zurück zum Zitat McIlleron H, Rustomjee R, Vahedi M, et al. Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother. 2012;56(6):3232–8.PubMedPubMedCentralCrossRef McIlleron H, Rustomjee R, Vahedi M, et al. Reduced antituberculosis drug concentrations in HIV-infected patients who are men or have low weight: implications for international dosing guidelines. Antimicrob Agents Chemother. 2012;56(6):3232–8.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat van Crevel R, Alisjahbana B, de Lange WCM, et al. Low plasma concentrations of rifampicin in tuberculosis patients in Indonesia. Int J Tuberc Lung Dis. 2002;6(6):497–502.PubMedCrossRef van Crevel R, Alisjahbana B, de Lange WCM, et al. Low plasma concentrations of rifampicin in tuberculosis patients in Indonesia. Int J Tuberc Lung Dis. 2002;6(6):497–502.PubMedCrossRef
65.
Zurück zum Zitat te Brake LHM, Ruslami R, Later-Nijland H, et al. Exposure to total and protein-unbound rifampin is not affected by malnutrition in indonesian tuberculosis patients. Antimicrob Agents Chemother. 2015;59(6):3233–9.CrossRef te Brake LHM, Ruslami R, Later-Nijland H, et al. Exposure to total and protein-unbound rifampin is not affected by malnutrition in indonesian tuberculosis patients. Antimicrob Agents Chemother. 2015;59(6):3233–9.CrossRef
66.
Zurück zum Zitat Weiner M, Peloquin C, Burman W, et al. Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother. 2010;54(10):4192–200.PubMedPubMedCentralCrossRef Weiner M, Peloquin C, Burman W, et al. Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother. 2010;54(10):4192–200.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Chigutsa E, Visser ME, Swart EC, et al. The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother. 2011;55(9):4122–7.PubMedPubMedCentralCrossRef Chigutsa E, Visser ME, Swart EC, et al. The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother. 2011;55(9):4122–7.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Polasa K, Krishnaswamy K. Rifampicin (600 mg) kinetics in the undernourished. Indian J Med Res. 1986;83:175–8.PubMed Polasa K, Krishnaswamy K. Rifampicin (600 mg) kinetics in the undernourished. Indian J Med Res. 1986;83:175–8.PubMed
70.
Zurück zum Zitat Kimerling ME, Phillips P, Patterson P, Hall M, Robinson CA, Dunlap NE. Low serum antimycobacterial drug levels in non-HIV-infected tuberculosis patients. Chest. 1998;113(5):1178–83.PubMedCrossRef Kimerling ME, Phillips P, Patterson P, Hall M, Robinson CA, Dunlap NE. Low serum antimycobacterial drug levels in non-HIV-infected tuberculosis patients. Chest. 1998;113(5):1178–83.PubMedCrossRef
71.
Zurück zum Zitat Berning SE, Huitt GA, Iseman MD, Peloquin CA. Malabsorption of antituberculosis medications by a patient with AIDS. N Engl J Med. 1992;327(25):1817–8.PubMedCrossRef Berning SE, Huitt GA, Iseman MD, Peloquin CA. Malabsorption of antituberculosis medications by a patient with AIDS. N Engl J Med. 1992;327(25):1817–8.PubMedCrossRef
72.
Zurück zum Zitat Taylor B, Smith PJ. Does AIDS impair the absorption of antituberculosis agents? Int J Tuberc Lung Dis. 1998;2(8):670–5.PubMed Taylor B, Smith PJ. Does AIDS impair the absorption of antituberculosis agents? Int J Tuberc Lung Dis. 1998;2(8):670–5.PubMed
73.
Zurück zum Zitat Peloquin CA, Nitta AT, Burman WJ, et al. Low Antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother. 1996;30(9):919–25.PubMedCrossRef Peloquin CA, Nitta AT, Burman WJ, et al. Low Antituberculosis drug concentrations in patients with AIDS. Ann Pharmacother. 1996;30(9):919–25.PubMedCrossRef
74.
Zurück zum Zitat Sahai J, Gallicano K, Swick L, et al. Reduced plasma concentrations of antituberculosis drugs in patients with HIV infection. Ann Intern Med. 1997;127(4):289–93.PubMedCrossRef Sahai J, Gallicano K, Swick L, et al. Reduced plasma concentrations of antituberculosis drugs in patients with HIV infection. Ann Intern Med. 1997;127(4):289–93.PubMedCrossRef
75.
Zurück zum Zitat Patel KB, Belmonte R, Crowe HM. Drug malabsorption and resistant tuberculosis in HIV-infected patients. N Engl J Med. 1995;332(5):336–7.PubMedCrossRef Patel KB, Belmonte R, Crowe HM. Drug malabsorption and resistant tuberculosis in HIV-infected patients. N Engl J Med. 1995;332(5):336–7.PubMedCrossRef
76.
Zurück zum Zitat Peloquin CA, MacPhee AA, Berning SE. Malabsorption of antimycobacterial medications. N Engl J Med. 1993;329(15):1122–3.PubMedCrossRef Peloquin CA, MacPhee AA, Berning SE. Malabsorption of antimycobacterial medications. N Engl J Med. 1993;329(15):1122–3.PubMedCrossRef
77.
Zurück zum Zitat Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–54.PubMedCrossRef Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs. 2014;74(8):839–54.PubMedCrossRef
78.
Zurück zum Zitat Choudhri SH, Hawken M, Gathua S, et al. Pharmacokinetics of antimycobacterial drugs in patients with tuberculosis, AIDS, and diarrhea. Clin Infect Dis. 1997;25(1):104–11.PubMedCrossRef Choudhri SH, Hawken M, Gathua S, et al. Pharmacokinetics of antimycobacterial drugs in patients with tuberculosis, AIDS, and diarrhea. Clin Infect Dis. 1997;25(1):104–11.PubMedCrossRef
79.
Zurück zum Zitat Jaruratanasirikul S. The pharmacokinetics of oral rifampicin in AIDS patients. J Med Assoc Thai. 1998;81(1):25–8.PubMed Jaruratanasirikul S. The pharmacokinetics of oral rifampicin in AIDS patients. J Med Assoc Thai. 1998;81(1):25–8.PubMed
80.
