Skip to main content
Erschienen in: Arthritis Research & Therapy 1/2016

Open Access 01.12.2016 | Research article

Comparison of transforming growth factor beta expression in healthy and diseased human tendon

verfasst von: Henry C. J. Goodier, Andrew J. Carr, Sarah J. B. Snelling, Lucy Roche, Kim Wheway, Bridget Watkins, Stephanie G. Dakin

Erschienen in: Arthritis Research & Therapy | Ausgabe 1/2016

Abstract

Background

Diseased tendons are characterised by fibrotic scar tissue, which adversely affects tendon structure and function and increases the likelihood of re-injury. The mechanisms and expression profiles of fibrosis in diseased tendon is understudied compared to pulmonary and renal tissues, where transforming growth factor (TGF)β and its associated superfamily are known to be key drivers of fibrosis and modulate extracellular matrix homeostasis. We hypothesised that differential expression of TGFβ superfamily members would exist between samples of human rotator cuff tendons with established disease compared to healthy control tendons.

Methods

Healthy and diseased rotator cuff tendons were collected from patients presenting to an orthopaedic referral centre. Diseased tendinopathic (intact) and healthy rotator cuff tendons were collected via ultrasound-guided biopsy and torn tendons were collected during routine surgical debridement. Immunohistochemistry and quantitative real-time polymerase chain reaction were used to investigate the protein and gene expression profiles of TGFβ superfamily members in these healthy and diseased tendons.

Results

TGFβ superfamily members were dysregulated in diseased compared to healthy tendons. Specifically, TGFβ-1, TGFβ receptor (R)1 and TGFβ R2 proteins were reduced (p < 0.01) in diseased compared to healthy tendons. At the mRNA level, TGFβ R1 was significantly reduced in samples of diseased tendons, whereas TGFβ R2 was increased (p < 0.01). BMP-2, BMP-7 and CTGF mRNA remained unchanged with tendon disease.

Conclusions

We propose that downregulation of TGFβ pathways in established tendon disease may be a protective response to limit disease-associated fibrosis. The disruption of the TGFβ axis with disease suggests associated downstream pathways may be important for maintaining healthy tendon homeostasis. The findings from our study suggest that patients with established tendon disease would be unlikely to benefit from therapeutic TGFβ blockade, which has been investigated as a treatment strategy in several animal models. Future studies should investigate the expression profile of fibrotic mediators in earlier stages of tendon disease to improve understanding of the targetable mechanisms underpinning tendon fibrosis.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Study concept and design: SGD, AJC, SJBS, HCJG. Acquisition of data: HCJG, SGD. Analysis and interpretation of data: HCJG, SGD, SJBS, AJC. Drafting of the manuscript: All authors. Critical revision of the manuscript and approval of final version: All authors. Statistical analysis: HCJG, SGD. Obtained funding: AJC, SGD. Administrative, technical or material support: LR, KW, BW.
Abkürzungen
ACL
Anterior cruciate ligament
BMP
Bone morphogenic protein
CD
Cluster of differentiation
CTGF
Connective tissue growth factor
DAB
3,3′-Diaminobenzidine
DNA
Deoxyribonucleic acid
ECM
Extracellular matrix
EMT
Epithelial–mesenchymal transition
Ig
Immunoglobulin
IL
Interleukin
NSAID
Non-steroidal anti-inflammatory drug
OSS
Oxford shoulder score
PBS
Phosphate-buffered saline
PRP
Platelet-rich plasma
qPCR
Quantitative polymerase chain reaction
RNA
Ribonucleic acid
STAT
Signal transducer and activator of transcription
TGF
Transforming growth factor
TGF R
Transforming growth factor receptor

Background

Musculoskeletal diseases are a common cause of pain and disability in well-resourced health systems [1]. Shoulder pain is the third most common cause of musculoskeletal pain, accounting for 2.4 % of all general practitioner consultations annually in the UK [2]. Shoulder pain is frequently treated conservatively, but after 1 year 41 % of patients have persistent pain [3]. Rotator cuff disease is the major cause of shoulder pain with the supraspinatus tendon being most frequently affected [4]. The onset of tendon pathology is associated with ageing, chronic overuse and genetic predisposition [57]. Shoulder pain is a major socio-economic burden and joint failure from rotator cuff tears can lead to secondary osteoarthritis [8].
Patients with rotator cuff disease may have tendinopathy (whereby the tendon is structurally intact) or a tendon tear. Tendon tears are sub-classified according to tear sizes ranging from small (<1 cm) to massive (>5 cm in length) [9]. Tendons heal by fibrosis and the scar repair is frequently structurally and functionally inferior to normal tendon, increasing the risk of re-injury [1013]. Treatment for shoulder tendinopathy includes physiotherapy, non-steroidal anti-inflammatory drugs (NSAIDs), and interventional treatments including local infiltration with glucocorticoids, platelet-rich plasma (PRP) and arthroscopic acromioplasty or rotator cuff repair. Non-operative strategies are associated with mixed patient outcomes [14]. Furthermore, surgical repairs of torn rotator cuff tendons are associated with high failure rates of up to 94 % [15].
Inflammation is known to drive fibrotic repair in skin, liver, renal and pulmonary diseases. Signal transducer and activator of transcription (STAT)-6 pathways encompassing interleukin (IL)-13/IL-4 are thought to be the dominant pro-fibrotic axis for increasing collagen synthesis from fibroblasts and regulating alternatively activated macrophages [1619]. Upregulation of IL-13 has been shown to mediate tissue fibrosis via transforming growth factor (TGF)β [20]. TGFβ is the most frequently investigated effector of fibrosis and regulator of extracellular matrix (ECM) turnover. The TGFβ superfamily modulates a number of vital cellular processes in tissue development, differentiation and homeostasis. TGFβ-1 is pivotal to wound healing processes and implicated in multiple fibrotic disease states including connective tissue fibrosis [21]. TGFβ is synthesised as a pro-peptide, and is abundant within the ECM, platelets and macrophages. Signalling is mediated through binding of active TGFβ to a heteromeric complex of TGFβ receptor (R)1 and 2, resulting in SMAD3 phosphorylation and activation of target genes. Macrophages, lymphocytes and resident stromal cells are key cell populations implicated in the propagation of fibrotic disease. Whilst inflammation has been identified in diseased tendons [22, 23], little is known about the inflammatory mechanisms driving tendon fibrosis.
Animal models have been used to identify potential treatment strategies for fibrotic diseases. These include manipulation of pro-fibrotic pathways through exogenous anti-TGFβ, antisense-TGFβ gene, SMAD3 knockout, and macrophage depletion models [2429]. Reducing TGFβ signalling diminishes the fibrotic phenotype of tendon but also reduces tissue tensile strength [30]. As part of the TGFβ superfamily, bone morphogenic proteins (BMPs) have previously been investigated for their role in tendon-to-bone healing [27, 31, 32] and in the stimulation of rotator cuff tendon-derived cells in tissue culture models [33]. These studies show BMP-2 and -7 induce collagen production in rotator cuff tendon-derived cells, suggesting these BMPs could play a role in the development of tendon fibrosis.
Little is known of the mechanisms underpinning fibrosis in diseased human tendons. To our knowledge, no study to date has investigated TGFβ superfamily expression in diseased human tendons from living patients. The aim of this study was to investigate mRNA and protein expression of key TGFβ superfamily members in tissue samples from patients with established tendon disease compared to healthy control tendons. We hypothesised that expression of TGFβ superfamily genes and proteins would be dysregulated in diseased compared to healthy tendons.

