Skip to main content
Erschienen in: Calcified Tissue International 2/2008

01.02.2008

Correlation between Hydroxyapatite Crystallite Orientation and Ultrasonic Wave Velocities in Bovine Cortical Bone

verfasst von: Yu Yamato, Mami Matsukawa, Takahiko Yanagitani, Kaoru Yamazaki, Hirofumi Mizukawa, Akira Nagano

Erschienen in: Calcified Tissue International | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

The mineral component of bone is mainly composed of calcium phosphate, constituting 70% of total bone mass almost entirely in the form of hydroxyapatite (HAp) crystals. HAp crystals have a hexagonal system and uniaxial elastic anisotropy. The objective of this study was to investigate the effect of HAp crystallite preference on macroscopic elasticity. Ultrasonic longitudinal wave velocity and the orientation of HAp crystallites in bovine cortical bone are discussed, considering microstructure, density, and bone mineral density (BMD). Eighty cube samples of cortical bone were made from two bovine femurs. The orientation of HAp crystallites was evaluated by integrated intensity ratio of (0002) peak using an X-ray diffractometer. Ultrasonic longitudinal wave velocity was investigated with a conventional pulse system. The intensity ratio of HAp crystallites and velocity were measured in three orthogonal directions; most HAp crystallites aligned in the axial direction of the femurs. Our results demonstrate a linear correlation between velocity and intensity ratio in the axial direction. Significant correlation between velocity and BMD values was observed; however, the correlation disappeared if we focused on the identical type of microstructure. In conclusion, differences in microstructure type have an impact on density and BMD, which clearly affects the velocity. In addition, at the nanoscopic level, HAp crystallites aligned in the axial direction also affected the velocity and anisotropy.
Literatur
1.
Zurück zum Zitat Langton CM, Palmar SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 13:89–91PubMedCrossRef Langton CM, Palmar SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 13:89–91PubMedCrossRef
2.
Zurück zum Zitat Laugier P, Berger G, Giat P, Bonnin-Fayet P, Lavat-Jeantet M (1994) Ultrasound attenuation imaging in the os calcis: an improved method. Ultrason Imaging 16:65–76PubMedCrossRef Laugier P, Berger G, Giat P, Bonnin-Fayet P, Lavat-Jeantet M (1994) Ultrasound attenuation imaging in the os calcis: an improved method. Ultrason Imaging 16:65–76PubMedCrossRef
3.
Zurück zum Zitat Hans D, Dargent-Molina P, Schott AD, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514PubMedCrossRef Hans D, Dargent-Molina P, Schott AD, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514PubMedCrossRef
4.
Zurück zum Zitat Sakata S, Kushida K, Yamazaki K, Inoue T (1997) Ultrasound bone densitometry of os calcis in elderly Japanese women with hip fracture. Calcif Tissue Int 60:2–7PubMedCrossRef Sakata S, Kushida K, Yamazaki K, Inoue T (1997) Ultrasound bone densitometry of os calcis in elderly Japanese women with hip fracture. Calcif Tissue Int 60:2–7PubMedCrossRef
5.
Zurück zum Zitat Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405PubMedCrossRef Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405PubMedCrossRef
6.
Zurück zum Zitat Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139PubMedCrossRef Currey JD (1988) The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech 21:131–139PubMedCrossRef
7.
Zurück zum Zitat Ziv V, Wagner HD, Weiner S (1996) Microstructure–microhardness relations in parallel-fibered and lamellar bone. Bone 18:417–428PubMedCrossRef Ziv V, Wagner HD, Weiner S (1996) Microstructure–microhardness relations in parallel-fibered and lamellar bone. Bone 18:417–428PubMedCrossRef
8.
