Skip to main content
Erschienen in: BMC Medical Research Methodology 1/2021

Open Access 01.12.2021 | COVID-19 | Research

Inspection plan for COVID-19 patients for Weibull distribution using repetitive sampling under indeterminacy

verfasst von: G. Srinivasa Rao, Muhammad Aslam

Erschienen in: BMC Medical Research Methodology | Ausgabe 1/2021

Abstract

Background

This research work is elaborated investigation of COVID-19 data for Weibull distribution under indeterminacy using time truncated repetitive sampling plan. The proposed design parameters like sample size, acceptance sample number and rejection sample number are obtained for known indeterminacy parameter.

Methods

The plan parameters and corresponding tables are developed for specified indeterminacy parametric values. The conclusion from the outcome of the proposed design is that when indeterminacy values increase the average sample number (ASN) reduces.

Results

The proposed repetitive sampling plan methodology application is given using COVID-19 data belong to Italy. The efficiency of the proposed sampling plan is compared with the existing sampling plans.

Conclusions

Using the tables and COVID-19 data illustration, it is concluded that the proposed plan required a smaller sample size as examined with the available sampling plans in the literature.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ASN
Average sample number
RASP
Repetitive acceptance sampling plan
OC
Operating characteristic
Q-Q
Quantile-quantile

Background

It is broadly established that a huge number of COVID-19 cases are unnoticed worldwide. A rudimentary measure of population occurrence is the small part of positive cases for a given date in any country. On the other hand, this is subject to largely found that bias since tests are normally only ordered from suggestive cases, whereas a large proportion of infected people might show little symptoms or sometimes no symptoms for more details see [1]. Most governments are applying the mechanism of test randomly selected individuals to estimate the true disease occurrence in inhabitants in a particular locality. Nevertheless, when the disease occurrence is low and difficult to acquire from each patient/person by tests, under such situations we may use an acceptance sampling plan under indeterminacy. The health practitioners are paying attention to estimate the average number of deaths or ratio of deaths to the total number of COVID-19 death cases on daily basis, for the coming days, next week or month, etc. Reference [2]. In such a case, the health practitioners are paying attention to test the null hypothesis that the average number of deaths or ratio of deaths to the total number of COVID-19 death cases on daily basis is equal to the specified average number of deaths due to COVID-19 against the alternative hypothesis that the average number of deaths due to COVID-19 varies significantly. In this situation for testing of the hypothesis, practically it is difficult to record the average number of death for the whole year, whereas it is easy to record the daily basis and the average number of deaths can be obtained from the randomly selected days. The null hypothesis may be rejected if the daily average number of deaths due to COVID-19, state acceptance number of days, is more than or equal to the specified average number of deaths due to COVID-19 throughout the given number of days.
Many researchers have done studies on the time truncated life test for various distributions. Some of them are [3] developed the acceptance sampling plan for life tests: log-logistic models. Reference [4] derived acceptance sampling based on truncated life tests for generalized Rayleigh distribution. Reference [5] developed the acceptance sampling plans based on the generalized Birnbaum-Saunders distribution. Reference [6, 7] constructed the acceptance sampling plans for Birnbaum-Saunders and Burr XII distributions. References [8, 9] constructed acceptance sampling plans for extended exponential and generalized inverted exponential distributions. The details about the acceptance sampling plans can be seen in [10, 11]. The generalization of a single acceptance sampling plan namely repetitive sampling plan, [12] derived the decision rule of the repetitive acceptance sampling plan. The method of repetitive group acceptance sampling plan (RGASP) was first proposed by [13] for an attribute. Reference [14, 15] constructed the RASP for inverse Gaussian distribution and Burr type XII. Reference [16] developed generalized inverted exponential distributions. References [1719] studied the repetitive sampling plan under different situations.
More details about the neutrosophic logic, their measure of determinacy, and indeterminacy are given by [20]. Numerous authors studied the neutrosophic logic for various real problems and showed its efficiency over fuzzy logic, for more details refer [2126]. The idea of neutrosophic statistics was given using the idea of neutrosophic logic, [2729]. The neutrosophic statistics give information about the measure of determinacy and measure of indeterminacy, see [30]. The neutrosophic statistics reduce to classical statistics if no information is recorded about the measure of indeterminacy. References [3133] proposed the acceptance sampling plans using neutrosophic statistics [34]. proposed the time-truncated group plans for the Weibull distribution. Reference [35] worked on neutrosophic Weibull and neutrosophic family of Weibull distribution.
The existing sampling plans based on classical statistics and fuzzy philosophies do not give information about the measure of indeterminacy. Reference [36] worked on the single sampling plan using a fuzzy approach. Reference [37] discussed the effect of sampling error on inspection using a fuzzy approach. Reference [38] proposed a single plan using fuzzy logic. Reference [39] proposed the improved sampling plan using fuzzy logic. For details, the reader may refer to [40, 41]. To the best of our knowledge, there is no work on a time-truncated sampling plan for Weibull distribution under indeterminacy. In this paper, a repetitive acceptance sampling plan for Weibull distribution under indeterminacy is developed to testing the daily average deaths. We are anticipated the proposed sampling plan shows a fewer sample size as compared with the existing sampling plans for testing the daily average deaths.
In Section 2, we present an introduction of a repetitive acceptance sampling plan for Weibull distribution under indeterminacy. In Section 3, the proposed repetitive acceptance sampling plan under indeterminacy is compared with the single sampling plan proposed by [42]. The proposed sampling plan is illustrated using COVID-19 data belong to Italy, which was recorded from 1 April to 20 July 2020 in Section 4. Finally, the conclusions and future research works are established in Section 5.