Methods

Diagnosis of rotator cuff tendon disease in patient cohorts

Patients presenting to a referral shoulder clinic had failed non-operative treatment, including a course of physical therapy, and glucocorticoid injections into the sub-acromial space, and had experienced pain for a minimum of 6 months. Patients had not received glucocorticoid or PRP for 12 weeks before surgery. A shoulder specialist diagnosed sub-acromial impingement syndrome in all patients. Impingement tests were positive in all patients. High-definition ultrasound examination was performed in all patients to determine if there was evidence of a rotator cuff tear and also to identify abnormal echogenic changes at the supraspinatus footprint. Exclusion criteria for all patients in this study included previous shoulder surgery, dual shoulder pathological lesions, significant problems in the other shoulder, rheumatoid arthritis or systemic inflammatory disease, osteoarthritis or significant neck problems.

Patient cohort for gene expression analysis

Torn rotator cuff (supraspinatus, n = 7) and healthy hamstring (n = 7) tendon tissue samples were collected to investigate mRNA expression of TGFβ superfamily members in these samples. Healthy hamstring tendons were collected from patients undergoing anterior cruciate ligament (ACL) reconstruction surgery from male and female patients aged between 22 and 49 (mean 31 ± 9.5) years. Torn supraspinatus tendon tissues were collected from male and female patients aged 40 to 67 (mean 52.5 ± 9) years (Table 1). Fresh tissue samples were immediately snap frozen in liquid nitrogen and stored at –80 °C prior to RNA extraction.
Table 1
Patient demographics for the study group
Cohort
n
Median age (years)
Sex (M:F)
History
Treatment
Median OSS
Healthy supraspinatus
10
24 (18–29)
9:1
Shoulder instability
Shoulder stabilisation
N/A
Healthy hamstring (mRNA)
7
31 (22–49)
3:4
ACL rupture
ACL repair
N/A
Tendinopathic supraspinatus
23
54 (36–73)
13:10
Shoulder Sx 1–10 years (mean 2.5 years)
1–2 steroid injections, SAD ± PRP
29 (11–38)
Torn supraspinatus
30
69.5 (50–78)
18:12
5 small
Rotator cuff repair
20.5 (7–35)
9 medium
9 large
7 massive
Torn supraspinatus (mRNA)
7
52.5 (40–67)
5:2
3 medium
Rotator cuff repair
26 (9–31)
2 large
2 massive
ACL anterior cruciate ligament, F female, M male, N/A not available, OSS Oxford shoulder score, PRP platelet-rich plasma, SAD sub-acromial decompression surgery

RNA extraction and cDNA synthesis

Frozen tissue samples stored at –80 °C were homogenised in 1 mL RNABee (AMS Biotechnology, UK) using an IKA Ultra Turrax T8 Homogeniser (Fischer Scientific, UK). RNA extraction was carried out as per the manufacturer’s protocol using an RNeasy mini kit (Qiagen, Limburg, Netherlands) with an on-column DNA treatment using DNase 1 (Thermo Scientific, UK). RNA concentration and quality were determined by measuring the ratio of absorbance at 260:280 nm using a NanoDrop 100 spectrophotometer (Thermo Scientific, MA, USA), with all samples achieving a minimum ratio of 1.80. RNA (250 ng) was reverse transcribed using a High Capacity Reverse Transcription Kit (4368813, Applied Biosystems, UK).

Gene expression by quantitative real-time polymerase chain reaction

cDNA was diluted to 2.5 ng/μL with RNase free water and 5 μL was used in a 20 μL quantitative polymerase chain reaction (qPCR) with Fast SYBR Green Master Mix (4385612, Applied Biosystems). Validated human primers included TGFB1 (QT00000728), TGFBR1 (QT00083412), TGFBR2 (QT00014350), BMP2 (QT00012544), BMP7 (QT00068936), and CTGF (QT00052899) (Qiagen). Duplicate reactions for each gene were run on a ViiA7 qPCR machine (Applied Biosystems, CA, USA) and the mean value for these duplicates calculated and used for analysis. Results were calculated using the ΔΔCt method and normalized against β-actin and GAPDH reference genes. Results were consistent with both reference genes and data shown are normalized to β-actin.

Patient cohort for immunohistochemistry

For this controlled laboratory study, torn supraspinatus tendons were collected at the time of surgery from the edges of torn tendons from symptomatic male and female patients with full thickness tears aged between 50 and 78 years (Table 1). Samples of intact tendinopathic supraspinatus were collected from male and female patients at the time of arthroscopic acromioplasty. All patients had loss of shoulder function and/or shoulder pain as reflected in a median Oxford shoulder score (OSS) of 29 [34]. Healthy supraspinatus tendon samples were collected from patients who underwent surgery for shoulder instability and who had an intact non-degenerative supraspinatus tendon on ultrasound confirmed at surgery. Healthy patients were aged between 18 and 29 years (Table 1). For patients undergoing general anaesthesia for shoulder stabilization or arthroscopic acromioplasty, a biopsy was taken using ultrasound guidance whilst the patient was anaesthetized and prior to the surgical procedure. A percutaneous ultrasound-guided biopsy technique was performed as previously described [35] to acquire healthy tissue 5–10 mm posterior to the anterior edge of the tendon.