Zurück zum Zitat Acocella G. A metabolic and kinetic study on the association rifampicin-isoniazid. Respiration. 1971;28(Suppl):1–6.CrossRef Acocella G. A metabolic and kinetic study on the association rifampicin-isoniazid. Respiration. 1971;28(Suppl):1–6.CrossRef
82.
Zurück zum Zitat Bright-Thomas RJ, Gondker AR, Morris J, Ormerod LP. Drug-related hepatitis in patients treated with standard anti-tuberculosis chemotherapy over a 30-year period. Int J Tuberc Lung Dis. 2016;20(12):1621–4.PubMedCrossRef Bright-Thomas RJ, Gondker AR, Morris J, Ormerod LP. Drug-related hepatitis in patients treated with standard anti-tuberculosis chemotherapy over a 30-year period. Int J Tuberc Lung Dis. 2016;20(12):1621–4.PubMedCrossRef
83.
Zurück zum Zitat Kumar N, Kedarisetty CK, Kumar S, Khillan V, Sarin SK. Antitubercular therapy in patients with cirrhosis: challenges and options. World J Gastroenterol. 2014;20(19):5760.PubMedPubMedCentralCrossRef Kumar N, Kedarisetty CK, Kumar S, Khillan V, Sarin SK. Antitubercular therapy in patients with cirrhosis: challenges and options. World J Gastroenterol. 2014;20(19):5760.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Durand F, Jebrak G, Pessayre D, Fournier M, Bernuau J. Hepatotoxicity of antitubercular treatments. Rationale for monitoring liver status. Drug Saf. 1996;15(6):394–405. Durand F, Jebrak G, Pessayre D, Fournier M, Bernuau J. Hepatotoxicity of antitubercular treatments. Rationale for monitoring liver status. Drug Saf. 1996;15(6):394–405.
85.
Zurück zum Zitat A controlled trial of 6 months’ chemotherapy in pulmonary tuberculosis. Final report: results during the 36 months after the end of chemotherapy and beyond. British Thoracic Society. Br J Dis Chest. 1984;78(4):330–6. A controlled trial of 6 months’ chemotherapy in pulmonary tuberculosis. Final report: results during the 36 months after the end of chemotherapy and beyond. British Thoracic Society. Br J Dis Chest. 1984;78(4):330–6.
86.
Zurück zum Zitat Combs DL, O’Brien RJ, Geiter LJ. USPHS Tuberculosis Short-Course Chemotherapy Trial 21: effectiveness, toxicity, and acceptability. The report of final results. Ann Intern Med. 1990;112(6):397–406. Combs DL, O’Brien RJ, Geiter LJ. USPHS Tuberculosis Short-Course Chemotherapy Trial 21: effectiveness, toxicity, and acceptability. The report of final results. Ann Intern Med. 1990;112(6):397–406.
87.
Zurück zum Zitat Hong YP, Kim SC, Chang SC, Kim SJ, Jin BW, Park CD. Comparison of a daily and three intermittent retreatment regimens for pulmonary tuberculosis administered under programme conditions. Tubercle. 1988;69(4):241–53.PubMedCrossRef Hong YP, Kim SC, Chang SC, Kim SJ, Jin BW, Park CD. Comparison of a daily and three intermittent retreatment regimens for pulmonary tuberculosis administered under programme conditions. Tubercle. 1988;69(4):241–53.PubMedCrossRef
88.
Zurück zum Zitat Mitchison DA, Nunn AJ. Influence of initial drug resistance on the response to short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis. 1986;133(3):423–30.PubMed Mitchison DA, Nunn AJ. Influence of initial drug resistance on the response to short-course chemotherapy of pulmonary tuberculosis. Am Rev Respir Dis. 1986;133(3):423–30.PubMed
89.
Zurück zum Zitat Franke MF, Appleton SC, Mitnick CD, et al. Aggressive regimens for multidrug-resistant tuberculosis reduce recurrence. Clin Infect Dis. 2013;56(6):770–6.PubMedCrossRef Franke MF, Appleton SC, Mitnick CD, et al. Aggressive regimens for multidrug-resistant tuberculosis reduce recurrence. Clin Infect Dis. 2013;56(6):770–6.PubMedCrossRef
90.
Zurück zum Zitat Kenny MT, Strates B. Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev. 1981;12(1):159–218.PubMedCrossRef Kenny MT, Strates B. Metabolism and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev. 1981;12(1):159–218.PubMedCrossRef
91.
Zurück zum Zitat Ellard GA. Chemotherapy of tuberculosis for patients with renal impairment. Nephron. 1993;64(2):169–81.PubMedCrossRef Ellard GA. Chemotherapy of tuberculosis for patients with renal impairment. Nephron. 1993;64(2):169–81.PubMedCrossRef
92.
Zurück zum Zitat Wang CS, Yang CJ, Chen HC, et al. Impact of type 2 diabetes on manifestations and treatment outcome of pulmonary tuberculosis. Epidemiol Infect. 2009;137(02):203.PubMedCrossRef Wang CS, Yang CJ, Chen HC, et al. Impact of type 2 diabetes on manifestations and treatment outcome of pulmonary tuberculosis. Epidemiol Infect. 2009;137(02):203.PubMedCrossRef
93.
Zurück zum Zitat Alisjahbana B, Sahiratmadja E, Nelwan EJ, et al. The effect of type 2 diabetes mellitus on the presentation and treatment response of pulmonary tuberculosis. Clin Infect Dis. 2007;45(4):428–35.PubMedCrossRef Alisjahbana B, Sahiratmadja E, Nelwan EJ, et al. The effect of type 2 diabetes mellitus on the presentation and treatment response of pulmonary tuberculosis. Clin Infect Dis. 2007;45(4):428–35.PubMedCrossRef
94.