Methods

The repetitive acceptance sampling plan depends upon the truncated life test procedure is developed by [4345]. The operational steps of this test are given as follows:
  • Step 1: Draw a sample of size n from the lot. These samples can be put on a life test for a fixed time t0. Specify the average μ0 and indeterminacy parameter INϵ[IL, IU].
  • Step 2: Accept H0 : μN = μ0N if the daily average deaths in c1 days are more than or equal to μ0 (i.e., μ0 ≤ c1). If daily average deaths in c2 days are less than to μ0 (i.e., μ0 >c2) then we reject H0 : μN = μ0N and terminate the test, where c1≤ c2.
  • Step 3: If c1< μ0 ≤c2 then go to step 1 and repeat the above experiment.
The above procedure of repetitive acceptance sampling plan (RASP) mainly depends on four characteristics those are n, c1, c2 and IN, where INϵ[IL, IU] is considered as the specified parameter and set according to the uncertainty level. RASP is nothing but the generalization of an ordinary single sampling plan under uncertainty. If c1 = c2 in RASP, it ultimately reduces to a single sampling plan under uncertainty. Suppose that t0 = 0 be the time in days, where a is the termination ratio. The lot acceptance probability is to be determined with the help of operating characteristic (OC) function for details see [13] and it is given by
$$L(p)=\frac{P_a(p)}{P_a(p)+{P}_r(p)};0<p<1$$
(1)
Here Pa(p) is the probability of accepting H0 : μN = μ0N and Pr(p) is the probability of rejecting H0 : μN = μ0N, which are given by
$${P}_a(p)=\sum \limits_{i=0}^{c_1}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p}^i{\left(1-p\right)}^{n-i}$$
(2)
and
$${P}_r(p)=1-\sum \limits_{i=0}^{c_2}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p}^i{\left(1-p\right)}^{n-i}$$
(3)
where p is the probability of unreliability.
Therefore eq. (1) becomes
$$L(p)=\frac{\sum \limits_{i=0}^{c_1}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p}^i{\left(1-p\right)}^{n-i}}{\sum \limits_{i=0}^{c_1}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p}^i{\left(1-p\right)}^{n-i}+1-\sum \limits_{i=0}^{c_2}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p}^i{\left(1-p\right)}^{n-i}};0<p<1$$
(4)
The Weibull distribution under neutrosophic statistics is developed by [42] for the design of the sampling scheme plan for testing the average wind speed under an indeterminate environment.
Suppose that f(xN) = f(xL) + f(xU)IN; INϵ[IL, IU] be a neutrosophic probability density function (npdf) having determinate part f(xL), indeterminate part f(xU)IN and indeterminacy interval INϵ[IL, IU]. Note that xNϵ[xL, xU] be a neutrosophic random variable follows the npdf. The npdf is the generalization of pdf under classical statistics. The proposed neutrosophic form of f(xN)ϵ[f(xL), f(xU)] reduces to pdf under classical statistics when IL =0. Based on this information, the npdf of the Weibull distribution is defined as follows.