Tissue processing

Samples were immersed in 10 % buffered formalin for 1 week. After fixation, tendons were processed using a Leica ASP300S tissue processor and embedded in paraffin wax. Tissues were sectioned at 4 μm using a rotary microtome (Leica Microsystems Ltd, UK) and collected onto adhesive glass slides and baked at 60 °C for 30 minutes and 37 °C for 60 minutes.
For antigen retrieval, slides were baked at 60 °C for 60 minutes and combined deparaffinization and antigen retrieval was performed by submerging slides in FLEX TRS antigen retrieval fluid using a PT Link machine (Dako, Glostrup, Denmark). Immunostaining was performed using an Autostainer Link 48 machine using the EnVision FLEX visualisation system (Dako). Primary antibodies against TGFβ family mediators included TGFβ-1 (ab64715), TGFβ R1 (ab31013) and TGFβ R2 (ab78419) (Abcam Cambridge, UK). Antibody binding was visualized using FLEX 3,3′-diaminobenzidine (DAB) substrate working solution and haematoxylin counterstain (Dako) as per protocols provided by the manufacturer. Isotype control antibodies included mouse IgG1, IgG2a, IgG2b, IgG3 and IgM, (Dako). All antibodies were validated in-house to ensure the recommended concentration produced positive staining with minimal artifact on supraspinatus tendon tissue. After staining, slides were rehydrated in alcohols and xylene and mounted using Pertex mounting medium (Histolab, Gothenburg, Sweden).

Immunofluorescence for co-localization of TGFβ with macrophage markers

Immunofluorescence staining of sections of massive supraspinatus tendon tears is described in detail elsewhere [22]. Briefly, after antigen retrieval, tissues were blocked in 5 % goat serum (Sigma) at room temperature. Sections were incubated with the primary antibody cocktail (macrophage markers CD206 ab117644, CD163 LS_C174770 and pan TGFβ ab66043) diluted in 5 % normal goat serum in phosphate-buffered saline (PBS) for 2 hours. Slides were washed in PBS with Tween and incubated in the secondary antibody cocktail (goat anti-mouse FITC IgG1 (Southern Biotech), goat anti-mouse IgG2a Alexa Fluor 568, and goat anti-rabbit IgG Alexa Fluor 633 (Life Technologies)) diluted in 5 % normal equine serum (Sigma) for 2 hours. After washing, sections were incubated in 2 μM POPO-1 nuclear counterstain (Life Technologies) diluted in PBS containing 0.05 % Saponin (Sigma). Tissue autofluorescence was quenched with a solution of 0.1 % Sudan Black B (Applichem). Slides were mounted using fluorescent mounting medium (VectaShield), sealed and stored at 4 °C until image acquisition. For negative controls the primary antibody was substituted for universal isotype control antibodies: cocktail of mouse IgG1, IgG2a, IgG2b, IgG3 and IgM (Dako) and rabbit immunoglobulin fraction of serum from non-immunised rabbits, solid phase absorbed (Dako). Stained slides were visualised on a Zeiss LSM 710 confocal microscope as previously described [22].

Image analysis for quantitative immunohistochemistry

Twenty images of immunostained sections (or until exhausted) were taken on a Zeiss inverted microscope (Zeiss, Cambridge, UK) using Axiovision software (Zeiss) at ×100 magnification with oil immersion. Images were collected systematically to ensure no overlap and to avoid areas of artefact or fold in the tissue sample. ImageJ (National Institutes of Health, Bethesda, Maryland, USA) was used to analyse the images, employing a previously validated algorithm that quantifies DAB staining by a colour deconvolution method [36, 37]. The quantification system used compared the number of nuclei to the amount of immunopositive staining to account for tissue cellularity.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 6 (GraphPad, CA, USA). Normality was tested using a Shapiro-Wilk test. Kruskal-Wallis tests were used to compare expression of TGFβ superfamily at mRNA and protein levels in samples of healthy, tendinopathic and torn tendons. p < 0.05 was considered statistically significant.

Study approval

Ethical approval for this study was granted by the local research ethics committee: Oxfordshire REC B refs: 10/H0402/24, 10/H0605/35, 09/H0605/111, 09/H0606/11. Full informed consent according to the Declaration of Helsinki was obtained from all patients.

Results

Diseased tendons show dysregulation of TGFβ family mediators at the mRNA level

Expression of TGFB1, TGFBR1, and TGFBR2 genes were investigated in torn rotator cuff and healthy hamstring tendons. TGFBR1 mRNA was decreased in diseased rotator cuff compared to healthy tendons (p = 0.048, twofold); in contrast, TGFBR2 was increased (p = 0.048, threefold) (Fig. 1). There was a trend for reduced TGFB1 in diseased compared to healthy hamstring tendons. BMPs have been shown to signal via homodimeric receptors from the TGFβ superfamily, and are also implicated in fibrotic pathways. There was no significant difference in BMP2 mRNA between healthy hamstring and torn rotator cuff tendons (Fig. 1). BMP7 was not detected in torn rotator cuff tendons; however, this was not significantly different compared with healthy hamstring. Connective tissue growth factor (CTGF) was also investigated as a pro-fibrotic cytokine and downstream effector of TGFβ. There was a trend for reduced CTGF in torn rotator cuff compared to healthy hamstring tendons.

Histological assessment of diseased rotator cuff tendons

Tendon tissues from patients with supraspinatus tendinopathy or tears showed marked disorganization of the tendon ECM and collagen fibrils and increased vascularity. Histological assessment of tendons collected from this cohort was performed on haematoxylin and eosin stained sections using the Bonar scoring system (0–12) evaluating tissue structure, and is reported in a previous published study [22]. Median and interquartile ranges of healthy supraspinatus tendons exhibited more normal tissue architecture (Bonar score of 2, range 1–2) compared to tendinopathic (7, range 6–8) and torn supraspinatus tendons (10, range 8.25–10).

Diseased tendons show downregulation of TGFβ superfamily proteins

Expression of TGFβ-1, TGFβ R1, and TGFβ R2 proteins was investigated in healthy, tendinopathic and torn rotator cuff tendons (Fig. 2). Immunopositive staining for TGFβ superfamily proteins was identified in angiofibroblastic and ECM regions of tendons. Quantitative analyses of immunopositive staining showed expression of TGFβ-1, TGFβ R1, and TGFβ R2 proteins were significantly reduced in diseased tendons compared to healthy samples (Fig. 3). Specifically, TGFβ-1 protein was reduced in torn (p = 0.0123, 2.6-fold) and tendinopathic (p = 0.0064, threefold) compared to healthy tendons. TGFβ R1 protein was reduced in torn compared to healthy and tendinopathic tendons (p = 0.0002, 30-fold and p = 0.0018, 21-fold, respectively). TGFβ R2 was reduced in torn compared to healthy tendons (p = 0.0087, sevenfold reduction); tendinopathic tissues showed almost no expression of TGFβ R2 compared to healthy tendons (p < 0.00001, 183-fold reduction). Isotype control staining of diseased rotator cuff tendons is shown in Fig. 4.

