Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2020

21.08.2019

Coenzyme Q10 Cardioprotective Effects Against Doxorubicin-Induced Cardiotoxicity in Wistar Rat

verfasst von: Ana Flávia M. Botelho, Marthin R. Lempek, Stephanie Elise M. T. Branco, Marina M. Nogueira, Maria Elvira de Almeida, Aristóteles G. Costa, Thalita G. Freitas, Michele Caroline R. C. Rocha, Matheus V. L. Moreira, Tatiane O. Barreto, Jader C. Santos, Gleidice Lavalle, Marília M. Melo

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2020

Einloggen, um Zugang zu erhalten

Abstract

In the present study, we investigated the cardioprotective effects of coenzyme Q10 (Q10) against doxorubicin (DOXO) induced cardiomyopathy. Twenty adult rats were distributed in four experimental groups: group 1 received NaCl 0.9% at 1 ml/day for 14 days; group 2 received Q10 at 1 mg/kg/day for 14 days; group 3 received initial 7 days of treatment with NaCl 0.9% followed by a single dose of doxorubicin (12.5 mg/kg IP) and another 7 days of NaCl; and group 4 received initial 7 days of Q10 1 mg/kg/day, followed by a single dose of doxorubicin (12.5 mg/kg IP) and another 7 days of Q10. At the end of 14 days, systolic, diastolic and mean blood pressure, electrocardiogram (ECG), complete blood count, and serum biochemical profile were evaluated. We also analyzed heart histological and ultrastructure analysis, and estimated heart’s oxidative stress and lipid peroxidation. DOXO administration altered ECG, with increase heart rate, P-wave duration, PR interval duration, and T-wave amplitude. All the parameters were significantly reduced following Q10 treatment. DOXO also caused increase in CK, CK-MB, LDH, and urea levels, which were not mitigated by Q10 treatment. However, Q10 reduced oxidative stress by interfering with superoxide dismutase, significantly decreasing lipid peroxidation in heart tissue. DOXO administration also leads to several histological and ultrastructure alterations including cardiomyocyte degeneration and intense intracelullar autophagosomes, all minimized by Q10 treatment. Q10 treatment prevented the ECG changes, minimized oxidative stress, lipid peroxidation, and DOXO-induced heart tissue alterations. Our findings suggest that pre- and post-treatment with Q10 exerts potential cardioprotective effect against the DOX-induced cardiotoxicity.
Literatur
1.
Zurück zum Zitat Peiris, D., Spector, A. F., Lomax-Browne, H., Azimi, T., Ramesh, B., Loizidou, M., et al. (2017). Cellular glycosylation affects herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Scientific Reports,7, 43006.PubMedPubMedCentral Peiris, D., Spector, A. F., Lomax-Browne, H., Azimi, T., Ramesh, B., Loizidou, M., et al. (2017). Cellular glycosylation affects herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Scientific Reports,7, 43006.PubMedPubMedCentral
2.
Zurück zum Zitat Akolkar, G., Bagchi, A. K., Ayyappan, P., Jassal, D. S., & Singal, P. K. (2017). Doxorubicin-induced nitrosative stress is mitigated by vitamin C via the modulation of nitric oxide synthases. American Journal Society Physiological Cell,312, 418–427. Akolkar, G., Bagchi, A. K., Ayyappan, P., Jassal, D. S., & Singal, P. K. (2017). Doxorubicin-induced nitrosative stress is mitigated by vitamin C via the modulation of nitric oxide synthases. American Journal Society Physiological Cell,312, 418–427.
3.
Zurück zum Zitat Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine,18, 1639–1645.PubMed Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine,18, 1639–1645.PubMed
4.
Zurück zum Zitat Holmberg, M. J., Uber, A., Stankovic, N., Chen, C. O., Grossestreuer, A. V., Donnino, M. W., et al. (2018). Ubiquinol (reduced coenzyme Q10) and cellular oxygen consumption in patients undergoing coronary artery bypass grafting. Journal of Intensive Care Medicine,1, 885066618789114. Holmberg, M. J., Uber, A., Stankovic, N., Chen, C. O., Grossestreuer, A. V., Donnino, M. W., et al. (2018). Ubiquinol (reduced coenzyme Q10) and cellular oxygen consumption in patients undergoing coronary artery bypass grafting. Journal of Intensive Care Medicine,1, 885066618789114.