$$f\left({x}_N\right)=\left\{\left(\frac{\beta }{\alpha}\right){\left(\frac{x_N}{\alpha}\right)}^{\beta -1}{e}^{-{\left(\frac{x_N}{\alpha}\right)}^{\beta }}\right\}+\left\{\left(\frac{\beta }{\alpha}\right){\left(\frac{x_N}{\alpha}\right)}^{\beta -1}{e}^{-{\left(\frac{x_N}{\alpha}\right)}^{\beta }}\right\}{I}_N;{I}_N\epsilon \left[{I}_L,{I}_U\right]$$
(5)
where α and β are scale and shape parameters, respectively. Note here that the proposed npdf of the Weibull distribution is the generalization of pdf of the Weibull distribution under classical statistics. The neutrosophic form of the npdf of the Weibull distribution reduces to the Weibull distribution when IL =0. The neutrosophic cumulative distribution function (ncdf) of the Weibull distribution is given by
$$F\left({x}_N\right)=1-\left\{{e}^{-{\left(\frac{x_N}{\alpha}\right)}^{\beta }}\left(1+{I}_N\right)\right\}+{I}_N;{I}_N\epsilon \left[{I}_L,{I}_U\right]$$
(6)
The neutrosophic mean of the Weibull distribution is given by.
$${\mu}_N=\alpha \Gamma \left(1+1/\beta \right)\left(1+{I}_N\right);{I}_N\epsilon \left[{I}_L,{I}_U\right]$$
(7)
The null and alternative hypotheses for the daily average deaths are stated as follows:
$${H}_0:{\mu}_N={\mu}_{0N}\kern0.5em \mathrm{Vs}.{H}_1:{\mu}_N\ne {\mu}_{0N}.$$
Where μN is a true daily average death and μ0N is the specified daily average deaths. Suppose that t0N = 0N be the time in days, where a is the termination ratio. The probability of the item will fail before it reaches the experiment time t0N is defined as follows:
$${\displaystyle \begin{array}{*{20}c}{p}_N=1-\left\{{e}^{-{\left(\frac{t_{0N}}{\alpha}\right)}^{\beta }}\left(1+{I}_N\right)\right\}+{I}_N;{I}_N\epsilon \left[{I}_L,{I}_U\right]\\ {}=1-\left\{\exp \left(-{a}^{\beta }{\left({\mu}_N/{\mu}_{0N}\right)}^{-\beta }{\left(\Gamma \left(1/\beta \right)/\beta \right)}^{\beta }{\left(1+{I}_N\right)}^{\beta}\right)\left(1+{I}_N\right)\right\}+{I}_N\end{array}}$$
(8)
where μN/μ0N is the ratio of true average daily wind speed to specified average daily wind speed. Suppose that \(\tilde{\alpha }\) and \(\tilde{\beta }\) be type-I and type-II errors. The medical practitioners are interested to apply the proposed plan for testing H0 : μN = μ0N such that the probability of accepting H0 : μN = μ0N when it is true should be larger than \(1-\tilde{\alpha }\) at μN/μ0N and the probability of accepting H0 : μN = μ0N when it is wrong should be smaller than \(\tilde{\beta }\) at μN/μ0N = 1. In order to find the design parameters n, c1, c2 and IN for the proposed RASP, we consider two points on the OC function. In our approach, the quality level mainly depends on the ratio μN/μ0N. This ratio is helpful for the producer to improve the lot quality. From in producer point of view, the probability of acceptance should be at least \(1-\tilde{\alpha }\) at acceptable quality level (AQL), p1N. So, the producer demands the lot should be accepted at various levels of μN/μ0N. Similarly, from in consumer point of view the lot rejection probability should not be exceeded \(\tilde{\beta }\) at limiting quality level (LQL), p2N. The design parameters are determined by satisfying the following two inequalities