Macrophages in diseased tendons express TGFβ

Macrophages are known to be important immune cell populations in diseased rotator cuff tendons and their activation status has been shown to change with disease stage [22]. We investigated if myeloid cells in samples of chronic fibrosed tendon tears expressed pan-TGFβ. Antibody labelling with macrophage markers CD206 and CD163 (representing STAT-6 and glucocorticoid receptor macrophage activation pathways, respectively) and pan-TGFβ showed co-localization of these three markers in sections of a massive supraspinatus tendon tear (Fig. 5).

Discussion

This study of diseased tendons from well-phenotyped patient cohorts investigates expression of the TGFβ superfamily members in healthy, tendinopathic, and torn tendons. Compared to healthy tendons, diseased tendons showed dysregulation of TGFβ superfamily members. We identify suppression of TGF-β1 and TGFβ R1 mRNA and proteins in diseased compared to healthy tendons. Conversely TGFBR2 mRNA was increased in diseased tendons. This disruption of the TGFβ axis with tendon disease suggests these pathways may have important roles in tendon homeostasis.
The progression from rotator cuff tendinopathy to tear represents a continuum. Patients with tendon tears have reduced likelihood of repair [13]. We found no difference in symptom duration between patients with intact and torn tendinopathic tendons suggesting that pain is not always associated with tendon disease. Throughout the disease spectrum, the role of TGFβ superfamily mediators and the mechanisms underpinning tendon fibrosis remain understudied. Knowledge of these pathways is better described in fibrotic diseases of other connective tissues including pulmonary and renal tissues where increased levels of TGFβ and subsequent collagen production are reported in animal and human tissues [3840]. In these tissues TGFβ-1 is known to modulate the inflammatory response by influencing fibroblast and macrophage recruitment, stimulating collagen production and downregulating proteinase activity [18, 41]. TGFβ has been shown to regulate epithelial–mesenchymal transition (EMT), potentially generating another source of collagen-producing cells [42]. In tendon, TGFβ is stored in the ECM and released in response to exercise and strain, regulating collagen synthesis and acting as a mechanical transducer [43, 44]. Sakai et al. showed an increase in total TGFβ protein when comparing tissue from patients with rotator cuff tendon tears and anterior shoulder instability [45]. In contrast, Fenwick et al. found no evidence of TGFβ-1 protein in chronic tendinopathy or normal cadaveric human tendon tissues [46]. Chang et al stimulated and inhibited TGFβ-induced collagen production in a surgical animal model to investigate flexor tendon adhesions demonstrating the importance of TGFβ in fibrotic healing [24].
In this study, we show that TGFβ-1, TGFβ R1 and TGFβ R2 protein levels are reduced in diseased compared to healthy rotator cuff tendons. We propose this could be a protective response to limit the hypertrophic fibrosis characteristic of tendon disease. Healthy rotator cuff tendons showed a variable range of expression of TGFβ receptors and ligands, perhaps demonstrating more active regulation of tissue homeostasis by TGFβ in healthy compared to diseased tendons. This suggests an important homeostatic function similar to those proposed in skin, cartilage and vascular tissue where dysregulation can result in disease [4751]. It is conceivable that the downregulation of TGFβ superfamily proteins in established disease could further reduce the ability of the tendon to heal. This may be exacerbated in torn tendons by their reduced ability to transmit strain, which would then suppress the mechanical stimulus to regulate TGFβ signalling [43]. Fibrotic pathways independent of TGFβ, such as tumour necrosis factor alpha, may be activated resulting in them becoming a more dominant driving force in chronic tendon disease [52].
TGFβ mRNA and protein have been shown to increase in animal models of acute-stage tendon healing. However, these models of surgical tendon transection may not accurately recapitulate chronic human tendon pathology [53, 54]. The tendon samples used in the current study represent chronic-stage tendon disease. We speculate that expression of TGFβ family mediators in human rotator cuff tendons would be increased during acute-stage pathology, and then decline in chronic disease as reported in the current study. Future work should investigate the temporal regulation of members of the TGFβ superfamily and of alternative fibrotic pathways including Wnt, PI3K and vascular endothelial growth factor in patients with early through to established tendon disease.
Although we demonstrate downregulation of TGFβ signalling mediators with established tendon disease, TGFBR2 mRNA was upregulated in tendon tears. This observation may represent a potential aberration in the translation of TGFBR2 mRNA into protein. Alternatively, upregulation of TGFBR2 could be an attempt to support higher levels of alternatively activated macrophages [55]. We identified CD206high and CD163high macrophages that co-expressed pan-TGFβ in a massive tendon tear, suggesting M2 macrophages may be a source of TGFβ in advanced stage tendon disease.
TGFβ pathways have been investigated as potential therapeutic targets to modulate fibrosis, adhesions, and hypertrophic scarring [24, 26, 28, 30]. However, anti-TGFβ models also resulted in reduced tissue tensile strength [30, 56]. In a model of stress-shielding, exogenous TGFβ helped maintain tendon strength, whereas anti-TGFβ accelerated the loss of strength [56]. These studies and our results support the concept that TGFβ has a fundamental role in tendon homeostasis as well as playing a role in fibrosis.
CTGF is an effector cytokine of TGFβ that increases deposition of ECM and promotes myofibroblast differentiation. With significantly reduced TGFβ in tendon disease, it might be expected that CTGF would also be decreased. However, in the current study no significant difference was seen in CTGF mRNA expression between healthy and diseased tendons. It is possible that other signalling pathways could influence CTGF mRNA expression. It has been suggested that CTGF can be independently expressed via the IL-13 pathway [57] which is implicated in alternative activation of macrophages. This is an interesting observation in light of the high levels of monocytes and macrophages observed in chronic rotator cuff tendinopathy [22].
BMPs are a sub-group of the TGFβ superfamily and are known to play developmental and homeostatic functions in most tissues [58]. BMP-2 and -7 have been shown to increase collagen production in rotator cuff cells, and could both be implicated in a fibrotic phenotype [33]. Furthermore BMP-2 may, like TGFβ, be increased in response to strain [59]. However, we found no significant difference in mRNA expression of BMP2 or BMP7 in healthy and diseased tendons.
There are several limitations to this study. We did not investigate expression of other isoforms of TGFβ including TGFβ-2 and TGFβ-3 or expression of phospho-SMAD signalling. The samples from the current study were obtained from patients with established tendon disease. It is necessary to ascertain the temporal nature of TGFβ signalling in the more acute stage of tendinopathy and early stages of fibrosis. However, acquiring these samples of early-stage human tendon disease presents a number of challenges. We acknowledge there are limitations with the use of the hamstring tendon as a comparator to diseased tendons including tendon type and age differences. However, hamstring tendon was taken from live healthy donors with no history of tendon disease. We believe this is a more suitable comparator than cadaveric rotator cuff tendon tissues where little is known about whether the tendons were healthy or diseased and the influence of postmortem change.
The findings from our study showing downregulation of TGFβ superfamily members in established disease suggest that these patients are unlikely to benefit from therapeutic TGFβ blockade, which has been investigated as a treatment strategy in several animal models. Improved understanding of fibrotic processes in diseased human tendons is essential to inform therapeutic target discovery. Future studies should focus on investigating the expression profiles and mechanisms of fibrosis in tendon tissues obtained from longitudinal patient cohorts, from early to advanced disease and both before and after treatment.