5.
Zurück zum Zitat Fouad, A. A., & Jresat, I. (2012). Hepatoprotective effect of coenzyme Q10 in rats with acetaminophen toxicity. Environmental Toxicology and Pharmacology,33, 158–167.PubMed Fouad, A. A., & Jresat, I. (2012). Hepatoprotective effect of coenzyme Q10 in rats with acetaminophen toxicity. Environmental Toxicology and Pharmacology,33, 158–167.PubMed
6.
Zurück zum Zitat Zhai, J., Bo, Y., Lu, Y., Liu, C., & Zhang, L. (2017). Effects of coenzyme Q10 on markers of inflammation: A systematic review and metal-analysis. PLoS ONE,12, e0170172.PubMedPubMedCentral Zhai, J., Bo, Y., Lu, Y., Liu, C., & Zhang, L. (2017). Effects of coenzyme Q10 on markers of inflammation: A systematic review and metal-analysis. PLoS ONE,12, e0170172.PubMedPubMedCentral
7.
Zurück zum Zitat Jafari, M., Mousavi, S. M., Asgharzadeh, A., & Yazdani, N. (2018). Coenzyme Q10 in the treatment of heart failure: A systematic review of systematic reviews. Indian Heart Journal,7–0, 111–117. Jafari, M., Mousavi, S. M., Asgharzadeh, A., & Yazdani, N. (2018). Coenzyme Q10 in the treatment of heart failure: A systematic review of systematic reviews. Indian Heart Journal,7–0, 111–117.
8.
Zurück zum Zitat Luna, L. G. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology (3rd ed.). New York: McGraw-Hill. Luna, L. G. (1968). Manual of histologic staining methods of the Armed Forces Institute of Pathology (3rd ed.). New York: McGraw-Hill.
9.
Zurück zum Zitat Joviano-Santos, J. V., Santos-Miranda, A., Botelho, A. F. M., De Jesus, I. C. G., Andrade, J. N., De Oliveira Barreto, T., et al. (2018). Increased oxidative stress and CaMKII activity contribute to electro-mechanical defects in cardiomyocytes from a murine model of Huntington’s disease. FEBS Journal,286, 110–123.PubMed Joviano-Santos, J. V., Santos-Miranda, A., Botelho, A. F. M., De Jesus, I. C. G., Andrade, J. N., De Oliveira Barreto, T., et al. (2018). Increased oxidative stress and CaMKII activity contribute to electro-mechanical defects in cardiomyocytes from a murine model of Huntington’s disease. FEBS Journal,286, 110–123.PubMed
10.
Zurück zum Zitat Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMed Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.PubMed
11.
Zurück zum Zitat Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.PubMed Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.PubMed
12.
Zurück zum Zitat Janero, D. R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine, 9(6), 515–540.PubMed Janero, D. R. (1990). Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine, 9(6), 515–540.PubMed
13.
Zurück zum Zitat Dieterich, S., Bieligk, U., Beulich, K., Hasenfuss, G., & Prestle, J. (2000). Gene expression of antioxidative enzymes in the human heart: Increased expression of catalase in the end-stage failing heart. Circulation, 101(1), 33–39.PubMed Dieterich, S., Bieligk, U., Beulich, K., Hasenfuss, G., & Prestle, J. (2000). Gene expression of antioxidative enzymes in the human heart: Increased expression of catalase in the end-stage failing heart. Circulation, 101(1), 33–39.PubMed
14.
Zurück zum Zitat Gioda, C. R., de Oliveira Barreto, T., Prímola-Gomes, T. N., de Lima, D. C., Campos, P. P., Capettini Ldos, S., et al. (2010). Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. American Journal of Physiology-Heart and Circulatory Physiology, 298(6), 2039–2045. Gioda, C. R., de Oliveira Barreto, T., Prímola-Gomes, T. N., de Lima, D. C., Campos, P. P., Capettini Ldos, S., et al. (2010). Cardiac oxidative stress is involved in heart failure induced by thiamine deprivation in rats. American Journal of Physiology-Heart and Circulatory Physiology, 298(6), 2039–2045.
15.
Zurück zum Zitat Nelson, D. P., & Kiesow, L. A. (1972). Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry, 49(2), 474–478.PubMed Nelson, D. P., & Kiesow, L. A. (1972). Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry, 49(2), 474–478.PubMed
16.
Zurück zum Zitat Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.PubMed Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.PubMed