Zurück zum Zitat Ruslami R, Nijland HMJ, Adhiarta IGN, et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74.PubMedCrossRef Ruslami R, Nijland HMJ, Adhiarta IGN, et al. Pharmacokinetics of antituberculosis drugs in pulmonary tuberculosis patients with type 2 diabetes. Antimicrob Agents Chemother. 2010;54(3):1068–74.PubMedCrossRef
95.
Zurück zum Zitat Nijland HMJ, Ruslami R, Stalenhoef JE, et al. Exposure to rifampicin is strongly reduced in patients with tuberculosis and type 2 diabetes. Clin Infect Dis. 2006;43(7):848–54.PubMedCrossRef Nijland HMJ, Ruslami R, Stalenhoef JE, et al. Exposure to rifampicin is strongly reduced in patients with tuberculosis and type 2 diabetes. Clin Infect Dis. 2006;43(7):848–54.PubMedCrossRef
96.
Zurück zum Zitat Babalik A, Ulus IH, Bakirci N, et al. Plasma concentrations of isoniazid and rifampin are decreased in adult pulmonary tuberculosis patients with diabetes mellitus. Antimicrob Agents Chemother. 2013;57(11):5740–2.PubMedPubMedCentralCrossRef Babalik A, Ulus IH, Bakirci N, et al. Plasma concentrations of isoniazid and rifampin are decreased in adult pulmonary tuberculosis patients with diabetes mellitus. Antimicrob Agents Chemother. 2013;57(11):5740–2.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Brunton LL, Knollmann BC, Hilal-Dandan R. Goodman & Gilman’s the pharmacological basis of therapeutics. 13th ed. New York: McGraw Hill Medical; 2018. Brunton LL, Knollmann BC, Hilal-Dandan R. Goodman & Gilman’s the pharmacological basis of therapeutics. 13th ed. New York: McGraw Hill Medical; 2018.
98.
Zurück zum Zitat Donald PR, Maritz JS, Diacon AH. The pharmacokinetics and pharmacodynamics of rifampicin in adults and children in relation to the dosage recommended for children. Tuberculosis. 2011;91(3):196–207.PubMedCrossRef Donald PR, Maritz JS, Diacon AH. The pharmacokinetics and pharmacodynamics of rifampicin in adults and children in relation to the dosage recommended for children. Tuberculosis. 2011;91(3):196–207.PubMedCrossRef
99.
Zurück zum Zitat Hartmann G, Honikel KO, Knüsel F, Nüesch J. The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta. 1967;145(3):843–4.PubMedCrossRef Hartmann G, Honikel KO, Knüsel F, Nüesch J. The specific inhibition of the DNA-directed RNA synthesis by rifamycin. Biochim Biophys Acta. 1967;145(3):843–4.PubMedCrossRef
100.
Zurück zum Zitat Boeree MJ, Heinrich N, Aarnoutse R, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17(1):39–49.PubMedPubMedCentralCrossRef Boeree MJ, Heinrich N, Aarnoutse R, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17(1):39–49.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat McColl KE, Thompson GG, el Omar E, Moore MR, Park BK, Brodie MJ. Effect of rifampicin on haem and bilirubin metabolism in man. Br J Clin Pharmacol. 1987;23(5):553–9.PubMedPubMedCentralCrossRef McColl KE, Thompson GG, el Omar E, Moore MR, Park BK, Brodie MJ. Effect of rifampicin on haem and bilirubin metabolism in man. Br J Clin Pharmacol. 1987;23(5):553–9.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Verbist L, Rollier F. Pharmacological study of rifampicin after repeated high dosage during intermittent combined therapy. II. Bilirubin levels and other biochemical determinations. Respiration. 1971;28(Suppl):17–28. Verbist L, Rollier F. Pharmacological study of rifampicin after repeated high dosage during intermittent combined therapy. II. Bilirubin levels and other biochemical determinations. Respiration. 1971;28(Suppl):17–28.
103.
Zurück zum Zitat Long MW, Snider DE, Farer LSUS. Public Health Service Cooperative trial of three rifampin-isoniazid regimens in treatment of pulmonary tuberculosis. Am Rev Respir Dis. 1979;119(6):879–94.PubMed Long MW, Snider DE, Farer LSUS. Public Health Service Cooperative trial of three rifampin-isoniazid regimens in treatment of pulmonary tuberculosis. Am Rev Respir Dis. 1979;119(6):879–94.PubMed
104.
Zurück zum Zitat Grosset J, Leventis S. Adverse effects of rifampin. Rev Infect Dis. 1983;5(Suppl 3):S440–50.PubMedCrossRef Grosset J, Leventis S. Adverse effects of rifampin. Rev Infect Dis. 1983;5(Suppl 3):S440–50.PubMedCrossRef
105.
Zurück zum Zitat Kaneko Y, Nagayama N, Kawabe Y, et al. Drug-induced hepatotoxicity caused by anti-tuberculosis drugs in tuberculosis patients complicated with chronic hepatitis. Kekkaku. 2008;83(1):13–9.PubMed Kaneko Y, Nagayama N, Kawabe Y, et al. Drug-induced hepatotoxicity caused by anti-tuberculosis drugs in tuberculosis patients complicated with chronic hepatitis. Kekkaku. 2008;83(1):13–9.PubMed
106.
Zurück zum Zitat Saha A, Shanthi FXM, Winston AB, et al. Prevalence of hepatotoxicity from antituberculosis therapy: a five-year experience from South India. J Prim Care Community Health. 2016;7(3):171–4.PubMedPubMedCentralCrossRef Saha A, Shanthi FXM, Winston AB, et al. Prevalence of hepatotoxicity from antituberculosis therapy: a five-year experience from South India. J Prim Care Community Health. 2016;7(3):171–4.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Tostmann A, Boeree MJ, Aarnoutse RE, de Lange WCM, van der Ven AJAM, Dekhuijzen R. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol. 2008;23(2):192–202.PubMedCrossRef Tostmann A, Boeree MJ, Aarnoutse RE, de Lange WCM, van der Ven AJAM, Dekhuijzen R. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol. 2008;23(2):192–202.PubMedCrossRef
108.
