Skip to main content
Erschienen in: Patient Safety in Surgery 1/2018

Open Access 01.12.2018 | Research

Complications of pelvic and acetabular fractures in 1331 morbidly obese patients (BMI ≥ 40): a retrospective observational study from the National Trauma Data Bank

verfasst von: James T. Carson, Sabin G. Shah, Gezzer Ortega, Sorawut Thamyongkit, Erik A. Hasenboehler, Babar Shafiq

Erschienen in: Patient Safety in Surgery | Ausgabe 1/2018

Abstract

Background

There have been no large-scale epidemiological studies of outcomes and perioperative complications in morbidly obese trauma patients who have sustained closed pelvic ring or acetabular fractures. We examined this population and compared their rate of inpatient complications with that of control patients.

Methods

We retrospectively reviewed the records of patients treated for closed pelvic ring or acetabular fracture, aged 16–85 years, with Injury Severity Scores ≤15 from the National Trauma Data Bank Research Dataset for the years 2007 through 2010. The primary outcome of interest was rate of in-hospital complications. Secondary outcomes were length of hospital stay and discharge disposition. Unadjusted differences in complication rates were evaluated using Student t tests and Chi-squared analyses. Multiple logistic and Poisson regression were used to analyze binary outcomes and length of hospital stay, respectively, adjusting for several variables. Statistical significance was defined as p < 0.05.

Results

We included 46,450 patients in our study. Of these patients, 1331 (3%) were morbidly obese (body mass index ≥40) and 45,119 (97%) were used as controls. Morbidly obese patients had significantly higher odds of complication and longer hospital stay in all groups considered except those with pelvic fractures that were treated operatively. In all groups, morbidly obese patients were more likely to be discharged to a skilled nursing/rehabilitation facility compared with control patients.

Conclusions

Morbidly obese patients had higher rates of complications and longer hospital stays and were more likely to be discharged to rehabilitation facilities compared with control patients after pelvic ring or acetabular fracture.

Background

In the United States, obesity is a public health crisis, with its high prevalence remaining stable over the past decade [1, 2]. The Centers for Disease Control and Prevention reports that 34.9% of all U.S. adults (approximately 78 million) and 16.9% of all U.S. adolescents (approximately 12.5 million) are considered obese [2]. Obesity is associated with higher rates of surgical complications, including difficulty with anesthesia, postoperative infections, and thromboembolic disease [36].
Obese and morbidly obese patients (body mass index [BMI] ≥30 and BMI ≥40, respectively) [7, 8] with pelvic fractures have been shown to have longer operative times [9], greater estimated intraoperative blood loss [10], and higher rates of wound infection, wound dehiscence, loss of reduction, iatrogenic nerve injury, pneumonia, and decubitus ulcers [1113]. There is an absence of large-scale epidemiological studies on outcomes and perioperative complications in morbidly obese trauma patients who have sustained closed pelvic ring or acetabular fractures. The steady rise of obesity, coupled with the magnitude of potential complications associated with these injuries, prompted us to further study this subset of morbidly obese orthopaedic trauma patients. The purpose of this study was to analyze the incidence of postoperative complications among morbidly obese trauma patients who sustained closed pelvic fractures and to compare it with non–morbidly obese patients who underwent comparable treatment. We hypothesize that there will be a higher incidence of in-hospital complications in morbidly obese patients with closed pelvic and acetabular fractures treated operatively or nonoperatively compared with non–morbidly obese patients.