17.
Zurück zum Zitat Lefrak, E. A., Pitha, J., Rosenheim, S., & Gottlieb, J. A. (1973). A clinicopathologic analysis of Adriamycin cardiotoxicity. Cancer,32, 302–314.PubMed Lefrak, E. A., Pitha, J., Rosenheim, S., & Gottlieb, J. A. (1973). A clinicopathologic analysis of Adriamycin cardiotoxicity. Cancer,32, 302–314.PubMed
18.
Zurück zum Zitat Shafei, A., El-Bakly, W., Sobhy, A., Wadgy, O., Reda, A., Aboelenin, O., et al. (2017). A review on the efficacy and toxicity of differente doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomedicine & Pharmacotherapy,95, 1209–1218. Shafei, A., El-Bakly, W., Sobhy, A., Wadgy, O., Reda, A., Aboelenin, O., et al. (2017). A review on the efficacy and toxicity of differente doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomedicine & Pharmacotherapy,95, 1209–1218.
19.
Zurück zum Zitat Granados-Principal, S., Quiles, J. L., Ramirez-Tortosa, C. L., Sanchez-Rovira, P., & Ramirez-Tortosa, M. C. (2010). New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidante nutrients. Food and Chemical Toxicology,48, 1425–1438.PubMed Granados-Principal, S., Quiles, J. L., Ramirez-Tortosa, C. L., Sanchez-Rovira, P., & Ramirez-Tortosa, M. C. (2010). New advances in molecular mechanisms and the prevention of adriamycin toxicity by antioxidante nutrients. Food and Chemical Toxicology,48, 1425–1438.PubMed
20.
Zurück zum Zitat O’Connell, J. L., Romano, M. M. M., Campos Pulici, E. C., Carvalho, E. E., de Souza, F. R., Tanaka, D. M., et al. (2017). Short-term and long-term models of doxorubicin-induced cardiomyopathy in rats: A comparison of functional and histopathological changes. Experimental Toxicologic Pathology,69, 213–219.PubMed O’Connell, J. L., Romano, M. M. M., Campos Pulici, E. C., Carvalho, E. E., de Souza, F. R., Tanaka, D. M., et al. (2017). Short-term and long-term models of doxorubicin-induced cardiomyopathy in rats: A comparison of functional and histopathological changes. Experimental Toxicologic Pathology,69, 213–219.PubMed
21.
Zurück zum Zitat Kelleni, M. T., Amin, E. F., & Abdelrahaman, A. M. (2015). Effect of metformin and sitagliptin on doxorubicin induced cardiotoxicity in rats: Impact of oxidative stress, inflammation and apoptosis. Journal of Toxicology,2015, 8. Kelleni, M. T., Amin, E. F., & Abdelrahaman, A. M. (2015). Effect of metformin and sitagliptin on doxorubicin induced cardiotoxicity in rats: Impact of oxidative stress, inflammation and apoptosis. Journal of Toxicology,2015, 8.
22.
Zurück zum Zitat Pereira Neto, G. B., Andrade, J. N. B., Sousa, M. G., & Camacho, A. A. (2006). Holter electrocardiography in dogs showing doxorubicin-induced dilated cardiomyopathy. Arquivo Brasileiro de Medicina Veterinária e Zootecnia,58, 1037–1042. Pereira Neto, G. B., Andrade, J. N. B., Sousa, M. G., & Camacho, A. A. (2006). Holter electrocardiography in dogs showing doxorubicin-induced dilated cardiomyopathy. Arquivo Brasileiro de Medicina Veterinária e Zootecnia,58, 1037–1042.
23.
Zurück zum Zitat Silva, C. E. V., & Camacho, A. A. (2005). Alterações eletrocardiográficas em cães sob tratamento prolongado com doxorrubicina. Arquivo Brasileiro de Medicina Veterinária e Zootecnia,57, 300–306. Silva, C. E. V., & Camacho, A. A. (2005). Alterações eletrocardiográficas em cães sob tratamento prolongado com doxorrubicina. Arquivo Brasileiro de Medicina Veterinária e Zootecnia,57, 300–306.
24.
Zurück zum Zitat Krishnamurthy, B., Rani, N., Bharti, S., Golechha, M., Bhatia, J., Naq, T. C., et al. (2015). Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats. Chemico-Biological Interactions,237(96–103), 2015. Krishnamurthy, B., Rani, N., Bharti, S., Golechha, M., Bhatia, J., Naq, T. C., et al. (2015). Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats. Chemico-Biological Interactions,237(96–103), 2015.
25.