Zurück zum Zitat Kim D-H, Choi YH, Kim HS, Yu JE, Koh Y-I. A case of serum sickness-like reaction and anaphylaxis-induced simultaneously by rifampin. Allergy Asthma Immunol Res. 2014;6(2):183.PubMedCrossRef Kim D-H, Choi YH, Kim HS, Yu JE, Koh Y-I. A case of serum sickness-like reaction and anaphylaxis-induced simultaneously by rifampin. Allergy Asthma Immunol Res. 2014;6(2):183.PubMedCrossRef
109.
Zurück zum Zitat De Vriese AS, Robbrecht DL, Vanholder RC, Vogelaers DP, Lameire NH. Rifampicin-associated acute renal failure: pathophysiologic, immunologic, and clinical features. Am J Kidney Dis. 1998;31(1):108–15.PubMedCrossRef De Vriese AS, Robbrecht DL, Vanholder RC, Vogelaers DP, Lameire NH. Rifampicin-associated acute renal failure: pathophysiologic, immunologic, and clinical features. Am J Kidney Dis. 1998;31(1):108–15.PubMedCrossRef
111.
Zurück zum Zitat Ye Y-M, Hur G-Y, Kim S-H, et al. Drug-specific CD4 + T-cell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. Br J Dermatol. 2017;176(2):378–86.PubMedCrossRef Ye Y-M, Hur G-Y, Kim S-H, et al. Drug-specific CD4 + T-cell immune responses are responsible for antituberculosis drug-induced maculopapular exanthema and drug reaction with eosinophilia and systemic symptoms syndrome. Br J Dermatol. 2017;176(2):378–86.PubMedCrossRef
112.
Zurück zum Zitat A controlled trial of daily and intermittent rifampicin plus ethambutol in the retreatment of patients with pulmonary tuberculosis: results up to 30 months. Tubercle. 1975;56(3):179–89. A controlled trial of daily and intermittent rifampicin plus ethambutol in the retreatment of patients with pulmonary tuberculosis: results up to 30 months. Tubercle. 1975;56(3):179–89.
113.
Zurück zum Zitat Eidus L, Hodgkin MM, Hsu AH, Schaefer O. Pharmacokinetic studies with an isoniazid slow-releasing matrix preparation. Am Rev Respir Dis. 1974;110(1):34–42.PubMed Eidus L, Hodgkin MM, Hsu AH, Schaefer O. Pharmacokinetic studies with an isoniazid slow-releasing matrix preparation. Am Rev Respir Dis. 1974;110(1):34–42.PubMed
115.
Zurück zum Zitat Grumbach F, Canetti G, Le Lirzin M. Rifampicin in daily and intermittent treatment of experimental murine tuberculosis, with emphasis on late results. Tubercle. 1969;50(3):280–93.PubMedCrossRef Grumbach F, Canetti G, Le Lirzin M. Rifampicin in daily and intermittent treatment of experimental murine tuberculosis, with emphasis on late results. Tubercle. 1969;50(3):280–93.PubMedCrossRef
116.
Zurück zum Zitat Jindani A, Aber VR, Edwards EA, Mitchison DA. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis. 1980;121(6):939–49.PubMed Jindani A, Aber VR, Edwards EA, Mitchison DA. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis. 1980;121(6):939–49.PubMed
117.
Zurück zum Zitat Chan SL, Yew WW, Ma WK, et al. The early bactericidal activity of rifabutin measured by sputum viable counts in Hong Kong patients with pulmonary tuberculosis. Tuber Lung Dis. 1992;73(1):33–8.PubMedCrossRef Chan SL, Yew WW, Ma WK, et al. The early bactericidal activity of rifabutin measured by sputum viable counts in Hong Kong patients with pulmonary tuberculosis. Tuber Lung Dis. 1992;73(1):33–8.PubMedCrossRef
118.
Zurück zum Zitat Sirgel FA, Botha FJ, Parkin DP, et al. The early bactericidal activity of rifabutin in patients with pulmonary tuberculosis measured by sputum viable counts: a new method of drug assessment. J Antimicrob Chemother. 1993;32(6):867–75.PubMedCrossRef Sirgel FA, Botha FJ, Parkin DP, et al. The early bactericidal activity of rifabutin in patients with pulmonary tuberculosis measured by sputum viable counts: a new method of drug assessment. J Antimicrob Chemother. 1993;32(6):867–75.PubMedCrossRef
119.
Zurück zum Zitat Diacon AH, Patientia RF, Venter A, et al. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob Agents Chemother. 2007;51(8):2994–6.PubMedPubMedCentralCrossRef Diacon AH, Patientia RF, Venter A, et al. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob Agents Chemother. 2007;51(8):2994–6.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Kreis B, Pretet S, Birenbaum J, et al. Two three-month treatment regimens for pulmonary tuberculosis. Bull Int Union Tuberc. 1976;51(1):71–5.PubMed Kreis B, Pretet S, Birenbaum J, et al. Two three-month treatment regimens for pulmonary tuberculosis. Bull Int Union Tuberc. 1976;51(1):71–5.PubMed
121.
Zurück zum Zitat Ruslami R, Nijland H, Aarnoutse R, et al. Evaluation of high- versus standard-dose rifampin in indonesian patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2006;50(2):822–3.PubMedPubMedCentralCrossRef Ruslami R, Nijland H, Aarnoutse R, et al. Evaluation of high- versus standard-dose rifampin in indonesian patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2006;50(2):822–3.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Peloquin CA. Therapeutic drug monitoring: principles and applications in mycobacterial infections. Drug Ther. 1992;22:31–6. Peloquin CA. Therapeutic drug monitoring: principles and applications in mycobacterial infections. Drug Ther. 1992;22:31–6.
123.
Zurück zum Zitat Chigutsa E, Pasipanodya JG, Visser ME, et al. Impact of nonlinear interactions of pharmacokinetics and MICs on sputum bacillary kill rates as a marker of sterilizing effect in tuberculosis. Antimicrob Agents Chemother. 2015;59(1):38–45.PubMedCrossRef Chigutsa E, Pasipanodya JG, Visser ME, et al. Impact of nonlinear interactions of pharmacokinetics and MICs on sputum bacillary kill rates as a marker of sterilizing effect in tuberculosis. Antimicrob Agents Chemother. 2015;59(1):38–45.PubMedCrossRef
124.