$$$$L\left({p}_{1N}\left|{\mu}_N/{\mu}_{0N}\right.\right)=\frac{\sum \limits_{i=0}^{c_1}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p_{1N}}^i{\left(1-{p}_{1N}\right)}^{n-i}}{\sum \limits_{i=0}^{c_1}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p_{1N}}^i{\left(1-{p}_{1N}\right)}^{n-i}+1-\sum \limits_{i=0}^{c_2}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p_{1N}}^i{\left(1-{p}_{1N}\right)}^{n-i}}\ge 1-\tilde{\alpha}$$
(9)
$$L\left({p}_{2N}\left|{\mu}_N/{\mu}_{0N}=1\right.\right)=\frac{\sum \limits_{i=0}^{c_1}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p_{2N}}^i{\left(1-{p}_{2N}\right)}^{n-i}}{\sum \limits_{i=0}^{c_1}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p_{2N}}^i{\left(1-{p}_{2N}\right)}^{n-i}+1-\sum \limits_{i=0}^{c_2}\left(\begin{array}{*{20}l} n\\ {}i\end{array}\right){p_{2N}}^i{\left(1-{p}_{2N}\right)}^{n-i}}\le \tilde{\beta}$$
(10)
where p1N and p2N are defined by
$${p}_{1N}=1-\left\{\exp \left(-{a}^{\beta }{\left(\mu /{\mu}_0\right)}^{-\beta }{\left(\Gamma \left(1/\beta \right)/\beta \right)}^{\beta }{\left(1+{I}_N\right)}^{\beta}\right)\left(1+{I}_N\right)\right\}+{I}_N$$
(11)
$${p}_{2N}=1-\left\{\exp \left(-{a}^{\beta }{\left(\Gamma \left(1/\beta \right)/\beta \right)}^{\beta }{\left(1+{I}_N\right)}^{\beta}\right)\left(1+{I}_N\right)\right\}+{I}_N$$
(12)
The estimated designed parameters of the proposed plan should be minimizing the average sample number (ASN) at an acceptable quality level. The ASN for the proposed plan with fraction defective (p) is derived to be
$$ASN=\frac{n}{P_a(p)+{P}_r(p)}$$
(13)
Therefore, the design parameters for the proposed plan with minimum sample size will be obtained by solving the below optimization technique
$${\displaystyle \begin{array}{*{20}l} \operatorname{Minimize}\ ASN\left({p}_{1N}\right)\\ {}\mathrm{subject}\ \mathrm{to}\ \\ {}L\left({p}_{1N}\right)\ge 1-\tilde{\alpha}\\ {}L\left({p}_{2N}\right)\le \tilde{\beta}\\ {}0\le {c}_1\le {c}_2\\ {}\mathrm{where}\kern0.5em n,{c}_1,{c}_2\in z\end{array}}$$
(14)
The values of the designed parameters n, c1 and c2 for various values of \(\tilde{\beta }\) =0.25, 0.10, 0.05, 0.01; \(\tilde{\alpha }=0.10\); a = 0.5 and 1.0, μN/μ0N =1.1, 1.2, 1.3, 1.4, 1.5, 1.8, 2.0 and IN =0.0, 0.02, 0.04 and 0.05 when shape parameter β = 1, 2 and 3 are given in Tables 1, 2, 3, 4, 5 and 6. Tables 1 and 2 are shown for the exponential distribution case. For exponential distribution, it can be seen that the values of ASN decrease as the values of a increases from 0.5 to 1.0. On the other hand for other the same parameters, the values of n decreases as the values of β increases. Note here that the indeterminacy parameter IN also plays a significant role in minimizing the sample size. As indeterminacy parameter IN increases the ASN values are decreasing.
Table 1
The plan parameter when \(\tilde{\alpha }=0.10;\beta =1\) and a = 0.50
\(\tilde{\beta }\)