Zurück zum Zitat Sleijfer, S., Rizzo, E., Litière, S., Mathijssen, R. H. J., Judson, I. R., Gelderblom, H., et al. (2018). Predictors for doxorubicin-induced hematological toxicity and its association with outcome in advances soft tissue sarcoma patients; a retrospective analysis of the EORTC-soft tissue and bone sarcoma group database. Acta Oncologica,57, 1117–1126.PubMed Sleijfer, S., Rizzo, E., Litière, S., Mathijssen, R. H. J., Judson, I. R., Gelderblom, H., et al. (2018). Predictors for doxorubicin-induced hematological toxicity and its association with outcome in advances soft tissue sarcoma patients; a retrospective analysis of the EORTC-soft tissue and bone sarcoma group database. Acta Oncologica,57, 1117–1126.PubMed
26.
Zurück zum Zitat Saad, S. Y., Najjat, T. A., & Al-Rikabi, A. C. (2001). The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacological Research,43, 211–218.PubMed Saad, S. Y., Najjat, T. A., & Al-Rikabi, A. C. (2001). The preventive role of deferoxamine against acute doxorubicin-induced cardiac, renal and hepatic toxicity in rats. Pharmacological Research,43, 211–218.PubMed
27.
Zurück zum Zitat Lopez-Giacoman, S., & Madero, M. (2015). Biomarkers in chronic kidney disease, from kidney function to kidney damage. World Journal of Nephrology,6, 57–73. Lopez-Giacoman, S., & Madero, M. (2015). Biomarkers in chronic kidney disease, from kidney function to kidney damage. World Journal of Nephrology,6, 57–73.
28.
Zurück zum Zitat Hruska, K. A., Mathew, S., Lund, R., Qiu, P., & Pratt, R. (2008). Hyperphosphatemia of chronic kidney disease. Kidney International,74, 148–157.PubMedPubMedCentral Hruska, K. A., Mathew, S., Lund, R., Qiu, P., & Pratt, R. (2008). Hyperphosphatemia of chronic kidney disease. Kidney International,74, 148–157.PubMedPubMedCentral
29.
Zurück zum Zitat Campbell, T. W. (2007). Bioquímica Clínica de Mamíferos: Animais de Laboratório e Espécies Variadas. In M. A. Thrall (Ed.), Hematologia e Bioquímica Clínica Veterinária (1st ed.). São Paulo: Roca. Campbell, T. W. (2007). Bioquímica Clínica de Mamíferos: Animais de Laboratório e Espécies Variadas. In M. A. Thrall (Ed.), Hematologia e Bioquímica Clínica Veterinária (1st ed.). São Paulo: Roca.
30.
Zurück zum Zitat Fonfara, S., Loureiro, J., Swift, S., James, R., Cripps, P., & Dukes-McEwan, J. (2010). Cardiac troponin I as a marker for severity and prognosis of cardiac disease in dogs. Veterinary Journal,184, 334–339. Fonfara, S., Loureiro, J., Swift, S., James, R., Cripps, P., & Dukes-McEwan, J. (2010). Cardiac troponin I as a marker for severity and prognosis of cardiac disease in dogs. Veterinary Journal,184, 334–339.
31.
Zurück zum Zitat O’Bryen, P. J., Smith, D. E., Knectel, T. J., Marchak, M. A., Pruimboom-Brees, I., Brees, D. J., et al. (2006). Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Laboratory Animal Science,40, 153–171. O’Bryen, P. J., Smith, D. E., Knectel, T. J., Marchak, M. A., Pruimboom-Brees, I., Brees, D. J., et al. (2006). Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Laboratory Animal Science,40, 153–171.
32.
Zurück zum Zitat Kehoe, R., Singer, D. H., Trapani, A., Billingham, M., Levandowski, R., & Elson, J. (1978). Adriamycin-induced cardiac dysrhythmias in an experimental dog model. Cancer Treatment Reports,62, 963–978.PubMed Kehoe, R., Singer, D. H., Trapani, A., Billingham, M., Levandowski, R., & Elson, J. (1978). Adriamycin-induced cardiac dysrhythmias in an experimental dog model. Cancer Treatment Reports,62, 963–978.PubMed
33.
Zurück zum Zitat Van Vleet, J. F., & Ferrans, V. J. (1986). Myocardial diseases of animals. The American Journal of Pathology,124, 95–178. Van Vleet, J. F., & Ferrans, V. J. (1986). Myocardial diseases of animals. The American Journal of Pathology,124, 95–178.
34.
Zurück zum Zitat Maudlin, G. E., Fox, P. R., Patnaik, A. K., Bond, B. R., Mooney, S. C., & Matus, R. E. (1992). Doxorubicin-induced cardiotoxicosis: clinical features in 32 dogs. Journal of Veterinary Internal Medicine,6, 82–88. Maudlin, G. E., Fox, P. R., Patnaik, A. K., Bond, B. R., Mooney, S. C., & Matus, R. E. (1992). Doxorubicin-induced cardiotoxicosis: clinical features in 32 dogs. Journal of Veterinary Internal Medicine,6, 82–88.
35.