Zurück zum Zitat Visser ME, Grewal HM, Swart EC, et al. The effect of vitamin A and zinc supplementation on treatment outcomes in pulmonary tuberculosis: a randomized controlled trial. Am J Clin Nutr. 2011;93(1):93–100.PubMedCrossRef Visser ME, Grewal HM, Swart EC, et al. The effect of vitamin A and zinc supplementation on treatment outcomes in pulmonary tuberculosis: a randomized controlled trial. Am J Clin Nutr. 2011;93(1):93–100.PubMedCrossRef
125.
Zurück zum Zitat Almeida D, Nuermberger E, Tasneen R, et al. Paradoxical effect of isoniazid on the activity of rifampin-pyrazinamide combination in a mouse model of tuberculosis. Antimicrob Agents Chemother. 2009;53(10):4178–84.PubMedPubMedCentralCrossRef Almeida D, Nuermberger E, Tasneen R, et al. Paradoxical effect of isoniazid on the activity of rifampin-pyrazinamide combination in a mouse model of tuberculosis. Antimicrob Agents Chemother. 2009;53(10):4178–84.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Grosset J, Truffot-Pernot C, Lacroix C, Ji B. Antagonism between isoniazid and the combination pyrazinamide-rifampin against tuberculosis infection in mice. Antimicrob Agents Chemother. 1992;36(3):548–51.PubMedPubMedCentralCrossRef Grosset J, Truffot-Pernot C, Lacroix C, Ji B. Antagonism between isoniazid and the combination pyrazinamide-rifampin against tuberculosis infection in mice. Antimicrob Agents Chemother. 1992;36(3):548–51.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Moling O, Mian P. The high mortality rate associated with tuberculous meningitis. Clin Infect Dis. 1995;20(5):1429–30.PubMedCrossRef Moling O, Mian P. The high mortality rate associated with tuberculous meningitis. Clin Infect Dis. 1995;20(5):1429–30.PubMedCrossRef
128.
Zurück zum Zitat Doğanay M, Bakir M, Dökmetaş I. Treatment of tuberculous meningitis in adults with a combination of isoniazid, rifampicin and streptomycin: a prospective study. Scand J Infect Dis. 1989;21(1):81–5.PubMedCrossRef Doğanay M, Bakir M, Dökmetaş I. Treatment of tuberculous meningitis in adults with a combination of isoniazid, rifampicin and streptomycin: a prospective study. Scand J Infect Dis. 1989;21(1):81–5.PubMedCrossRef
129.
Zurück zum Zitat Verdon R, Chevret S, Laissy JP, Wolff M. Tuberculous meningitis in adults: review of 48 cases. Clin Infect Dis. 1996;22(6):982–8.PubMedCrossRef Verdon R, Chevret S, Laissy JP, Wolff M. Tuberculous meningitis in adults: review of 48 cases. Clin Infect Dis. 1996;22(6):982–8.PubMedCrossRef
130.
Zurück zum Zitat Yechoor VK, Shandera WX, Rodriguez P, Cate TR. Tuberculous meningitis among adults with and without HIV infection. Experience in an urban public hospital. Arch Intern Med. 1996;156(15):1710–6. Yechoor VK, Shandera WX, Rodriguez P, Cate TR. Tuberculous meningitis among adults with and without HIV infection. Experience in an urban public hospital. Arch Intern Med. 1996;156(15):1710–6.
131.
Zurück zum Zitat Heemskerk AD, Bang ND, Mai NTH, et al. Intensified antituberculosis therapy in adults with tuberculous meningitis. N Engl J Med. 2016;374(2):124–34.PubMedCrossRef Heemskerk AD, Bang ND, Mai NTH, et al. Intensified antituberculosis therapy in adults with tuberculous meningitis. N Engl J Med. 2016;374(2):124–34.PubMedCrossRef
132.
Zurück zum Zitat Aarnoutse RE, Kibiki GS, Reither K, et al. Pharmacokinetics, tolerability, and bacteriological response of rifampin administered at 600, 900, and 1,200 milligrams daily in patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2017;61(11):e01054-17.PubMedPubMedCentralCrossRef Aarnoutse RE, Kibiki GS, Reither K, et al. Pharmacokinetics, tolerability, and bacteriological response of rifampin administered at 600, 900, and 1,200 milligrams daily in patients with pulmonary tuberculosis. Antimicrob Agents Chemother. 2017;61(11):e01054-17.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Heysell SK, Moore JL, Keller SJ, Houpt ER. Therapeutic drug monitoring for slow response to tuberculosis treatment in a state control program, Virginia, USA. Emerg Infect Dis. 2010;16(10):1546–53.PubMedPubMedCentralCrossRef Heysell SK, Moore JL, Keller SJ, Houpt ER. Therapeutic drug monitoring for slow response to tuberculosis treatment in a state control program, Virginia, USA. Emerg Infect Dis. 2010;16(10):1546–53.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Magis-Escurra C, van den Boogaard J, IJdema D, Boeree M, Aarnoutse R. Therapeutic drug monitoring in the treatment of tuberculosis patients. Pulm Pharmacol Ther. 2012;25(1):83–86. Magis-Escurra C, van den Boogaard J, IJdema D, Boeree M, Aarnoutse R. Therapeutic drug monitoring in the treatment of tuberculosis patients. Pulm Pharmacol Ther. 2012;25(1):83–86.
135.
Zurück zum Zitat Holland DP, Hamilton CD, Weintrob AC, et al. Therapeutic drug monitoring of antimycobacterial drugs in patients with both tuberculosis and advanced human immunodeficiency virus infection. Pharmacotherapy. 2009;29(5):503–10.PubMedCrossRef Holland DP, Hamilton CD, Weintrob AC, et al. Therapeutic drug monitoring of antimycobacterial drugs in patients with both tuberculosis and advanced human immunodeficiency virus infection. Pharmacotherapy. 2009;29(5):503–10.PubMedCrossRef
136.