Methods

We conducted a retrospective analysis using the National Trauma Data Bank (NTDB) Research Dataset for 2007 through 2010. This study was based on data from a publicly available database and therefore was exempt from institutional review board approval. For this type of study, formal consent is not required. The NTDB contains data from more than 1.9 million trauma admissions at more than 900 U.S. trauma centers throughout the country and is maintained by the American College of Surgeons. Detailed information about NTDB data collection procedures is available on the NTDB website [14]. It contains information pertaining to inpatients admitted through emergency departments and links data by unique, nonidentifying incident keys.
We used the following inclusion criteria to select patients: (1) closed pelvic and/or acetabular fracture (International Classification of Diseases, Ninth Revision [15] codes 808.0, 808.2, 808.4, 808.41, 808.42, 808.43, 808.49, 808.8); and (2) age 16 years through 85 years. Exclusion criteria were (1) age younger than 16 years or older than 85 years; (2) penetrating trauma; (3) insufficient data for analysis; (4) Injury Severity Score (ISS) > 15 (5) regional ISS of 6; and (6) phalanx or spine fractures. Patients with phalanx and spine fractures were eliminated because their procedure codes overlap with those of pelvic and acetabular fractures. Patients with ISS > 15 were excluded because they fall into the major (or polytrauma) trauma category, confounding the effect of pelvic and acetabular fractures alone [16] Patients with a regional ISS score of 6 were also excluded because they are deemed to have untreatable (fatal) injuries [16, 17]. All patients who met the inclusion criteria were placed in 1 of 2 groups: (1) morbidly obese and (2) not morbidly obese (“control”). Morbid obesity was determined by ICD-9 code (278.00 or 278.01) or database comorbidity listing for obesity (the NTDB distinguishes patients with BMI ≥40 as morbidly obese [18]). Details of the selection process are provided in Fig. 1. We identified 152,637 patients with closed pelvic and/or acetabular fractures. After applying our exclusion criteria, 46,450 (64%) patients remained. Of these, 1331 (2.87%) were morbidly obese.
We evaluated the following parameters: diagnosis, fracture management, patient characteristics (age, sex, health insurance type, most common mechanism of trauma and comorbidities), fracture management (operative vs. nonoperative), ISS, complications, presence of hypotension on admission, hospital teaching status, hospital trauma level, length of stay (LOS), and discharge disposition. We evaluated the following complications: acute renal failure, acute respiratory distress syndrome, bleeding, cardiac arrest, coagulopathy, decubitus ulcer, deep venous thrombosis (DVT), myocardial infarction, surgical site infection (SSI) (superficial or deep), organ or deep space infection, pulmonary embolus, stroke, sepsis, and wound disruption.
For data analysis, the groups were stratified by injury type as follows: pelvic fracture (with no acetabular fracture), acetabular fracture (with no pelvic fracture), and both pelvic and acetabular fractures. These groups were further stratified by whether they received operative or nonoperative treatment.

Statistical analysis

To determine differences in groups for continuous variables, we used 2-tailed t tests. Categorical variables were examined using Chi-squared tests. Fisher exact test was used for categorical variables when the numbers were too small to allow use of the Chi-squared test. Bivariate analysis was used to show raw percentages of outcomes. Multiple logistic and Poisson regression were used to analyze binary outcomes and LOS, respectively, adjusting for age, sex, race/ethnicity, insurance status, injury characteristics (ISS, Abbreviated Injury Score, mechanism), presence/absence of hypotension on admission, hospital factors (trauma level, teaching status), and treatment type (open reduction and internal fixation, internal fixation, external fixation). All analyses were performed with Stata, version 11.0 (StataCorp, College Station, Texas). Statistical significance was defined as p < 0.05.

Results

A total of 46,450 patients met our inclusion criteria. Demographic characteristics of control and morbidly obese patients are shown in Table 1. Morbidly obese patients were significantly younger (47 vs. 52 years, p < 0.05) and more likely to be female (51% vs. 43%) compared with controls. They were more likely to have a high-energy mechanism of injury such as motor vehicle collision, and they required operative treatment more frequently than the control patients. Morbidly obese patients had a higher overall complication rate when treated operatively or nonoperatively compared with the control group. This difference was significant (p < 0.05) in all but the operative pelvic fracture group. Moreover, morbid obesity was associated with approximately twice the odds of having a complication when operative or nonoperative treatment occurred. These odds were significant in all but the operative pelvic fracture group (Table 2).
Table 1
Characteristics of 46,450 patients treated for pelvic and/or acetabular fracture, National trauma data bank research dataset, 2007–2010
Characteristic
Controla (N = 45,119)
Morbidly Obese (N = 1331)
p Value
N
%
N
%
Fracture type
 Pelvic only
21,238
47.1
324
24.3
< 0.001
 Acetabular only
15,904
35.2
761
57.2
 Pelvic and acetabular
7977
17.7
246
18.5
Male sex
25,496
56.5
654
49.1
< 0.001
Race
 White
33,654
75
959
72
< 0.001
 Black
4898
11
206
15
 Hispanic
706
1.6
10
0.75
 Other
3858
8.5
84
6.3
 Unknown
2003
4.4
72
5.4
Mechanism of trauma
 Motor vehicle collision
14,559
32
776
58
< 0.001
 Fall
18,766
42
336
25
 Struck pedestrian
2168
5.4
33
2.7
Injury Severity Score
 0–8
21,454
47.5
536
40.3
< 0.001
 9–15
23,665
52.4
795
59.7
Age group, years
 16–24
6789
15.0
167
12.5
< 0.001
 25–44
11,000
24.4
458
34.4
 45–64
11,973
26.5
429
32.2
 65–85
15,357
34.0
277
20.8
Procedure type
 External fixation
490
4.56
28
4.82
0.771
 Internal fixation
299
2.78
18
3.10
0.653
 ORIF
10,283
95.7
561
96.6
0.319
Needing operative fixation
 All
10,745
23.8
581
43.6
< 0.001
  Pelvic fracture
1401
6.60
44
13.6
< 0.001
  Acetabular fracture
6605
41.5
415
54.5
< 0.001
  Both fractures
2739
34.3
122
49.6
< 0.001
ORIF, open reduction and internal fixation
aPatients with body mass index values < 40
Table 2
Analysis of inpatient complications by Fracture type in the nonoperative and operative groups by Obesity Status
Complication by Fracture Type
Nonoperative Group (N = 35,124)
Operative Group (N = 11,326)
Controla, % (N)
Morbidly Obese, % (N)
p Value
ORb,c (95% CI)
p Value
Controla, % (N)
Morbidly Obese, % (N)
p Value
ORb,c (95% CI)
p Value
Overall complications
 Pelvic only
3.83 (759)
11.8 (33)
< 0.001
2.98 (2.03–4.38)
< 0.001
8.42 (118)
20.5 (9)
0.006
2.20 (0.93–5.17)
0.071
 Acetabular only
4.06 (378)
8.38 (29)
< 0.001
2.12 (1.41–3.20)
< 0.001
6.00 (396)
11.3 (47)
< 0.001
1.99 (1.43–2.78)
< 0.001
 Pelvic and acetabular
5.35 (280)
11.3 (14)
0.004
2.07 (1.14–3.77)
0.017
10.9 (299)
23.8 (29)
< 0.001
2.41 (1.52–3.84)
< 0.001
Acute renal failure
 Pelvic only
0.80 (159)
3.57 (10)
< 0.001
4.20 (2.16–8.15)
< 0.001
1.14 (16)
2.27 (1)
0.493
1.12 (0.12–10.9)
0.922
 Acetabular only
0.73 (68)
1.45 (5)
0.133
1.99 (0.77–5.14)
0.156
0.58 (38)
1.69 (7)
0.006
4.13 (1.73–9.86)
0.001
 Pelvic and acetabular
0.94 (49)
3.23 (4)
0.011
3.17 (1.07–9.38)
0.037
1.13 (31)
5.74 (7)
< 0.001
8.43 (3.11–22.8)
< 0.001
Acute respiratory distress syndrome
 Pelvic only
0.43 (85)
1.79 (5)
0.001
3.03 (1.17–7.85)
0.023
1.00 (14)
2.27 (1)
0.412
0.99 (0.06–15.7)
0.995
 Acetabular only
0.56 (52)
1.73 (6)
0.006
2.94 (1.21–7.14)
0.017
0.71 (47)
1.45 (6)
0.094
2.04 (0.85–4.89)
0.112
 Pelvic and acetabular
0.36 (19)
1.61 (2)
0.028
4.48 (0.97–20.7)
0.055
1.13 (31)
3.29 (4)
0.035
2.56 (0.82–8.03)
0.107
Bleeding
 Pelvic only
0.19 (37)
1.43 (4)
< 0.001
7.15 (2.44–21.0)
< 0.001
0.79 (11)
0 (0)
0.555
NA
 