Conclusions

We demonstrate dysregulation of the TGFβ axis in chronic human rotator cuff tendon disease and propose this may be a protective mechanism to further limit fibrosis. Our findings also suggest TGFβ pathways may have an important role in tendon homeostasis. Further work is needed to investigate TGFβ-related pathways in healthy and diseased tendons, their roles in early-stage tendon pathology and the contribution of alternative pathways in the development of tendon fibrosis.

Acknowledgements

The Girdlestone Scholarship and NIHR Oxford Musculoskeletal Biomedical Research Unit funded this work. SGD and SJBS are funded by Arthritis Research UK grants 20506 and 20087, respectively.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Study concept and design: SGD, AJC, SJBS, HCJG. Acquisition of data: HCJG, SGD. Analysis and interpretation of data: HCJG, SGD, SJBS, AJC. Drafting of the manuscript: All authors. Critical revision of the manuscript and approval of final version: All authors. Statistical analysis: HCJG, SGD. Obtained funding: AJC, SGD. Administrative, technical or material support: LR, KW, BW.
Literatur
1.
Zurück zum Zitat Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:743–800.CrossRef Vos T, Barber RM, Bell B, Bertozzi-Villa A, Biryukov S, Bolliger I, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386:743–800.CrossRef
2.
Zurück zum Zitat Urwin M, Symmons D, Allison T, Brammah T, Busby H, Roxby M, et al. Estimating the burden of musculoskeletal disorders in the community: the comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation. Ann Rheum Dis. 1998;57:649–55.PubMedCentralCrossRefPubMed Urwin M, Symmons D, Allison T, Brammah T, Busby H, Roxby M, et al. Estimating the burden of musculoskeletal disorders in the community: the comparative prevalence of symptoms at different anatomical sites, and the relation to social deprivation. Ann Rheum Dis. 1998;57:649–55.PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Van der Windt DA, Koes BW, Boeke AJ, Devillé W, De Jong BA, Bouter LM. Shoulder disorders in general practice: prognostic indicators of outcome. Br J Gen Pract. 1996;46:519–23.PubMedCentralPubMed Van der Windt DA, Koes BW, Boeke AJ, Devillé W, De Jong BA, Bouter LM. Shoulder disorders in general practice: prognostic indicators of outcome. Br J Gen Pract. 1996;46:519–23.PubMedCentralPubMed
4.
Zurück zum Zitat Chard MD, Hazleman R, Hazleman BL, King RH, Reiss BB. Shoulder disorders in the elderly: a community survey. Arthritis Rheum. 1991;34:766–9.CrossRefPubMed Chard MD, Hazleman R, Hazleman BL, King RH, Reiss BB. Shoulder disorders in the elderly: a community survey. Arthritis Rheum. 1991;34:766–9.CrossRefPubMed
5.
Zurück zum Zitat Kannus P. Etiology and pathophysiology of chronic tendon disorders in sports. Scand J Med Sci Sports. 2007;7:78–85.CrossRef Kannus P. Etiology and pathophysiology of chronic tendon disorders in sports. Scand J Med Sci Sports. 2007;7:78–85.CrossRef
6.
Zurück zum Zitat Yamamoto A, Takagishi K, Osawa T, Yanagawa T, Nakajima D, Shitara H, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg. 2010;19:116–20.CrossRefPubMed Yamamoto A, Takagishi K, Osawa T, Yanagawa T, Nakajima D, Shitara H, et al. Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elbow Surg. 2010;19:116–20.CrossRefPubMed
8.
Zurück zum Zitat Chaudhury S, Gwilym SE, Moser J, Carr AJ. Surgical options for patients with shoulder pain. Nat Rev Rheumatol. 2010;6:217–26.CrossRefPubMed Chaudhury S, Gwilym SE, Moser J, Carr AJ. Surgical options for patients with shoulder pain. Nat Rev Rheumatol. 2010;6:217–26.CrossRefPubMed
9.
Zurück zum Zitat Post M, Silver R, Singh M. Rotator cuff tear. Diagnosis and treatment. Clin Orthop Relat Res. 1983;173:78–91.PubMed Post M, Silver R, Singh M. Rotator cuff tear. Diagnosis and treatment. Clin Orthop Relat Res. 1983;173:78–91.PubMed
10.
Zurück zum Zitat Józsa L, Réffy A, Kannus P, Demel S, Elek E. Pathological alterations in human tendons. Arch Orthop Trauma Surg. 1990;110:15–21.CrossRefPubMed Józsa L, Réffy A, Kannus P, Demel S, Elek E. Pathological alterations in human tendons. Arch Orthop Trauma Surg. 1990;110:15–21.CrossRefPubMed
11.
Zurück zum Zitat Kannus P, Józsa L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991;73:1507–25.PubMed Kannus P, Józsa L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J Bone Joint Surg Am. 1991;73:1507–25.PubMed
12.
Zurück zum Zitat Dakin SG, Smith RKW, Heinegård D, Önnerfjord P, Khabut A, Dudhia J. Proteomic analysis of tendon extracellular matrix reveals disease stage-specific fragmentation and differential cleavage of COMP (cartilage oligomeric matrix protein). J Biol Chem. 2014;289:4919–27.PubMedCentralCrossRefPubMed Dakin SG, Smith RKW, Heinegård D, Önnerfjord P, Khabut A, Dudhia J. Proteomic analysis of tendon extracellular matrix reveals disease stage-specific fragmentation and differential cleavage of COMP (cartilage oligomeric matrix protein). J Biol Chem. 2014;289:4919–27.PubMedCentralCrossRefPubMed
13.
Zurück zum Zitat Matthews TJW, Hand GC, Rees JL, Athanasou NA, Carr AJ. Pathology of the torn rotator cuff tendon. Reduction in potential for repair as tear size increases. J Bone Joint Surg (Br). 2006;88:489–95.CrossRef Matthews TJW, Hand GC, Rees JL, Athanasou NA, Carr AJ. Pathology of the torn rotator cuff tendon. Reduction in potential for repair as tear size increases. J Bone Joint Surg (Br). 2006;88:489–95.CrossRef
14.