Zurück zum Zitat Burhan E, Ruesen C, Ruslami R, et al. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2013;57(8):3614–9.PubMedPubMedCentralCrossRef Burhan E, Ruesen C, Ruslami R, et al. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother. 2013;57(8):3614–9.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–73.PubMedPubMedCentralCrossRef Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis. 2013;208(9):1464–73.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Magis-Escurra C, Later-Nijland HMJ, Alffenaar JWC, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014;44(3):229–34.PubMedCrossRef Magis-Escurra C, Later-Nijland HMJ, Alffenaar JWC, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014;44(3):229–34.PubMedCrossRef
139.
Zurück zum Zitat Sturkenboom MGG, Mulder LW, de Jager A, et al. Pharmacokinetic modeling and optimal sampling strategies for therapeutic drug monitoring of rifampin in patients with tuberculosis. Antimicrob Agents Chemother. 2015;59(8):4907–13.PubMedPubMedCentralCrossRef Sturkenboom MGG, Mulder LW, de Jager A, et al. Pharmacokinetic modeling and optimal sampling strategies for therapeutic drug monitoring of rifampin in patients with tuberculosis. Antimicrob Agents Chemother. 2015;59(8):4907–13.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Srivastava S, Gumbo T. Integrating drug concentrations and minimum inhibitory concentrations with Bayesian-dose optimisation for multidrug-resistant tuberculosis. Eur Respir J. 2014;43(1):312–3.PubMedCrossRef Srivastava S, Gumbo T. Integrating drug concentrations and minimum inhibitory concentrations with Bayesian-dose optimisation for multidrug-resistant tuberculosis. Eur Respir J. 2014;43(1):312–3.PubMedCrossRef
141.
Zurück zum Zitat Vu DH, Alffenaar JWC, Edelbroek PM, Brouwers JRBJ, Uges DRA. Dried blood spots: a new tool for tuberculosis treatment optimization. Curr Pharm Des. 2011;17(27):2931–9.PubMedCrossRef Vu DH, Alffenaar JWC, Edelbroek PM, Brouwers JRBJ, Uges DRA. Dried blood spots: a new tool for tuberculosis treatment optimization. Curr Pharm Des. 2011;17(27):2931–9.PubMedCrossRef
142.
Zurück zum Zitat Harahap Y, Alkindy F, Ashiila G, R R. Analysis of rifampicin in dried blood spot of tuberculosis patients for therapeutic drug monitoring using high performance liquid chromatography. J Young Pharm. 2018;10(1):48–51. Harahap Y, Alkindy F, Ashiila G, R R. Analysis of rifampicin in dried blood spot of tuberculosis patients for therapeutic drug monitoring using high performance liquid chromatography. J Young Pharm. 2018;10(1):48–51.
143.
Zurück zum Zitat Vu DH, Koster RA, Bolhuis MS, et al. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC–MS/MS. Talanta. 2014;121:9–17.PubMedCrossRef Vu DH, Koster RA, Bolhuis MS, et al. Simultaneous determination of rifampicin, clarithromycin and their metabolites in dried blood spots using LC–MS/MS. Talanta. 2014;121:9–17.PubMedCrossRef
144.
Zurück zum Zitat Verbist L. Pharmacological study of rifampicin after repeated high dosage during intermittent combined therapy. I. Variation of the rifampicin serum levels (947 determinations). Respiration. 1971;28(Suppl):7–16. Verbist L. Pharmacological study of rifampicin after repeated high dosage during intermittent combined therapy. I. Variation of the rifampicin serum levels (947 determinations). Respiration. 1971;28(Suppl):7–16.
145.
Zurück zum Zitat Boman G. Serum concentration and half-life of rifampicin after simultaneous oral administration of aminosalicylic acid or isoniazid. Eur J Clin Pharmacol. 1974;7(3):217–25.PubMedCrossRef Boman G. Serum concentration and half-life of rifampicin after simultaneous oral administration of aminosalicylic acid or isoniazid. Eur J Clin Pharmacol. 1974;7(3):217–25.PubMedCrossRef
146.
Zurück zum Zitat Bhatia RS, Uppal R, Malhi R, Behera D, Jindal SK. Drug interaction between rifampicin and cotrimoxazole in patients with tuberculosis. Hum Exp Toxicol. 1991;10(6):419–21.PubMedCrossRef Bhatia RS, Uppal R, Malhi R, Behera D, Jindal SK. Drug interaction between rifampicin and cotrimoxazole in patients with tuberculosis. Hum Exp Toxicol. 1991;10(6):419–21.PubMedCrossRef
147.
Zurück zum Zitat Acocella G, Luisetti M, Grassi GG, Peona V, Pozzi E, Grassi C. Bioavailability of isoniazid, rifampicin and pyrazinamide (in free combination or fixed-triple formulation) in intermittent antituberculous chemotherapy. Monaldi Arch Chest Dis. 1993;48(3):205–9.PubMed Acocella G, Luisetti M, Grassi GG, Peona V, Pozzi E, Grassi C. Bioavailability of isoniazid, rifampicin and pyrazinamide (in free combination or fixed-triple formulation) in intermittent antituberculous chemotherapy. Monaldi Arch Chest Dis. 1993;48(3):205–9.PubMed
148.
Zurück zum Zitat Peloquin CA, Jaresko GS, Yong CL, Keung AC, Bulpitt AE, Jelliffe RW. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother. 1997;41(12):2670–9.PubMedPubMedCentralCrossRef Peloquin CA, Jaresko GS, Yong CL, Keung AC, Bulpitt AE, Jelliffe RW. Population pharmacokinetic modeling of isoniazid, rifampin, and pyrazinamide. Antimicrob Agents Chemother. 1997;41(12):2670–9.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Zwolska Z, Niemirowska-Mikulska H, Augustynowicz-Kopec E, et al. Bioavailability of rifampicin, isoniazid and pyrazinamide from fixed-dose combination capsules. Int J Tuberc Lung Dis. 1998;2(10):824–30.PubMed Zwolska Z, Niemirowska-Mikulska H, Augustynowicz-Kopec E, et al. Bioavailability of rifampicin, isoniazid and pyrazinamide from fixed-dose combination capsules. Int J Tuberc Lung Dis. 1998;2(10):824–30.PubMed
150.