Zurück zum Zitat Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nano-indentation. Biomaterials 18:1325–1330PubMedCrossRef Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nano-indentation. Biomaterials 18:1325–1330PubMedCrossRef
9.
Zurück zum Zitat Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012PubMedCrossRef Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012PubMedCrossRef
10.
Zurück zum Zitat Bonfield W, Grynpas MD (1977) Anisotropy of the Young’s modulus of bone. Nature 270:453–454PubMedCrossRef Bonfield W, Grynpas MD (1977) Anisotropy of the Young’s modulus of bone. Nature 270:453–454PubMedCrossRef
11.
Zurück zum Zitat Lakes R, Yoon HS, Katz JL (1986) Ultrasonic wave propagation and attenuation in wet bone. J Biomed Eng 8:143–148PubMedCrossRef Lakes R, Yoon HS, Katz JL (1986) Ultrasonic wave propagation and attenuation in wet bone. J Biomed Eng 8:143–148PubMedCrossRef
12.
Zurück zum Zitat Bensamoun S, Gherbezza JM, De Belleval JF, Ho Ba Cho MC (2004) Transmission scanning acoustic imaging of human cortical bone and relation with the microstructure. Clin Biomech 19:639–647CrossRef Bensamoun S, Gherbezza JM, De Belleval JF, Ho Ba Cho MC (2004) Transmission scanning acoustic imaging of human cortical bone and relation with the microstructure. Clin Biomech 19:639–647CrossRef
13.
Zurück zum Zitat Bensamoun S, Ho Ba Cho MC, Luu S, Gherbezza JM, de Belleval JF (2004) Spatial distribution of acoustic and elastic properties of human femoral cortical bone. J Biomech 37:503–510PubMedCrossRef Bensamoun S, Ho Ba Cho MC, Luu S, Gherbezza JM, de Belleval JF (2004) Spatial distribution of acoustic and elastic properties of human femoral cortical bone. J Biomech 37:503–510PubMedCrossRef
14.
Zurück zum Zitat Yamato Y, Kataoka H, Matsukawa M, Yamazaki K, Otani T, Nagano A (2005) Distribution of longitudinal wave velocities in bovine cortical bone in vitro. Jpn J Appl Phys 44:4622–4624CrossRef Yamato Y, Kataoka H, Matsukawa M, Yamazaki K, Otani T, Nagano A (2005) Distribution of longitudinal wave velocities in bovine cortical bone in vitro. Jpn J Appl Phys 44:4622–4624CrossRef
15.
Zurück zum Zitat Yamato Y, Matsukawa M, Otani T, Yamazaki K, Nagano A (2006) Distribution of longitudinal wave properties in bovine cortical bone in vitro. Ultrasonics 44:e233–e237PubMedCrossRef Yamato Y, Matsukawa M, Otani T, Yamazaki K, Nagano A (2006) Distribution of longitudinal wave properties in bovine cortical bone in vitro. Ultrasonics 44:e233–e237PubMedCrossRef
16.
Zurück zum Zitat Susan FL, Katz JL (1984) The relationship between elastic properties and microstructure of bovine cortical bone. J Biomech 17:241–249CrossRef Susan FL, Katz JL (1984) The relationship between elastic properties and microstructure of bovine cortical bone. J Biomech 17:241–249CrossRef
17.
Zurück zum Zitat Martin RB, Burr DB (1980) Skeletal tissue mechanics. Springler-Verlag, New York Martin RB, Burr DB (1980) Skeletal tissue mechanics. Springler-Verlag, New York
18.
Zurück zum Zitat Katz JL, Ukraincik K (1971) On the anisotropic elastic properties of hydroxyapatite. J Biomech 4:221–227CrossRefPubMed Katz JL, Ukraincik K (1971) On the anisotropic elastic properties of hydroxyapatite. J Biomech 4:221–227CrossRefPubMed
19.
Zurück zum Zitat Gardner TN, Elliott JC, Sklar Z, Briggs GAD (1992) Acoustic microscope study of the elastic properties of fluorapatite and hydroxyapatite, tooth enamel and bone. J Biomech 25:1265–1277PubMedCrossRef Gardner TN, Elliott JC, Sklar Z, Briggs GAD (1992) Acoustic microscope study of the elastic properties of fluorapatite and hydroxyapatite, tooth enamel and bone. J Biomech 25:1265–1277PubMedCrossRef
20.
Zurück zum Zitat Nightingale JP, Lewis D (1971) Pole figures of the orientation of apatites in bones. Nature 232:334–335PubMedCrossRef Nightingale JP, Lewis D (1971) Pole figures of the orientation of apatites in bones. Nature 232:334–335PubMedCrossRef