Zurück zum Zitat Dean BJF, Franklin SL, Murphy RJ, Javaid MK, Carr AJ. Glucocorticoids induce specific ion-channel-mediated toxicity in human rotator cuff tendon: a mechanism underpinning the ultimately deleterious effect of steroid injection in tendinopathy? Br J Sports Med. 2014;48:1620–6.CrossRefPubMed Dean BJF, Franklin SL, Murphy RJ, Javaid MK, Carr AJ. Glucocorticoids induce specific ion-channel-mediated toxicity in human rotator cuff tendon: a mechanism underpinning the ultimately deleterious effect of steroid injection in tendinopathy? Br J Sports Med. 2014;48:1620–6.CrossRefPubMed
15.
Zurück zum Zitat Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86-A:219–24.PubMed Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. J Bone Joint Surg Am. 2004;86-A:219–24.PubMed
16.
Zurück zum Zitat Aliprantis AO, Wang J, Fathman JW, Lemaire R, Dorfman DM, Lafyatis R, et al. Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13. Proc Natl Acad Sci U S A. 2007;104:2827–30.PubMedCentralCrossRefPubMed Aliprantis AO, Wang J, Fathman JW, Lemaire R, Dorfman DM, Lafyatis R, et al. Transcription factor T-bet regulates skin sclerosis through its function in innate immunity and via IL-13. Proc Natl Acad Sci U S A. 2007;104:2827–30.PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest. 1999;104:777–85.PubMedCentralCrossRefPubMed Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest. 1999;104:777–85.PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Yamamoto T, Noble NA, Miller DE, Border WA. Sustained expression of TGF-β1 underlies development of progressive kidney fibrosis. Kidney Int. 1994;45:916–27.CrossRefPubMed Yamamoto T, Noble NA, Miller DE, Border WA. Sustained expression of TGF-β1 underlies development of progressive kidney fibrosis. Kidney Int. 1994;45:916–27.CrossRefPubMed
20.
Zurück zum Zitat Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med. 2001;194:809–21.PubMedCentralCrossRefPubMed Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med. 2001;194:809–21.PubMedCentralCrossRefPubMed
21.
Zurück zum Zitat Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008;1782:197–228.CrossRefPubMed Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008;1782:197–228.CrossRefPubMed
22.
Zurück zum Zitat Dakin SG, Martinez FO, Yapp C, Wells G, Oppermann U, Dean BJF, et al. Inflammation activation and resolution in human tendon disease. Sci Transl Med. 2015;7:311ra173. Dakin SG, Martinez FO, Yapp C, Wells G, Oppermann U, Dean BJF, et al. Inflammation activation and resolution in human tendon disease. Sci Transl Med. 2015;7:311ra173.
23.
Zurück zum Zitat Millar NL, Hueber AJ, Reilly JH, Xu Y, Fazzi UG, Murrell GAC, et al. Inflammation is present in early human tendinopathy. Am J Sports Med. 2010;38:2085–91.CrossRefPubMed Millar NL, Hueber AJ, Reilly JH, Xu Y, Fazzi UG, Murrell GAC, et al. Inflammation is present in early human tendinopathy. Am J Sports Med. 2010;38:2085–91.CrossRefPubMed
24.
Zurück zum Zitat Chang J, Thunder R, Most D, Longaker MT, Lineaweaver WC. Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg. 2000;105:148–55.CrossRefPubMed Chang J, Thunder R, Most D, Longaker MT, Lineaweaver WC. Studies in flexor tendon wound healing: neutralizing antibody to TGF-beta1 increases postoperative range of motion. Plast Reconstr Surg. 2000;105:148–55.CrossRefPubMed
25.
Zurück zum Zitat Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115:56–65.PubMedCentralCrossRefPubMed Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 2005;115:56–65.PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Lu L, Saulis AS, Liu WR, Roy NK, Chao JD, Ledbetter S, et al. The temporal effects of anti-TGF-beta1, 2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation. J Am Coll Surg. 2005;201:391–7.CrossRefPubMed Lu L, Saulis AS, Liu WR, Roy NK, Chao JD, Ledbetter S, et al. The temporal effects of anti-TGF-beta1, 2, and 3 monoclonal antibody on wound healing and hypertrophic scar formation. J Am Coll Surg. 2005;201:391–7.CrossRefPubMed
27.
Zurück zum Zitat Ma CB, Kawamura S, Deng X-H, Ying L, Schneidkraut J, Hays P, et al. Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin. Am J Sports Med. 2007;35:597–604.CrossRefPubMed Ma CB, Kawamura S, Deng X-H, Ying L, Schneidkraut J, Hays P, et al. Bone morphogenetic proteins-signaling plays a role in tendon-to-bone healing: a study of rhBMP-2 and noggin. Am J Sports Med. 2007;35:597–604.CrossRefPubMed
28.
Zurück zum Zitat Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci. 1995;108(Pt 3):985–1002.PubMed Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci. 1995;108(Pt 3):985–1002.PubMed
29.
Zurück zum Zitat Xia C, Ding C, Yang X, Sun K, Tian S. Effects of antisense transforming growth factor-beta1 gene transfer on the biological activities of tendon sheath fibroblasts. Orthopedics. 2010;33. doi:10.3928/01477447-20100625-06. Xia C, Ding C, Yang X, Sun K, Tian S. Effects of antisense transforming growth factor-beta1 gene transfer on the biological activities of tendon sheath fibroblasts. Orthopedics. 2010;33. doi:10.​3928/​01477447-20100625-06.
30.
Zurück zum Zitat Katzel EB, Wolenski M, Loiselle AE, Basile P, Flick LM, Langstein HN, et al. Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing. J Orthop Res. 2011;29:684–93.PubMedCentralCrossRefPubMed Katzel EB, Wolenski M, Loiselle AE, Basile P, Flick LM, Langstein HN, et al. Impact of Smad3 loss of function on scarring and adhesion formation during tendon healing. J Orthop Res. 2011;29:684–93.PubMedCentralCrossRefPubMed
31.