 Acetabular only
0.25 (23)
0 (0)
0.354
NA
 
0.30 (20)
0.48 (2)
0.527
1.73 (0.38–7.84)
0.478
 Pelvic and acetabular
0.38 (20)
0 (0)
0.491
NA
 
0.69 (19)
0.82 (1)
0.87
1.06 (0.12–9.27)
0.956
Cardiac arrest with CPR
 Pelvic only
0.21 (42)
0 (0)
0.441
NA
 
0.29 (4)
2.27 (1)
0.027
6.10 (0.14–252)
0.341
 Acetabular only
0.26 (24)
0.58 (2)
0.26
3.11 (0.69–14.0)
0.14
0.08 (5)
0.48 (2)
0.011
9.89 (1.61–60.7)
0.013
 Pelvic and acetabular
0.46 (24)
0 (0)
0.45
NA
 
0.18 (5)
0.82 (1)
0.132
2.43 (0.24–24.6)
0.451
Coagulopathy
 Pelvic only
0.26 (51)
0.36 (1)
0.743
1.30 (0.17–9.72)
0.8
0.43 (6)
0 (0)
0.664
NA
 
 Acetabular only
0.26 (24)
0.58 (2)
0.26
1.72 (0.39–7.64)
0.477
0.20 (13)
0 (0)
0.366
NA
 
 Pelvic and acetabular
0.40 (21)
0 (0)
0.48
NA
 
0.26 (7)
0 (0)
0.576
NA
 
Decubitus ulcer
 Pelvic only
0.34 (68)
2.86 (8)
< 0.001
7.08 (3.30–15.2)
< 0.001
0.93 (13)
2.27 (1)
0.37
1.86 (0.17–20.4)
0.613
 Acetabular only
0.43 (40)
0.58 (2)
0.682
1.44 (0.35–3.72)
0.882
0.59 (39)
1.69 (7)
0.007
2.12 (1.17–3.83)
0.013
 Pelvic and acetabular
0.73 (38)
2.42 (3)
0.032
2.68 (0.75–9.56)
0.129
1.10 (30)
4.92 (6)
< 0.001
4.61 (1.72–12.4)
0.002
Deep surgical site infection
 Pelvic only
NA
NA
NA
2.40 (0.73–7.85)
0.147
0.14 (2)
0 (0)
0.802
1.63 (0.32–8.28)
0.557
 Acetabular only
NA
NA
NA
1.28 (0.30–5.50)
0.742
0.05 (3)
0.24 (1)
0.105
2.89 (1.24–6.72)
0.014
 Pelvic and acetabular
NA
NA
NA
2.18 (0.65–7.39)
0.209
0.11 (3)
0 (0)
0.715
2.97 (1.49–5.95)
0.002
DVT/thrombophlebitis
 Pelvic only
0.36 (72)
1.07 (3)
0.053
  