\(\frac{\mu_N}{\mu_{0N}}\)
IU=0.00
IU=0.02
IU=0.04
IU=0.05
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
0.25
1.1
366
131
149
996.01
351
130
148
970.30
305
116
134
933.78
233
87
107
1123.61
0.25
1.2
180
64
70
262.79
144
52
59
244.14
163
62
68
241.62
116
43
51
236.76
0.25
1.3
67
21
27
135.08
71
24
29
121.47
57
19
25
124.91
81
30
34
117.39
0.25
1.4
61
20
23
83.75
47
15
19
79.12
31
9
14
78.47
33
10
15
79.74
0.25
1.5
46
14
17
65.19
26
7
11
56.28
25
7
11
55.12
31
10
13
49.83
0.25
1.8
30
9
10
34.14
24
7
9
33.65
18
5
7
26.81
27
9
10
31.03
0.25
2.0
24
7
8
27.96
21
6
7
24.49
13
3
5
20.91
20
6
7
23.32
0.10
1.1
0.10
1.2
195
65
77
388.69
233
83
93
365.45
220
81
91
349.86
185
68
79
341.30
0.10
1.3
114
36
44
197.37
102
33
41
184.31
104
35
43
181.35
89
30
38
171.55
0.10
1.4
74
22
28
121.14
81
26
31
115.70
69
22
28
113.54
65
21
27
110.40
0.10
1.5
64
19
23
87.09
42
11
17
86.67
29
7
13
83.12
46
14
19
79.02
0.10
1.8
32
8
11
44.72
31
8
11
43.09
30
8
11
41.58
16
3
7
38.95
0.10
2.0
23
5
8
35.50
26
6
9
36.49
22
5
8
32.58
18
4
7
30.19
0.05
1.1
0.05
1.2
292
99
112
454.10
254
88
102
440.72
230
82
96
417.79
250
92
105
406.48
0.05
1.3
154
49
58
231.40
117
37
47
217.69
113
37
47
211.21
114
38
48
206.78
0.05
1.4
78
22
30
144.10
91
28
35
137.49
91
29
36
133.57
89
29
36
133.17
0.05
1.5
55
14
21
103.05
44
11
18
97.99
61
18
24
93.72
57
17
23
90.86
0.05
1.8
30
6
11
53.55
40
10
14
53.72
35
9
13
50.20
24
5
10
49.66
0.05
2.0
29
6
10
44.08
30
7
10
38.81
24
5
9
38.60
32
8
11
39.32
0.01
1.1
0.01
1.2
393
130
150
586.50
371
127
147
565.50
357
127
146
530.22
343
124
143
520.89
0.01
1.3
191
58
72
290.60
196
62
76
283.30
178
58
72
271.54
187
63
76
262.20
0.01
1.4
141
41
51
185.60
111
32
43
174.80
116
35
46
170.80
108
33
44
168.20
0.01
1.5
91
24
33
131.10
91
25
34
127.60
76
21
30
117.90
89
26
35
123.50
0.01
1.8
50
11
17
67.53
45
10
16
62.85
39
8
15
62.79
46
11
17
61.25
0.01
2.0
40
8
13
51.86
30
5
11
49.49
32
6
12
49.98
37
8
13
46.90
Here hyphens (−) indicates that the parameters cannot be found to satisfy conditions
Table 2
The plan parameter when \(\tilde{\alpha }=0.10;\beta =1\) and a = 1.0
\(\tilde{\beta }\)
\(\frac{\mu_N}{\mu_{0N}}\)
IU=0.00
IU=0.02
IU=0.04
IU=0.05
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
0.25
1.1
216
126
141
670.58
200
120
135
670.44
212
133
146
561.99
215
137
150
562.33
0.25
1.2
77
43
50
171.96
108
65
70
164.07
100
62
67
156.47
72
44
50
146.39
0.25
1.3
40
21
26
87.26
46
26
30
78.70
43
25
29
75.96
54
33
36
75.89
0.25
1.4
37
20
23
56.65
38
21
24
56.08
44
26
28
54.80
28
16
19
47.28
0.25
1.5
32
17
19
41.59
20
10
13
36.88
16
8
11
33.79
28
16
18
37.25
0.25
1.8
16
8
9
19.23
13
6
8
20.53
11
5
7
18.25
18
10
11
21.30
0.25
2.0
8
3
5
15.57
12
5
7
17.86
16
9
9
16.00
10
5
6
12.75
0.10
1.1
0.10
1.2
166
95
103
251.81
156
92
100
241.03
134
81
89
220.93
145
90
97
215.03
0.10
1.3
76
41
47
123.27
67
37
43
114.90
65
37
43
111.98
64
37
43
110.92
0.10
1.4
49
25
30
79.68
51
27
32
79.54
36
19
24
69.65
42
23
28
72.87
0.10
1.5
25
11
16
57.81
19
8
13
56.40
40
22
25
52.78
27
14
18