Zurück zum Zitat Martinek V, Latterman C, Usas A, Abramowitch S, Woo SL-Y, Fu FH, et al. Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J Bone Joint Surg Am. 2002;84-A:1123–31.PubMed Martinek V, Latterman C, Usas A, Abramowitch S, Woo SL-Y, Fu FH, et al. Enhancement of tendon-bone integration of anterior cruciate ligament grafts with bone morphogenetic protein-2 gene transfer: a histological and biomechanical study. J Bone Joint Surg Am. 2002;84-A:1123–31.PubMed
32.
Zurück zum Zitat Mihelic R. Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sports Med. 2004;32:1619–25.CrossRefPubMed Mihelic R. Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am J Sports Med. 2004;32:1619–25.CrossRefPubMed
33.
Zurück zum Zitat Pauly S, Klatte F, Strobel C, Schmidmaier G, Greiner S, Scheibel M, et al. BMP-2 and BMP-7 affect human rotator cuff tendon cells in vitro. J Shoulder Elbow Surg. 2012;21:464–73.CrossRefPubMed Pauly S, Klatte F, Strobel C, Schmidmaier G, Greiner S, Scheibel M, et al. BMP-2 and BMP-7 affect human rotator cuff tendon cells in vitro. J Shoulder Elbow Surg. 2012;21:464–73.CrossRefPubMed
34.
Zurück zum Zitat Dawson J, Fitzpatrick R, Carr A. Questionnaire on the perceptions of patients about shoulder surgery. J Bone Jt Surg Br. 1996;78-B:593–600. Dawson J, Fitzpatrick R, Carr A. Questionnaire on the perceptions of patients about shoulder surgery. J Bone Jt Surg Br. 1996;78-B:593–600.
35.
Zurück zum Zitat Murphy RJ, Eng M, John B, Dean F, Ed M, Wheway K, Watkins B, Morrey ME, Carr AJ. A novel minimally invasive ultrasound-guided technique to biopsy supraspinatus tendon. Operat Tech Orthop. 2013:23:56–62.CrossRef Murphy RJ, Eng M, John B, Dean F, Ed M, Wheway K, Watkins B, Morrey ME, Carr AJ. A novel minimally invasive ultrasound-guided technique to biopsy supraspinatus tendon. Operat Tech Orthop. 2013:23:56–62.CrossRef
36.
Zurück zum Zitat Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, et al. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol. 2012;7:42.PubMedCentralCrossRefPubMed Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, et al. Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol. 2012;7:42.PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23:291–9.PubMed Ruifrok AC, Johnston DA. Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol. 2001;23:291–9.PubMed
38.
Zurück zum Zitat Scott PG, Dodd CM, Tredget EE, Ghahary A, Rahemtulla F. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-β in human post-burn hypertrophic and mature scars. Histopathology. 1995;26:423–31.CrossRefPubMed Scott PG, Dodd CM, Tredget EE, Ghahary A, Rahemtulla F. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-β in human post-burn hypertrophic and mature scars. Histopathology. 1995;26:423–31.CrossRefPubMed
39.
Zurück zum Zitat Wang R, Ghahary A, Shen Q, Scott PG, Roy K, Tredget EE. Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells. Wound Repair Regen. 2000;8:128–37.CrossRefPubMed Wang R, Ghahary A, Shen Q, Scott PG, Roy K, Tredget EE. Hypertrophic scar tissues and fibroblasts produce more transforming growth factor-beta1 mRNA and protein than normal skin and cells. Wound Repair Regen. 2000;8:128–37.CrossRefPubMed
40.
Zurück zum Zitat Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J, Kolb M. TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol. 2005;175:5390–5.CrossRefPubMed Bonniaud P, Margetts PJ, Ask K, Flanders K, Gauldie J, Kolb M. TGF-beta and Smad3 signaling link inflammation to chronic fibrogenesis. J Immunol. 2005;175:5390–5.CrossRefPubMed
41.
Zurück zum Zitat Klein MB, Yalamanchi N, Pham H, Longaker MT, Chan J. Flexor tendon healing in vitro: effects of TGF-β on tendon cell collagen production. J Hand Surg [Am]. 2002;27:615–20.CrossRef Klein MB, Yalamanchi N, Pham H, Longaker MT, Chan J. Flexor tendon healing in vitro: effects of TGF-β on tendon cell collagen production. J Hand Surg [Am]. 2002;27:615–20.CrossRef
42.
Zurück zum Zitat Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007;293:L525–34.CrossRefPubMed Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol. 2007;293:L525–34.CrossRefPubMed
43.
Zurück zum Zitat Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera AL, Keene DR, et al. Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr Biol. 2011;21:933–41.PubMedCentralCrossRefPubMed Maeda T, Sakabe T, Sunaga A, Sakai K, Rivera AL, Keene DR, et al. Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr Biol. 2011;21:933–41.PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Heinemeier K, Langberg H, Olesen JL, Kjaer M. Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue. J Appl Physiol. 2003;95:2390–7.CrossRefPubMed Heinemeier K, Langberg H, Olesen JL, Kjaer M. Role of TGF-beta1 in relation to exercise-induced type I collagen synthesis in human tendinous tissue. J Appl Physiol. 2003;95:2390–7.CrossRefPubMed
45.
Zurück zum Zitat Sakai H, Fujita K, Sakai Y, Mizuno K. Immunolocalization of cytokines and growth factors in subacromial bursa of rotator cuff tear patients. Kobe J Med Sci. 2001;47:25–34.PubMed Sakai H, Fujita K, Sakai Y, Mizuno K. Immunolocalization of cytokines and growth factors in subacromial bursa of rotator cuff tear patients. Kobe J Med Sci. 2001;47:25–34.PubMed
46.
Zurück zum Zitat Fenwick SA, Curry V, Harrall RL, Hazleman BL, Hackney R, Riley GP. Expression of transforming growth factor-beta isoforms and their receptors in chronic tendinosis. J Anat. 2001;199:231–40.PubMedCentralCrossRefPubMed Fenwick SA, Curry V, Harrall RL, Hazleman BL, Hackney R, Riley GP. Expression of transforming growth factor-beta isoforms and their receptors in chronic tendinosis. J Anat. 2001;199:231–40.PubMedCentralCrossRefPubMed
47.