2.21 (31)
4.55 (2)
0.308
NA
 
 Acetabular only
0.66 (61)
0.87 (3)
0.635
  
1.54 (102)
3.37 (14)
0.005
NA
 
 Pelvic and acetabular
0.86 (45)
2.42 (3)
0.068
  
3.10 (85)
9.84 (12)
< 0.001
NA
 
Myocardial infarction
 Pelvic only
0.29 (58)
0.36 (1)
0.842
1.22 (0.17–8.93)
0.845
0 (0)
2.27 (1)
< 0.001
NA
 
 Acetabular only
0.18 (17)
0.58 (2)
0.104
4.71 (0.99–22.4)
0.052
0.17 (11)
0.48 (2)
0.147
4.96 (0.97–25.3)
0.054
 Pelvic and acetabular
0.25 (13)
0 (0)
0.579
NA
 
0.40 (11)
0.82 (1)
0.484
0.99 (0.07–14.7)
0.996
Organ/deep space infection
 Pelvic only
1.26 (250)
3.57 (10)
0.001
2.36 (1.22–4.57)
0.011
3.28 (46)
11.36 (5)
0.004
2.84 (0.93–8.66)
0.067
 Acetabular only
1.26 (117)
2.02 (7)
0.215
1.72 (0.78–3.83)
0.179
1.39 (92)
1.93 (8)
0.372
1.35 (0.64–2.85)
0.427
 Pelvic and acetabular
1.68 (88)
4.84 (6)
0.008
2.89 (1.19–6.97)
0.018
3.10 (85)
6.56 (8)
0.035
1.85 (0.85–4.05)
0.127
Pulmonary embolism
 Pelvic only
0.27 (53)
0.36 (1)
0.773
1.32 (0.18–9.65)
0.785
1.28 (18)
0 (0)
0.449
NA
 
 Acetabular only
0.44 (41)
1.45 (5)
0.008
3.11 (1.19–8.17)
0.21
1.17 (77)
2.17 (9)
0.072
1.95 (0.05–4.01)
0.069
 Pelvic and acetabular
0.42 (22)
0.81 (1)
0.515
1.41 (0.18–11.2)
0.747
1.53 (42)
4.10 (5)
0.029
2.34 (0.87–6.33)
0.092
Stroke/CVA
 Pelvic only
0.07 (14)
0 (0)
0.657
NA
 
0.14 (2)
0 (0)
0.802
NA
 
 Acetabular only
0.06 (6)
0.29 (1)
0.128
4.38 (0.44–43.5)
0.207
0.05 (3)
0 (0)
0.664
NA
 
 Pelvic and acetabular
0.08 (4)
0 (0)
0.758
NA
 
0.37 (10)
0.82 (1)
0.427
1.92 (0.22–16.9)
0.555
Superficial SSI
 Pelvic only
NA
NA
NA
  
0.29 (4)
2.27 (1)
0.143
8.12 (0.89–74.2)
0.064
 Acetabular only
NA
NA
NA
  
0.26 (17)
0.48 (2)
0.311
1.88 (0.43–8.15)
0.401
 Pelvic and acetabular
NA
NA
NA
  
0.33 (9)
2.46 (3)
0.013
7.65 (2.04–28.6)
0.003
Systemic sepsis
 Pelvic only
0.29 (57)
1.07 (3)
0.017
3.62 (1.10–11.9)
0.034
1.07 (15)
0 (0)
0.49
NA
 
 Acetabular only
0.45 (42)
1.16 (4)
0.062
2.45 (0.83–6.27)
0.106
0.42 (28)
1.20 (5)
0.024
3.18 (1.17–8.66)
0.023
 Pelvic and acetabular
0.38 (20)
1.61 (2)
0.034
3.01 (0.65–14.1)
0.161
0.84 (23)
4.10 (5)
< 0.001
4.40 (1.52–12.73)
0.006
Wound disruption
 Pelvic only
NA
NA
NA
  