Zurück zum Zitat Gurumurthy P, Ramachandran G, Vijayalakshmi S, et al. Bioavailability of rifampicin, isoniazid and pyrazinamide in a triple drug formulation: comparison of plasma and urine kinetics. Int J Tuberc Lung Dis. 1999;3(2):119–25.PubMed Gurumurthy P, Ramachandran G, Vijayalakshmi S, et al. Bioavailability of rifampicin, isoniazid and pyrazinamide in a triple drug formulation: comparison of plasma and urine kinetics. Int J Tuberc Lung Dis. 1999;3(2):119–25.PubMed
151.
Zurück zum Zitat Pargal A, Rani S. Non-linear pharmacokinetics of rifampicin in healthy Asian Indian volunteers. Int J Tuberc Lung Dis. 2001;5(1):70–9.PubMed Pargal A, Rani S. Non-linear pharmacokinetics of rifampicin in healthy Asian Indian volunteers. Int J Tuberc Lung Dis. 2001;5(1):70–9.PubMed
152.
Zurück zum Zitat Prakash J, Velpandian T, Pande JN, Gupta SK. Serum rifampicin levels in patients with tuberculosis: effect of P-glycoprotein and CYP3A4 blockers on its absorption. Clin Drug Investig. 2003;23(7):463–72.PubMedCrossRef Prakash J, Velpandian T, Pande JN, Gupta SK. Serum rifampicin levels in patients with tuberculosis: effect of P-glycoprotein and CYP3A4 blockers on its absorption. Clin Drug Investig. 2003;23(7):463–72.PubMedCrossRef
153.
Zurück zum Zitat Agrawal S, Singh I, Kaur KJ, Bhade SR, Kaul CL, Panchagnula R. Comparative bioavailability of rifampicin, isoniazid and pyrazinamide from a four drug fixed dose combination with separate formulations at the same dose levels. Int J Pharm. 2004;276(1–2):41–9.PubMedCrossRef Agrawal S, Singh I, Kaur KJ, Bhade SR, Kaul CL, Panchagnula R. Comparative bioavailability of rifampicin, isoniazid and pyrazinamide from a four drug fixed dose combination with separate formulations at the same dose levels. Int J Pharm. 2004;276(1–2):41–9.PubMedCrossRef
154.
Zurück zum Zitat Gurumurthy P, Ramachandran G, Hemanth Kumar AK, et al. Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob Agents Chemother. 2004;48(11):4473–5.PubMedPubMedCentralCrossRef Gurumurthy P, Ramachandran G, Hemanth Kumar AK, et al. Decreased bioavailability of rifampin and other antituberculosis drugs in patients with advanced human immunodeficiency virus disease. Antimicrob Agents Chemother. 2004;48(11):4473–5.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat van Crevel R, Nelwan RH, Borst F, et al. Bioavailability of rifampicin in Indonesian subjects: a comparison of different local drug manufacturers. Int J Tuberc Lung Dis. 2004;8(4):500–3.PubMed van Crevel R, Nelwan RH, Borst F, et al. Bioavailability of rifampicin in Indonesian subjects: a comparison of different local drug manufacturers. Int J Tuberc Lung Dis. 2004;8(4):500–3.PubMed
156.
Zurück zum Zitat Perlman DC, Segal Y, Rosenkranz S, et al. The clinical pharmacokinetics of rifampin and ethambutol in HIV-infected persons with tuberculosis. Clin Infect Dis. 2005;41(11):1638–47.PubMedCrossRef Perlman DC, Segal Y, Rosenkranz S, et al. The clinical pharmacokinetics of rifampin and ethambutol in HIV-infected persons with tuberculosis. Clin Infect Dis. 2005;41(11):1638–47.PubMedCrossRef
157.
Zurück zum Zitat Tappero JW, Bradford WZ, Agerton TB, et al. Serum concentrations of antimycobacterial drugs in patients with pulmonary tuberculosis in Botswana. Clin Infect Dis. 2005;41(4):461–9.PubMedCrossRef Tappero JW, Bradford WZ, Agerton TB, et al. Serum concentrations of antimycobacterial drugs in patients with pulmonary tuberculosis in Botswana. Clin Infect Dis. 2005;41(4):461–9.PubMedCrossRef
158.
Zurück zum Zitat Pinheiro VGF, Ramos LMA, Monteiro HSA, et al. Intestinal permeability and malabsorption of rifampin and isoniazid in active pulmonary tuberculosis. Braz J Infect Dis. 2006;10(6):374–9.PubMedCrossRef Pinheiro VGF, Ramos LMA, Monteiro HSA, et al. Intestinal permeability and malabsorption of rifampin and isoniazid in active pulmonary tuberculosis. Braz J Infect Dis. 2006;10(6):374–9.PubMedCrossRef
159.
Zurück zum Zitat Weiner M, Burman W, Luo C-C, et al. Effects of rifampin and multidrug resistance gene polymorphism on concentrations of moxifloxacin. Antimicrob Agents Chemother. 2007;51(8):2861–6.PubMedPubMedCentralCrossRef Weiner M, Burman W, Luo C-C, et al. Effects of rifampin and multidrug resistance gene polymorphism on concentrations of moxifloxacin. Antimicrob Agents Chemother. 2007;51(8):2861–6.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Um S-W, Lee SW, Kwon SY, et al. Low serum concentrations of anti-tuberculosis drugs and determinants of their serum levels. Int J Tuberc Lung Dis. 2007;11(9):972–8.PubMed Um S-W, Lee SW, Kwon SY, et al. Low serum concentrations of anti-tuberculosis drugs and determinants of their serum levels. Int J Tuberc Lung Dis. 2007;11(9):972–8.PubMed
161.