Zurück zum Zitat Cui W, Fowlis DJ, Cousins FM, Duffie E, Bryson S, Balmain A, et al. Concerted action of TGF-beta 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev. 1995;9:945–55.CrossRefPubMed Cui W, Fowlis DJ, Cousins FM, Duffie E, Bryson S, Balmain A, et al. Concerted action of TGF-beta 1 and its type II receptor in control of epidermal homeostasis in transgenic mice. Genes Dev. 1995;9:945–55.CrossRefPubMed
48.
Zurück zum Zitat Finnson KW, Chi Y, Bou-Gharios G, Leask A, Philip A. TGF-b signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed). 2012;4:251–68. Finnson KW, Chi Y, Bou-Gharios G, Leask A, Philip A. TGF-b signaling in cartilage homeostasis and osteoarthritis. Front Biosci (Schol Ed). 2012;4:251–68.
49.
Zurück zum Zitat Omori E, Matsumoto K, Sanjo H, Sato S, Akira S, Smart RC, et al. TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J Biol Chem. 2006;281:19610–7.PubMedCentralCrossRefPubMed Omori E, Matsumoto K, Sanjo H, Sato S, Akira S, Smart RC, et al. TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J Biol Chem. 2006;281:19610–7.PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol. 2007;8:857–69.CrossRefPubMed ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol. 2007;8:857–69.CrossRefPubMed
51.
Zurück zum Zitat Harradine KA, Akhurst RJ. Mutations of TGFβ signaling molecules in human disease. Ann Med. 2006;38(6):403–14.CrossRefPubMed Harradine KA, Akhurst RJ. Mutations of TGFβ signaling molecules in human disease. Ann Med. 2006;38(6):403–14.CrossRefPubMed
52.
Zurück zum Zitat Verjee LS, Verhoekx JSN, Chan JKK, Krausgruber T, Nicolaidou V, Izadi D, et al. Unraveling the signaling pathways promoting fibrosis in Dupuytren’s disease reveals TNF as a therapeutic target. Proc Natl Acad Sci U S A. 2013;110:E928–37.PubMedCentralCrossRefPubMed Verjee LS, Verhoekx JSN, Chan JKK, Krausgruber T, Nicolaidou V, Izadi D, et al. Unraveling the signaling pathways promoting fibrosis in Dupuytren’s disease reveals TNF as a therapeutic target. Proc Natl Acad Sci U S A. 2013;110:E928–37.PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Chang J, Most D, Stelnicki E, Siebert JW, Longaker MT, Hui K, et al. Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg. 1997;100:937–44.CrossRefPubMed Chang J, Most D, Stelnicki E, Siebert JW, Longaker MT, Hui K, et al. Gene expression of transforming growth factor beta-1 in rabbit zone II flexor tendon wound healing: evidence for dual mechanisms of repair. Plast Reconstr Surg. 1997;100:937–44.CrossRefPubMed
54.
Zurück zum Zitat Kobayashi M, Itoi E, Minagawa H, Miyakoshi N, Takahashi S, Tuoheti Y, et al. Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. J Shoulder Elbow Surg. 2006;15:371–7.CrossRefPubMed Kobayashi M, Itoi E, Minagawa H, Miyakoshi N, Takahashi S, Tuoheti Y, et al. Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. J Shoulder Elbow Surg. 2006;15:371–7.CrossRefPubMed
55.
Zurück zum Zitat Gong D, Shi W, Yi S, Chen H, Groffen J, Heisterkamp N. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13:31.PubMedCentralCrossRefPubMed Gong D, Shi W, Yi S, Chen H, Groffen J, Heisterkamp N. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012;13:31.PubMedCentralCrossRefPubMed
56.
Zurück zum Zitat Katsura T, Tohyama H, Kondo E, Kitamura N, Yasuda K. Effects of administration of transforming growth factor (TGF)-beta1 and anti-TGF-beta1 antibody on the mechanical properties of the stress-shielded patellar tendon. J Biomech. 2006;39:2566–72.CrossRefPubMed Katsura T, Tohyama H, Kondo E, Kitamura N, Yasuda K. Effects of administration of transforming growth factor (TGF)-beta1 and anti-TGF-beta1 antibody on the mechanical properties of the stress-shielded patellar tendon. J Biomech. 2006;39:2566–72.CrossRefPubMed
57.
Zurück zum Zitat Liu Y, Meyer C, Müller A, Herweck F, Li Q, Müllenbach R, et al. IL-13 induces connective tissue growth factor in rat hepatic stellate cells via TGF-β-independent Smad signaling. J Immunol. 2011;187:2814–23.CrossRefPubMed Liu Y, Meyer C, Müller A, Herweck F, Li Q, Müllenbach R, et al. IL-13 induces connective tissue growth factor in rat hepatic stellate cells via TGF-β-independent Smad signaling. J Immunol. 2011;187:2814–23.CrossRefPubMed
58.
Zurück zum Zitat Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1:87–105.PubMedCentralCrossRefPubMed Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1:87–105.PubMedCentralCrossRefPubMed
59.
Zurück zum Zitat Rui YF, Lui PPY, Ni M, Chan LS, Lee YW, Chan KM. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. J Orthop Res. 2011;29:390–6.CrossRefPubMed Rui YF, Lui PPY, Ni M, Chan LS, Lee YW, Chan KM. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. J Orthop Res. 2011;29:390–6.CrossRefPubMed
Metadaten
Titel
Comparison of transforming growth factor beta expression in healthy and diseased human tendon
verfasst von
Henry C. J. Goodier
Andrew J. Carr
Sarah J. B. Snelling
Lucy Roche
Kim Wheway
Bridget Watkins
Stephanie G. Dakin
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Arthritis Research & Therapy / Ausgabe 1/2016
Elektronische ISSN: 1478-6362
DOI
https://doi.org/10.1186/s13075-016-0947-8

Weitere Artikel der Ausgabe 1/2016

Arthritis Research & Therapy 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Chronische Verstopfung: „Versuchen Sie es mit grünen Kiwis!“

22.05.2024 Obstipation Nachrichten

Bei chronischer Verstopfung wirken Kiwis offenbar besser als Flohsamenschalen. Das zeigen die Daten aus einer randomisierten Studie, die der Gastroenterologe Oliver Pech beim Praxis-Update vorstellte.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.