0.07 (1)
0 (0)
0.859
NA
 
 Acetabular only
NA
NA
NA
  
0. 06 (4)
0.24 (1)
0.181
6.10 (0.51–73.69)
0.155
 Pelvic and acetabular
NA
NA
NA
  
0.29 (8)
0 (0)
0.55
NA
 
CI confidence interval, CPR cardiopulmonary resuscitation, CVA cerebrovascular accident, DVT deep venous thrombosis, NA not applicable, OR odds ratio, SSI surgical site infection
aPatients with body mass index values < 40
bNA signifies that there was no significant difference between the groups, and too much colinearity existed to calculate an actual OR
cAdjusted for age, sex, race/ethnicity, insurance status, injury characteristics (Injury Severity Score, Abbreviated Injury Score, mechanism), presence/absence of hypotension on admission, hospital factors (trauma level, teaching status), and treatment type (open reduction with internal fixation, internal fixation, or external fixation)
In addition, morbidly obese patients had longer hospital stays than control patients for all injury and treatment types. This difference was significant for all categories except for operative treatment of pelvic fractures. Finally, morbidly obese patients were more likely to be sent to a skilled nursing or rehabilitation facility on discharge (p < 0.001) (Table 3).
Table 3
Secondary outcome measures of 46,450 patients treated for pelvic and/or acetabular fractures
Outcome Measure
Nonoperative Group
Operative Group
Controla (N = 34,374)
Morbidly Obese (N = 750)
p Value
Control (N = 10,745)
Morbidly Obese (N = 581)
p Value
%
Mean (CI)
%
Mean (CI)
%
Mean (CI)
%
Mean (CI)
Length of hospital stay, days
 Pelvic only
 
5.3 (5.2–5.4)
 
7.5 (6.5–8.6)
< 0.001
 
11 (10–11)
 
13 (10–16)
0.055
 Acetabular only
 
5.8 (5.7–6.0)
 
8.0 (7.2–8.9)
 
9.3 (9.1–9.4)
 
12 (11–13)
< 0.001
 Pelvic and acetabular
 
6.4 (6.2–6.6)
 
10 (8.3–12)
 
11 (11–12)
 
15 (13–17)
 
Discharge disposition
    
< 0.001
    
< 0.001
 Home
        
  Pelvic only
47
 
36
 
62
 
40
 
  Acetabular only
59
 
50
 
68
 
45
 
  Pelvic and acetabular
46
 
27
 
54
 
36
 
 Skilled nursing/rehabilitation
        
  Pelvic only
46
 
61
 
36
 
58
 
  Acetabular only
30
 
44
 
30
 
53
 
  Pelvic and acetabular
46
 
70
 
45
 
64
 
 Other/unknown
        
  Pelvic only
6.9
 
3.6
 
1.7
 
2.3
 
  Acetabular only
11
 
6.8
 
1.5
 
1.7
 
  Pelvic and acetabular
7.9
 
2.5
 
1.6
 
0
 
CI confidence interval, OR odds ratio
aPatients with body mass index values < 40
Poisson regression analysis was used to determine the incidence rate ratios (IRRs) comparing LOS for morbidly obese and control patients in each of the injury and treatment types. This regression model controlled for multiple factors and represents how LOS is associated with the presence of morbid obesity as an independent variable. In each category, LOS was longer in the morbidly obese group. IRRs in the nonoperative group were 1.21, 1.25, and 1.36 for pelvic fracture, acetabular fracture, and both pelvic/acetabular fractures, respectively. IRRs in the operative group were 1.01, 1.20, and 1.18 for pelvic fracture, acetabular fracture, and both pelvic/acetabular fractures, respectively. This difference was significant for all categories (p < 0.001) except operative pelvic fractures (p = 0.785). This follows the same pattern as mean LOS for all categories.