48.74
0.10
1.8
25
11
14
33.38
21
10
12
26.67
16
7
10
26.17
20
10
12
25.48
0.10
2.0
21
9
11
25.09
13
5
8
23.56
9
3
6
20.91
19
9
11
23.26
0.05
1.1
0.05
1.2
180
101
112
294.66
158
91
102
278.26
147
87
98
266.01
150
91
101
251.91
0.05
1.3
109
59
66
151.86
83
45
53
141.34
69
38
46
133.05
68
38
46
131.00
0.05
1.4
65
33
39
94.37
61
32
38
91.56
65
36
41
86.23
45
24
30
80.22
0.05
1.5
30
13
19
67.10
42
21
26
64.66
34
17
22
57.79
37
19
24
58.15
0.05
1.8
27
12
15
34.90
16
6
10
30.81
19
8
12
32.45
17
7
11
30.71
0.05
2.0
16
6
9
24.06
13
4
8
25.03
19
8
11
25.01
13
5
8
20.73
0.01
1.1
0.01
1.2
235
129
146
381.10
233
133
149
363.60
214
126
141
331.60
195
116
131
321.50
0.01
1.3
110
56
68
186.50
119
64
75
178.40
114
63
74
168.96
91
50
61
160.90
0.01
1.4
78
38
47
115.80
65
32
41
107.90
74
39
47
102.50
57
29
38
102.30
0.01
1.5
57
26
34
84.89
59
28
36
82.77
49
24
31
71.92
46
22
30
73.98
0.01
1.8
31
12
18
46.41
31
13
18
41.25
28
12
17
39.13
24
10
15
36.09
0.01
2.0
17
5
10
30.21
25
9
14
32.01
18
6
11
28.48
24
10
14
29.85
Here hyphens (−) indicates that the parameters cannot be found to satisfy conditions
Table 3
The plan parameter when \(\tilde{\alpha }=0.10;\beta =2\) and a = 0.5
\(\tilde{\beta }\)
\(\frac{\mu_N}{\mu_{0N}}\)
IU=0.00
IU=0.02
IU=0.04
IU=0.05
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
0.25
1.1
256
38
47
517.20
284
46
54
491.58
293
51
58
456.12
319
58
64
449.42
0.25
1.2
98
13
17
155.09
71
9
14
150.09
62
8
13
136.88
60
8
13
134.22
0.25
1.3
53
6
9
85.43
51
6
9
80.86
48
6
9
76.77
26
2
6
74.76
0.25
1.4
38
4
6
54.61
37
4
6
52.16
28
3
5
42.59
33
4
6
47.73
0.25
1.5
25
2
4
40.34
31
3
5
45.48
33
4
5
38.75
22
2
4
35.43
0.25
1.8
28
3
3
28.00
16
1
2
20.75
15
1
2
19.54
14
1
2
18.53
0.25
2.0
21
2
2
21.00
21
2
2
21.00
20
2
2
20.00
8
0
1
11.94
0.10
1.1
462
69
81
778.83
425
67
79
731.36
345
56
69
693.87
421
73
84
666.03
0.10
1.2
149
19
25
231.97
113
14
21
218.82
127
18
24
204.39
92
12
19
197.78
0.10
1.3
72
7
12
126.10
77
9
13
114.70
73
9
13
108.58
71
9
13
105.81
0.10
1.4
62
6
9
83.19
58
6
9
78.82
48
5
8
68.56
37
3
7
69.39
0.10
1.5
42
3
6
61.36
31
2
5
52.13
29
2
5
49.61
25
1
5
58.24
0.10
1.8
23
1
3
34.22
22
1
3
32.40
18
0
3
35.08
20
1
3
29.81
0.10
2.0
15
0
2
26.36
14
0
2
24.93
15
0
2
23.66
13
0
2
22.99
0.05
1.1
486
70
86
921.90
559
88
102
860.99
518
86
100
809.80
453
76
91
789.07
0.05
1.2
173
21
29
276.86
157
20
28
258.41
142
19
27
243.33
145
20
28
237.39
0.05
1.3
93
9
15
148.49
105
12
17
142.08
69
7
13
127.94
90
11
16
126.23
0.05
1.4
56
4
9
97.89
45
3
8
89.79
58
5
10
90.71
59
6
10
82.73
0.05
1.5
46
3
7
74.60
36
2
6
64.99
42
3
7
65.87
33
2
6
60.20
0.05
1.8
44
3
5
51.50
19
0
3
37.07
18
0
3
35.08
17
0
3
34.70
0.05
2.0
28
1
3
35.44
26
1
3
33.32
24
1
3
31.33
23
1
3
30.38
0.01
1.1
0.01
1.2
206
23
35
351.10
195
23
35
331.10
219
29
40
312.40
207
28
39
301.03
0.01
1.3
135
13
21
187.90
113
11
19
169.80
113
12
20
166.28
97
10
18
154.38
0.01
1.4
88
7
13
120.60
84
7
13
113.10
79
7
13
107.50
77
7
13
104.49
0.01
1.5
64
4
9
87.32
60
4
9
82.88
54
3
9
82.24
56
4
9
75.69
0.01
1.8