Zurück zum Zitat McIlleron H, Norman J, Kanyok TP, Fourie PB, Horton J, Smith PJ. Elevated gatifloxacin and reduced rifampicin concentrations in a single-dose interaction study amongst healthy volunteers. J Antimicrob Chemother. 2007;60(6):1398–401.PubMedCrossRef McIlleron H, Norman J, Kanyok TP, Fourie PB, Horton J, Smith PJ. Elevated gatifloxacin and reduced rifampicin concentrations in a single-dose interaction study amongst healthy volunteers. J Antimicrob Chemother. 2007;60(6):1398–401.PubMedCrossRef
162.
Zurück zum Zitat Medellín-Garibay SE, Milán-Segovia R del C, Magaña-Aquino M, Portales-Pérez DP, Romano-Moreno S. Pharmacokinetics of rifampicin in Mexican patients with tuberculosis and healthy volunteers. J Pharm Pharmacol. 2014;66(10):1421–1428. Medellín-Garibay SE, Milán-Segovia R del C, Magaña-Aquino M, Portales-Pérez DP, Romano-Moreno S. Pharmacokinetics of rifampicin in Mexican patients with tuberculosis and healthy volunteers. J Pharm Pharmacol. 2014;66(10):1421–1428.
163.
Zurück zum Zitat Bhatt NB, Barau C, Amin A, et al. Pharmacokinetics of rifampin and isoniazid in tuberculosis-HIV-coinfected patients receiving nevirapine- or efavirenz-based antiretroviral treatment. Antimicrob Agents Chemother. 2014;58(6):3182–90.PubMedPubMedCentralCrossRef Bhatt NB, Barau C, Amin A, et al. Pharmacokinetics of rifampin and isoniazid in tuberculosis-HIV-coinfected patients receiving nevirapine- or efavirenz-based antiretroviral treatment. Antimicrob Agents Chemother. 2014;58(6):3182–90.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Kwara A, Cao L, Yang H, et al. Factors associated with variability in rifampin plasma pharmacokinetics and the relationship between rifampin concentrations and induction of efavirenz clearance. Pharmacother J Hum Pharmacol Drug Ther. 2014;34(3):265–71.CrossRef Kwara A, Cao L, Yang H, et al. Factors associated with variability in rifampin plasma pharmacokinetics and the relationship between rifampin concentrations and induction of efavirenz clearance. Pharmacother J Hum Pharmacol Drug Ther. 2014;34(3):265–71.CrossRef
165.
Zurück zum Zitat Heinrich N, Dawson R, du Bois J, et al. Early phase evaluation of SQ109 alone and in combination with rifampicin in pulmonary TB patients. J Antimicrob Chemother. 2015;70(5):1558–66.PubMedCrossRef Heinrich N, Dawson R, du Bois J, et al. Early phase evaluation of SQ109 alone and in combination with rifampicin in pulmonary TB patients. J Antimicrob Chemother. 2015;70(5):1558–66.PubMedCrossRef
166.
Zurück zum Zitat van Oosterhout JJ, Dzinjalamala FK, Dimba A, et al. Pharmacokinetics of antituberculosis drugs in HIV-positive and HIV-negative adults in Malawi. Antimicrob Agents Chemother. 2015;59(10):6175–80.PubMedPubMedCentralCrossRef van Oosterhout JJ, Dzinjalamala FK, Dimba A, et al. Pharmacokinetics of antituberculosis drugs in HIV-positive and HIV-negative adults in Malawi. Antimicrob Agents Chemother. 2015;59(10):6175–80.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Hemanth Kumar AK, Narendran G, Kumar RS, et al. RMP exposure is lower in HIV-infected TB patients receiving intermittent than daily anti-tuberculosis treatment. Int J Tuberc Lung Dis. 2015;19(7):805–7.PubMedCrossRef Hemanth Kumar AK, Narendran G, Kumar RS, et al. RMP exposure is lower in HIV-infected TB patients receiving intermittent than daily anti-tuberculosis treatment. Int J Tuberc Lung Dis. 2015;19(7):805–7.PubMedCrossRef
168.
Zurück zum Zitat Hemanth Kumar AK, Kannan T, Chandrasekaran V, et al. Pharmacokinetics of thrice-weekly rifampicin, isoniazid and pyrazinamide in adult tuberculosis patients in India. Int J Tuberc Lung Dis. 2016;20(9):1236–41.PubMedCrossRef Hemanth Kumar AK, Kannan T, Chandrasekaran V, et al. Pharmacokinetics of thrice-weekly rifampicin, isoniazid and pyrazinamide in adult tuberculosis patients in India. Int J Tuberc Lung Dis. 2016;20(9):1236–41.PubMedCrossRef
169.
Zurück zum Zitat Saktiawati AMI, Sturkenboom MGG, Stienstra Y, et al. Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: a randomized cross-over trial. J Antimicrob Chemother. 2016;71(3):703–10.PubMedCrossRef Saktiawati AMI, Sturkenboom MGG, Stienstra Y, et al. Impact of food on the pharmacokinetics of first-line anti-TB drugs in treatment-naive TB patients: a randomized cross-over trial. J Antimicrob Chemother. 2016;71(3):703–10.PubMedCrossRef
170.
Zurück zum Zitat Peloquin CA, Velásquez GE, Lecca L, et al. Pharmacokinetic evidence from the HIRIF trial to support increased doses of rifampin for tuberculosis. Antimicrob Agents Chemother. 2017;61(8):e00038-17.PubMedPubMedCentralCrossRef Peloquin CA, Velásquez GE, Lecca L, et al. Pharmacokinetic evidence from the HIRIF trial to support increased doses of rifampin for tuberculosis. Antimicrob Agents Chemother. 2017;61(8):e00038-17.PubMedPubMedCentralCrossRef
Metadaten
Titel
Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis
verfasst von
Ahmed Aliyu Abulfathi
Eric H. Decloedt
Elin M. Svensson
Andreas H. Diacon
Peter Donald
Helmuth Reuter
Publikationsdatum
03.05.2019
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 9/2019
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-019-00764-2

Weitere Artikel der Ausgabe 9/2019

Clinical Pharmacokinetics 9/2019 Zur Ausgabe