Discussion

We found that morbid obesity was associated with a significantly higher overall risk of complications in patients with pelvic, acetabular, or combined pelvic/acetabular fractures treated nonoperatively. Similarly, morbidly obese patients with acetabular and combined pelvic/acetabular fractures treated operatively have a significantly higher overall risk of complications compared with the control group. These findings are similar to those of others who found that obese patients (BMI ≥30) have a greater incidence of perioperative complications, including longer operation times [9], greater estimated intraoperative blood loss [10], and higher rates of wound infection and dehiscence, loss of reduction, iatrogenic nerve injury, DVT, pneumonia, and decubitus ulcers [11, 13].
Patients in the morbidly obese group were more likely to sustain fractures from motor vehicle collisions, whereas those in the control group were more likely to have had falls. This means that obese patients’ fractures were more likely to be caused by high-energy mechanisms and correlates with the higher ISS in the obese group. We adjusted for mechanism of injury in our multivariate regression and found that obesity was still associated with higher complication rates.
Not all complications occurred more frequently in the obese group. Rates of deep SSI, pulmonary embolism, wound disruption, and coagulopathy were no higher in the obese group than in the control group. Of the study patients treated operatively, only 1 subset showed greater odds of superficial SSI. Also, only 1 subset of study patients had greater odds of cardiac arrest, with 1 other group having higher odds of bleeding. Some studies have found no increased rates of several perioperative complications in obese or morbidly obese patients. Baldwin et al. [19] found no increased rates of pulmonary embolism, compartment syndrome, or wound infection in 131 morbidly obese patients who sustained lower extremity fractures. Batsis et al. [20] found no increased risk of cardiac complications in 105 obese elderly patients who underwent surgery for hip fractures compared with normal-weight elderly patients. Jiganti et al. [21] found that 103 obese patients who underwent hip or knee arthroplasty did not experience a greater number of days with fever or have higher transfusion rates, greater narcotic needs, or lower hemoglobin levels compared with normal-weight patients. Tucker et al. [22] found no greater risk of complications in 32 obese patients who underwent femoral nailing compared with nonobese patients undergoing the same procedure.
Karunakar et al. [10] found that BMI was a predictor of postoperative complications in 169 patients who underwent open reduction and internal fixation for acetabular fractures. In their study, the authors found that obese patients (BMI ≥30) were 2.1 times as likely to lose more than 750 mL of blood during surgery, 2.6 times as likely to develop DVT, and morbidly obese patients were 5 times as likely to have a wound infection compared with normal-weight patients. Their results are consistent with ours, in that morbidly obese patients who underwent operative treatment of acetabular fractures had significantly higher odds of having a complication.
Porter et al. investigated outcomes of 102 pelvic ring [9] and 41 acetabular [23] injuries in morbidly obese patients. With respect to pelvic ring injuries, the authors found a higher overall complication rate (39% vs. 19%, p < 0.001), which was dominated by wound infections. This contrasted with our results, in that rates for overall complications and wound infections in morbidly obese patients who underwent operative fixation were not significantly different than those in control patients. However, there was a higher overall complication rate in morbidly obese patients who underwent nonoperative treatment in our study. Porter et al. [9] also found that morbidly obese patients with pelvic ring injuries also had longer operative times and greater need for subsequent surgical procedures compared with the control group. With respect to acetabular fractures, Porter et al. [23] reported a significantly higher complication rate (relative risk, 2.6), longer operative times, and greater estimated intraoperative blood loss compared with the control group. Again, the complications were primarily related to wound problems. The finding of higher complication rates in morbidly obese patients with acetabular fractures agrees with our findings for nonoperative and operative treatment groups.
In our study, morbidly obese patients had a significantly longer mean LOS compared with control patients in 5 of 6 stratified groups. Porter et al. [23] also found that morbidly obese patients with acetabular fractures had a longer LOS compared with the control group (26 days vs. 15 days, p < 0.01). Baldwin et al. [19] found a longer LOS for morbidly obese patients in only 1 of their subcohorts. They did not find increased hospital costs in either cohort of morbidly obese patients; however, they did find that LOS was highly correlated with hospital cost. Fine et al. [24] found that a reduction in LOS could significantly reduce hospital costs.
We found that morbidly obese patients were more likely than their counterparts in the control group to be sent to a rehabilitation facility (p < 0.001), which is congruent with the findings of other studies that have examined this parameter in obese patients who underwent emergent or elective surgery of the pelvis or lower extremity [19, 20, 23, 25].
Our study is limited in that participation in the NTDB is voluntary for all hospitals, and the database has few mandatory data fields. Results are limited by quality and accuracy of data entry. The database does not characterize pelvic fractures beyond the location of the injury. The biggest weakness is that there are no specific procedure codes for the treatment of pelvic fractures. It was necessary to extrapolate the treatment of pelvic fractures by eliminating patients who had phalanx or spinal column fractures. This greatly reduced our sample size. The NTDB categorizes patients only as morbidly obese, and not obese, thereby omitting many potential patients.
This is the largest study to our knowledge that examines complications of morbidly obese patients with pelvic and/or acetabular fractures. These data were taken from a nationwide sample, eliminating any geographic or surgeon-based variations or biases that may be present in smaller studies. With an increasing proportion of Americans in the morbidly obese weight group, it is important to be able to discuss the risks of complications associated with nonoperative and operative treatment of pelvic and acetabular injuries and how they may differ according to patient BMI. Because medical treatment is increasingly reimbursed on the basis of injury type and severity [25], it is important for hospitals to be able to bill appropriately for morbidly obese patients to account for higher complication rates and longer hospital stays, which have been shown to correlate with increased hospital costs. Given that so many morbidly obese patients are discharged to care facilities, it would be prudent to prepare these patients for this discharge disposition early in their hospital stay.