21.
Zurück zum Zitat Chen HL, Gundjian AA (1974) Determination of the bone-crystallites distribution function by X ray diffraction. Med Biol Eng 14:531–536CrossRef Chen HL, Gundjian AA (1974) Determination of the bone-crystallites distribution function by X ray diffraction. Med Biol Eng 14:531–536CrossRef
22.
Zurück zum Zitat Sasaki N, Sudoh Y (1997) X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif Tissue Int 60:361–367PubMedCrossRef Sasaki N, Sudoh Y (1997) X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif Tissue Int 60:361–367PubMedCrossRef
23.
Zurück zum Zitat Nakano T, Kaibara K, Tabata Y, Nagata N, Enomoto S, Marukawa E, Umakoshi Y (2002) Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractiometer system. Bone 31:479–487PubMedCrossRef Nakano T, Kaibara K, Tabata Y, Nagata N, Enomoto S, Marukawa E, Umakoshi Y (2002) Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractiometer system. Bone 31:479–487PubMedCrossRef
24.
Zurück zum Zitat Fratzl P, Groschner M, Vogl G, Plenk H, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7:329–334PubMedCrossRef Fratzl P, Groschner M, Vogl G, Plenk H, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7:329–334PubMedCrossRef
25.
Zurück zum Zitat Rinnerthaler S, Roschger P, Jakobs HF, Klausshofer K, Frantzl P (1999) Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int 64:422–429PubMedCrossRef Rinnerthaler S, Roschger P, Jakobs HF, Klausshofer K, Frantzl P (1999) Scanning small angle X-ray scattering analysis of human bone sections. Calcif Tissue Int 64:422–429PubMedCrossRef
26.
Zurück zum Zitat Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746PubMedCrossRef Jäger I, Fratzl P (2000) Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophys J 79:1737–1746PubMedCrossRef
27.
Zurück zum Zitat Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123CrossRef Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123CrossRef
28.
Zurück zum Zitat Gupta HS, Wagermaier W, Zickler GA, Aroush DR, Funari SS, Roschger P, Wagner HD, Fratzl P (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5:2108–2111PubMedCrossRef Gupta HS, Wagermaier W, Zickler GA, Aroush DR, Funari SS, Roschger P, Wagner HD, Fratzl P (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5:2108–2111PubMedCrossRef
29.
Zurück zum Zitat Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1:1–5CrossRefPubMed Wagermaier W, Gupta HS, Gourrier A, Burghammer M, Roschger P, Fratzl P (2006) Spiral twisting of fiber orientation inside bone lamellae. Biointerphases 1:1–5CrossRefPubMed
30.
Zurück zum Zitat Sasso M, Haïat G, Yamato Y, Naili S, Matsukawa M (2007) Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study. Ultrasound Med Biol 33:1933–1942PubMedCrossRef Sasso M, Haïat G, Yamato Y, Naili S, Matsukawa M (2007) Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study. Ultrasound Med Biol 33:1933–1942PubMedCrossRef
Metadaten
Titel
Correlation between Hydroxyapatite Crystallite Orientation and Ultrasonic Wave Velocities in Bovine Cortical Bone
verfasst von
Yu Yamato
Mami Matsukawa
Takahiko Yanagitani
Kaoru Yamazaki
Hirofumi Mizukawa
Akira Nagano
Publikationsdatum
01.02.2008
Verlag
Springer-Verlag
Erschienen in
Calcified Tissue International / Ausgabe 2/2008
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-008-9103-z

Weitere Artikel der Ausgabe 2/2008

Calcified Tissue International 2/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Wie managen Sie die schmerzhafte diabetische Polyneuropathie?

10.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Mit Capsaicin-Pflastern steht eine neue innovative Therapie bei schmerzhafter diabetischer Polyneuropathie zur Verfügung. Bei therapierefraktären Schmerzen stellt die Hochfrequenz-Rückenmarkstimulation eine adäquate Option dar.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.