27
0
4
49.47
38
1
5
50.64
35
1
5
48.14
39
2
5
46.16
0.01
2.0
40
1
4
46.08
35
1
4
42.60
32
1
4
40.05
22
0
3
31.76
Here hyphens (−) indicates that the parameters cannot be found to satisfy conditions
Table 4
The plan parameter when \(\tilde{\alpha }=0.10;\beta =2\) and a = 1.00
\(\tilde{\beta }\)
\(\frac{\mu_N}{\mu_{0N}}\)
IU=0.00
IU=0.02
IU=0.04
IU=0.05
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
0.255
1.1
139
70
74
180.96
98
50
56
167.43
105
57
62
158.45
83
45
51
152.44
0.25
1.2
27
11
15
55.27
39
19
21
49.78
31
15
18
48.58
30
15
18
48.38
0.25
1.3
17
6
9
31.20
19
8
10
26.98
18
8
10
26.05
19
9
11
27.77
0.25
1.4
17
7
8
20.21
11
4
6
18.62
11
4
6
17.60
18
9
9
18.00
0.25
1.5
11
4
5
13.71
19
9
8
16.85
8
3
4
10.47
5
1
3
11.57
0.25
1.8
5
1
2
6.95
8
3
3
8.00
3
0
2
10.82
6
2
3
8.23
0.25
2.0
6
1
2
7.42
5
1
2
6.75
6
2
2
6.00
9
4
3
7.76
0.10
1.1
138
65
75
263.63
169
86
94
250.98
134
70
79
233.82
137
74
82
220.09
0.10
1.2
57
25
29
78.21
41
17
23
79.30
45
21
26
75.79
39
18
23
67.40
0.10
1.3
25
9
13
43.98
25
10
13
36.43
24
10
13
34.72
30
14
16
36.26
0.10
1.4
16
5
8
26.78
15
5
8
26.29
22
9
11
26.89
12
4
7
23.41
0.10
1.5
10
2
5
19.27
15
5
7
19.59
11
3
6
19.95
11
3
6
18.92
0.10
1.8
9
2
4
13.62
4
0
2
8.74
10
3
4
11.31
10
3
4
11.16
0.10
2.0
9
2
3
10.25
4
0
2
8.74
8
1
3
9.66
8
2
3
9.05
0.05
1.1
189
89
101
313.09
181
90
101
289.79
181
95
105
271.36
170
91
101
261.00
0.05
1.2
56
23
29
88.23
59
26
32
91.16
49
22
28
80.65
46
21
27
78.19
0.05
1.3
37
14
18
50.18
31
12
16
44.56
32
13
17
43.38
25
10
14
38.63
0.05
1.4
26
9
12
33.51
17
5
9
30.35
12
3
7
27.18
21
8
11
28.07
0.05
1.5
19
6
8
22.62
12
3
6
19.74
14
4
7
20.04
11
3
6
18.92
0.05
1.8
10
2
4
13.24
10
2
4
12.52
8
1
4
13.51
9
2
4
11.65
0.05
2.0
7
0
3
11.67
9
2
3
9.99
8
1
3
9.66
9
2
4
11.65
0.01
1.1
272
127
144
405.20
255
125
141
370.60
229
117
133
349.70
184
94
111
345.60
0.01
1.2
78
31
40
115.10
72
30
39
111.20
70
31
39
98.57
56
24
33
98.24
0.01
1.3
35
11
18
60.36
39
14
20
54.33
37
14
20
52.56
32
12
18
49.45
0.01
1.4
33
10
15
40.78
29
9
14
37.17
25
8
13
34.68
27
9
14
34.57
0.01
1.5
19
4
9
29.01
28
9
12
30.69
18
5
9
24.68
17
4
9
25.42
0.01
1.8
13
2
5
15.97
9
1
4
13.37
12
2
5
14.35
11
2
5
14.17
0.01
2.0
15
3
5
16.25
12
2
4
13.07
6
0
3
11.13
6
0
3
10.62
Table 5
The plan parameter when \(\tilde{\alpha }=0.10;\beta =3\) and a = 0.5
\(\tilde{\beta }\)
\(\frac{\mu_N}{\mu_{0N}}\)
IU=0.00
IU=0.02
IU=0.04
IU=0.05
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
0.25
1.1
292
19
25
517.61
245
17
23
458.13
277
22
27
429.66
267
22
27
414.40
0.25
1.2
85
4
7
146.81
91
5
8
149.65
73
4
7
126.55
70
4
7
122.04
0.25
1.3
30
0
3
94.07
51
2
4
78.45
46
2
4
72.19
44
2
4
69.43
0.25
1.4
25
0
2
53.46
46
2
3
56.55
42
2
3
51.90
21
0
2
44.60
0.25
1.5
35
1
2
45.38
35
1
2
44.23
30
1
2
38.96
30
1
2
38.48
0.25
1.8
20
0
1
29.15
21
0
1
29.19
17
0
1
24.90
27
1
1
27.00
0.25
2.0
20
0
1
29.15
20
0
1
28.34
18
0
1
25.81
17
0
1
24.57
0.10
1.1
403
25
34
759.91
443
31
39
701.00
399
30
38
642.41
385
30
38
617.97
0.10
1.2
123
5
10
235.19
149
8
12
218.34
138
8