Conclusions

With the exception of pelvic fractures treated operatively, morbidly obese patients had higher rates of complications and longer hospital stays. They were also more likely to be discharged to rehabilitation facilities compared with control patients after pelvic ring or acetabular fracture. Regarding to treatment outcomes and costs, it is important to understand that morbid obesity negatively affects outcomes in operatively treated acetabulum fractures and nonoperatively treated pelvic and acetabulum fractures.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
Not applicable. This study was based on data from a publicly available database and therefore was exempt from institutional review board approval. For this type of study, formal consent is not required.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity in the United States, 2009-2010. NCHS Data Brief. 2012;82:1–8. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity in the United States, 2009-2010. NCHS Data Brief. 2012;82:1–8.
2.
3.
Zurück zum Zitat Adams JP, Murphy PG. Obesity in anaesthesia and intensive care. Br J Anaesth. 2000;85(1):91–108.CrossRefPubMed Adams JP, Murphy PG. Obesity in anaesthesia and intensive care. Br J Anaesth. 2000;85(1):91–108.CrossRefPubMed
4.
Zurück zum Zitat Darvall KA, Sam RC, Silverman SH, Bradbury AW, Adam DJ. Obesity and thrombosis. Eur J Vasc Endovasc Surg. 2007;33(2):223–33.CrossRefPubMed Darvall KA, Sam RC, Silverman SH, Bradbury AW, Adam DJ. Obesity and thrombosis. Eur J Vasc Endovasc Surg. 2007;33(2):223–33.CrossRefPubMed
6.
Zurück zum Zitat Yosipovitch G, DeVore A, Dawn A. Obesity and the skin: skin physiology and skin manifestations of obesity. J Am Acad Dermatol. 2007;56(6):901–16. quiz 917-920CrossRefPubMed Yosipovitch G, DeVore A, Dawn A. Obesity and the skin: skin physiology and skin manifestations of obesity. J Am Acad Dermatol. 2007;56(6):901–16. quiz 917-920CrossRefPubMed
7.
Zurück zum Zitat Shah NR, Braverman ER. Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One. 2012;7(4):e33308.CrossRefPubMedPubMedCentral Shah NR, Braverman ER. Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One. 2012;7(4):e33308.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Porter SE, Graves ML, Qin Z, Russell GV. Operative experience of pelvic fractures in the obese. Obes Surg. 2008;18(6):702–8.CrossRefPubMed Porter SE, Graves ML, Qin Z, Russell GV. Operative experience of pelvic fractures in the obese. Obes Surg. 2008;18(6):702–8.CrossRefPubMed
10.
Zurück zum Zitat Karunakar MA, Shah SN, Jerabek S. Body mass index as a predictor of complications after operative treatment of acetabular fractures. J Bone Joint Surg Am. 2005;87(7):1498–502.PubMed Karunakar MA, Shah SN, Jerabek S. Body mass index as a predictor of complications after operative treatment of acetabular fractures. J Bone Joint Surg Am. 2005;87(7):1498–502.PubMed
11.
Zurück zum Zitat Lazar MA, Plocher EK, Egol KA. Obesity and its relationship with pelvic and lower-extremity orthopedic trauma. Am J Orthop (Belle Mead NJ). 2010;39(4):175–82. Lazar MA, Plocher EK, Egol KA. Obesity and its relationship with pelvic and lower-extremity orthopedic trauma. Am J Orthop (Belle Mead NJ). 2010;39(4):175–82.
12.
Zurück zum Zitat Nelson J, Billeter AT, Seifert B, et al. Obese trauma patients are at increased risk of early hypovolemic shock: a retrospective cohort analysis of 1,084 severely injured patients. Crit Care. 2012;16(3):R77.CrossRefPubMedPubMedCentral Nelson J, Billeter AT, Seifert B, et al. Obese trauma patients are at increased risk of early hypovolemic shock: a retrospective cohort analysis of 1,084 severely injured patients. Crit Care. 2012;16(3):R77.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Sems SA, Johnson M, Cole PA, Byrd CT, Templeman DC. Elevated body mass index increases early complications of surgical treatment of pelvic ring injuries. J Orthop Trauma. 2010;24(5):309–14.CrossRefPubMed Sems SA, Johnson M, Cole PA, Byrd CT, Templeman DC. Elevated body mass index increases early complications of surgical treatment of pelvic ring injuries. J Orthop Trauma. 2010;24(5):309–14.CrossRefPubMed
15.
Zurück zum Zitat United States Health Care Administration. International classification of diseases, ninth revision, clinical modification: med-index ICD-9-CM. Salt Lake City: Med-Index Publications; 1993. United States Health Care Administration. International classification of diseases, ninth revision, clinical modification: med-index ICD-9-CM. Salt Lake City: Med-Index Publications; 1993.
16.