Zurück zum Zitat Gava, F. N., Zacché, E., Ortiz, E. M. G., Champion, T., Bandarra, M. B., Barbosa, J. C., et al. (2013). Doxorubicin induced dilated cardiomyopathy in a rabbit model: An update. Research in Veterinary Science,94, 115–121.PubMed Gava, F. N., Zacché, E., Ortiz, E. M. G., Champion, T., Bandarra, M. B., Barbosa, J. C., et al. (2013). Doxorubicin induced dilated cardiomyopathy in a rabbit model: An update. Research in Veterinary Science,94, 115–121.PubMed
36.
Zurück zum Zitat Green, P. S., & Leeuwenburgh, C. (2002). Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimia et Biophysica Acta,1588, 94–101. Green, P. S., & Leeuwenburgh, C. (2002). Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochimia et Biophysica Acta,1588, 94–101.
37.
Zurück zum Zitat Abdullah, C. S., Alam, S., Aishwarya, R., Miriyala, S., Bhuiyan, M. A. N., Panchatcharam, M., et al. (2019). Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Scientific Reports,9, 2002.PubMedPubMedCentral Abdullah, C. S., Alam, S., Aishwarya, R., Miriyala, S., Bhuiyan, M. A. N., Panchatcharam, M., et al. (2019). Doxorubicin-induced cardiomyopathy associated with inhibition of autophagic degradation process and defects in mitochondrial respiration. Scientific Reports,9, 2002.PubMedPubMedCentral
38.
Zurück zum Zitat Koleini, N., & Kardami, E. (2017). Autophagy and mitophagy in the contexto of doxorubicin-induced cardiotoxicity. Oncotarget,8, 46663–46680.PubMedPubMedCentral Koleini, N., & Kardami, E. (2017). Autophagy and mitophagy in the contexto of doxorubicin-induced cardiotoxicity. Oncotarget,8, 46663–46680.PubMedPubMedCentral
39.
Zurück zum Zitat Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. K. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology,52, 1213–1225.PubMed Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. K. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology,52, 1213–1225.PubMed
40.
Zurück zum Zitat Asension-López, M. C., Soler, F., Pascual-Figal, D., Fernández-Belda, F., & Lax, A. (2017). Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes. PLoS ONE,28, e0172803. Asension-López, M. C., Soler, F., Pascual-Figal, D., Fernández-Belda, F., & Lax, A. (2017). Doxorubicin-induced oxidative stress: The protective effect of nicorandil on HL-1 cardiomyocytes. PLoS ONE,28, e0172803.
41.
Zurück zum Zitat Littarru, G. P., & Tiano, L. (2010). Clinical aspects of coenzyme Q10: An update. Nutrition,26, 250–254.PubMed Littarru, G. P., & Tiano, L. (2010). Clinical aspects of coenzyme Q10: An update. Nutrition,26, 250–254.PubMed
42.
Zurück zum Zitat Conklin, K. A. (2005). Coenzyme q10 for prevention of anthracycline-induced cardiotoxicity. Integrative Cancer Therapies,4, 110–130.PubMed Conklin, K. A. (2005). Coenzyme q10 for prevention of anthracycline-induced cardiotoxicity. Integrative Cancer Therapies,4, 110–130.PubMed
43.
Zurück zum Zitat Conklin, K. A. (2000). Dietary antioxidants during cancer chemotherapy: Impact on chemotherapeutic effectiveness and development of side effects. Nutrition and Cancer,37, 1–18.PubMed Conklin, K. A. (2000). Dietary antioxidants during cancer chemotherapy: Impact on chemotherapeutic effectiveness and development of side effects. Nutrition and Cancer,37, 1–18.PubMed
44.
Zurück zum Zitat Conklin, K. A. (2004). Cancer chemotherapy and antioxidants. The Journal of Nutrition,134, 3201S–3204S.PubMed Conklin, K. A. (2004). Cancer chemotherapy and antioxidants. The Journal of Nutrition,134, 3201S–3204S.PubMed
Metadaten
Titel
Coenzyme Q10 Cardioprotective Effects Against Doxorubicin-Induced Cardiotoxicity in Wistar Rat
verfasst von
Ana Flávia M. Botelho
Marthin R. Lempek
Stephanie Elise M. T. Branco
Marina M. Nogueira
Maria Elvira de Almeida
Aristóteles G. Costa
Thalita G. Freitas
Michele Caroline R. C. Rocha
Matheus V. L. Moreira
Tatiane O. Barreto
Jader C. Santos
Gleidice Lavalle
Marília M. Melo
Publikationsdatum
21.08.2019
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2020
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09547-4

Weitere Artikel der Ausgabe 3/2020

Cardiovascular Toxicology 3/2020 Zur Ausgabe