Zurück zum Zitat Long WB, Bachulis BL, Hynes GD. Accuracy and relationship of mechanisms of injury, trauma score, and injury severity score in identifying major trauma. Am J Surg. 1986;151:581–4.CrossRefPubMed Long WB, Bachulis BL, Hynes GD. Accuracy and relationship of mechanisms of injury, trauma score, and injury severity score in identifying major trauma. Am J Surg. 1986;151:581–4.CrossRefPubMed
17.
Zurück zum Zitat Butcher NE, Enninghorst N, Sisak K, Balogh ZJ. The definition of polytrauma: variable interrater versus intrarater agreement--a prospective international study among trauma surgeons. J Trauma Acute Care Surg. 2013;74(3):884–9.CrossRefPubMed Butcher NE, Enninghorst N, Sisak K, Balogh ZJ. The definition of polytrauma: variable interrater versus intrarater agreement--a prospective international study among trauma surgeons. J Trauma Acute Care Surg. 2013;74(3):884–9.CrossRefPubMed
19.
Zurück zum Zitat Baldwin KD, Matuszewski PE, Namdari S, Esterhai JL, Mehta S. Does morbid obesity negatively affect the hospital course of patients undergoing treatment of closed, lower-extremity diaphyseal long-bone fractures? Orthopedics. 2011;34(1):18.PubMed Baldwin KD, Matuszewski PE, Namdari S, Esterhai JL, Mehta S. Does morbid obesity negatively affect the hospital course of patients undergoing treatment of closed, lower-extremity diaphyseal long-bone fractures? Orthopedics. 2011;34(1):18.PubMed
20.
Zurück zum Zitat Batsis JA, Huddleston JM, LJt M, et al. Body mass index and risk of adverse cardiac events in elderly patients with hip fracture: a population-based study. J Am Geriatr Soc. 2009;57(3):419–26.CrossRefPubMedPubMedCentral Batsis JA, Huddleston JM, LJt M, et al. Body mass index and risk of adverse cardiac events in elderly patients with hip fracture: a population-based study. J Am Geriatr Soc. 2009;57(3):419–26.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Jiganti JJ, Goldstein WM, Williams CS. A comparison of the perioperative morbidity in total joint arthroplasty in the obese and nonobese patient. Clin Orthop Relat Res. 1993;289:175–9. Jiganti JJ, Goldstein WM, Williams CS. A comparison of the perioperative morbidity in total joint arthroplasty in the obese and nonobese patient. Clin Orthop Relat Res. 1993;289:175–9.
22.
Zurück zum Zitat Tucker MC, Schwappach JR, Leighton RK, Coupe K, Ricci WM. Results of femoral intramedullary nailing in patients who are obese versus those who are not obese: a prospective multicenter comparison study. J Orthop Trauma. 2007;21(8):523–9.CrossRefPubMed Tucker MC, Schwappach JR, Leighton RK, Coupe K, Ricci WM. Results of femoral intramedullary nailing in patients who are obese versus those who are not obese: a prospective multicenter comparison study. J Orthop Trauma. 2007;21(8):523–9.CrossRefPubMed
23.
Zurück zum Zitat Porter SE, Russell GV, Dews RC, Qin Z, Woodall J,J, Graves ML. Complications of acetabular fracture surgery in morbidly obese patients. J Orthop Trauma. 2008;22(9):589–94.CrossRefPubMed Porter SE, Russell GV, Dews RC, Qin Z, Woodall J,J, Graves ML. Complications of acetabular fracture surgery in morbidly obese patients. J Orthop Trauma. 2008;22(9):589–94.CrossRefPubMed
24.
Zurück zum Zitat Fine MJ, Pratt HM, Obrosky DS, et al. Relation between length of hospital stay and costs of care for patients with community-acquired pneumonia. Am J Med. 2000;109(5):378–85.CrossRefPubMed Fine MJ, Pratt HM, Obrosky DS, et al. Relation between length of hospital stay and costs of care for patients with community-acquired pneumonia. Am J Med. 2000;109(5):378–85.CrossRefPubMed
25.
Zurück zum Zitat Byrnes MC, McDaniel MD, Moore MB, Helmer SD, Smith RS. The effect of obesity on outcomes among injured patients. J Trauma. 2005;58(2):232–7.CrossRefPubMed Byrnes MC, McDaniel MD, Moore MB, Helmer SD, Smith RS. The effect of obesity on outcomes among injured patients. J Trauma. 2005;58(2):232–7.CrossRefPubMed
Metadaten
Titel
Complications of pelvic and acetabular fractures in 1331 morbidly obese patients (BMI ≥ 40): a retrospective observational study from the National Trauma Data Bank
verfasst von
James T. Carson
Sabin G. Shah
Gezzer Ortega
Sorawut Thamyongkit
Erik A. Hasenboehler
Babar Shafiq
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Patient Safety in Surgery / Ausgabe 1/2018
Elektronische ISSN: 1754-9493
DOI
https://doi.org/10.1186/s13037-018-0172-2

Weitere Artikel der Ausgabe 1/2018

Patient Safety in Surgery 1/2018 Zur Ausgabe

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Deutlich weniger Infektionen: Wundprotektoren schützen!

08.05.2024 Postoperative Wundinfektion Nachrichten

Der Einsatz von Wundprotektoren bei offenen Eingriffen am unteren Gastrointestinaltrakt schützt vor Infektionen im Op.-Gebiet – und dient darüber hinaus der besseren Sicht. Das bestätigt mit großer Robustheit eine randomisierte Studie im Fachblatt JAMA Surgery.

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.