12
202.77
133
8
12
195.45
0.10
1.3
111
5
7
135.49
55
1
5
128.82
74
3
6
111.25
50
1
5
113.77
0.10
1.4
38
0
3
86.02
34
0
3
80.99
58
2
4
76.59
56
2
4
73.83
0.10
1.5
63
2
3
71.39
47
1
3
67.15
45
1
3
62.66
41
1
3
59.74
0.10
1.8
47
1
2
54.83
43
1
2
50.37
41
1
2
47.54
27
0
2
45.89
0.10
2.0
32
0
1
38.68
31
0
1
36.81
28
0
1
33.57
24
0
1
30.13
0.05
1.1
494
30
41
890.71
470
31
42
834.52
412
29
40
764.15
432
32
43
751.53
0.05
1.2
190
9
14
274.71
139
6
12
257.00
128
6
12
241.07
157
9
14
227.78
0.05
1.3
100
3
7
153.78
110
4
8
154.20
69
2
6
123.22
82
3
7
127.89
0.05
1.4
61
1
4
96.63
56
1
4
89.64
52
1
4
83.11
70
2
5
92.28
0.05
1.5
44
0
3
81.11
43
0
3
73.85
37
0
3
70.19
38
0
3
66.19
0.05
1.8
41
0
2
57.27
36
0
2
52.46
34
0
2
48.78
33
0
2
47.05
0.05
2.0
36
0
1
41.67
34
0
1
39.07
32
0
1
36.56
30
0
1
34.59
0.01
1.1
0.01
1.2
241
10
18
356.05
223
10
18
330.00
222
11
19
312.30
185
9
17
289.40
0.01
1.3
155
5
10
197.70
116
3
9
182.40
133
5
10
169.60
104
3
9
162.40
0.01
1.4
100
2
6
130.80
92
2
6
121.10
74
1
6
120.80
82
2
6
108.20
0.01
1.5
61
0
4
100.60
56
0
4
93.47
52
0
4
86.59
50
0
4
83.51
0.01
1.8
54
0
2
62.97
53
0
3
72.01
51
0
3
66.94
46
0
3
64.22
0.01
2.0
54
0
2
62.97
52
0
2
59.44
49
0
2
55.56
45
0
2
52.19
Here hyphens (−) indicates that the parameters cannot be found to satisfy conditions
Table 6
The plan parameter when \(\tilde{\alpha }=0.10;\beta =3\) and a = 1.0
\(\tilde{\beta }\)
\(\frac{\mu_N}{\mu_{0N}}\)
IU=0.00
IU=0.02
IU=0.04
IU=0.05
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
0.25
1.1
78
32
39
136.44
65
31
34
86.96
66
34
36
79.07
46
23
27
77.00
0.25
1.2
25
8
12
42.95
23
10
11
26.67
17
7
9
24.71
15
6
9
31.15
0.25
1.3
19
6
8
24.45
11
4
5
13.76
10
3
5
15.57
5
1
3
12.06
0.25
1.4
13
3
5
16.83
9
2
4
13.73
10
4
4
10.00
8
2
4
12.77
0.25
1.5
11
2
4
14.20
9
3
3
9.00
8
3
3
8.00
7
2
3
8.79
0.25
1.8
4
0
1
5.27
3
0
1
4.56
4
1
1
4.00
4
1
1
4.00
0.25
2.0
4
0
1
5.27
3
0
1
4.56
4
1
1
4.00
4
1
1
4.00
0.10
1.1
44
18
23
89.62
59
25
32
120.98
68
32
38
112.30
64
31
37
109.60
0.10
1.2
16
5
8
30.57
27
10
13
37.35
20
7
11
37.37
15
5
9
36.41
0.10
1.3
11
3
5
17.54
15
4
7
22.85
17
6
8
21.59
9
2
5
18.53
0.10
1.4
10
3
4
12.46
13
4
5
14.73
9
2
4
12.65
14
5
6
15.58
0.10
1.5
9
2
3
10.65
7
1
3
11.14
8
2
3
9.41
4
0
2
8.24
0.10
1.8
3
0
1
4.75
8
2
2
8.00
6
1
2
7.17
3
0
1
4.27
0.10
2.0
3
0
1
4.75
7
0
2
8.34
4
0
1
4.87
4
0
1
4.78
0.05
1.1
98
40
48
152.82
95
42
49
138.53
69
31
39
129.53
81
39
46
125.46
0.05
1.2
22
6
11
46.59
28
9
14
45.58
27
10
14
39.85
19
6
11
40.85
0.05
1.3
16
4
7
24.25
18
5
8
24.21
14
4
7
21.72
14
4
7
20.45
0.05
1.4
17
4
6
19.47
15
4
6
18.10
8
1
4
14.70
10
2
5
16.09
0.05
1.5
8
1
3
11.62
12
3
4
13.10
11
3
4
12.11
7
1
3
9.84
0.05
1.8
6
0
2
8.73
7
1
2
8.00
6
0
2
7.62
5
0
2
7.40
0.05
2.0
5
0
1
5.87
6
0
2
8.12
7
1
2
7.76
4
0
1
4.78
0.01
1.1
136
54
66
197.50
113
47
59
180.40
107
48
59
165.30
104
48
59
160.40
0.01
1.2
33
9
16
60.20
37
12
18
52.96
34
11
18
53.17
36
13
19
49.51
0.01
1.3
23
5
10
32.96
16
3
8
29.75
24
7
11
28.94
17
4
9
27.88
0.01
1.4
11
1
5
20.74
18
4
7
20.91
17
4
7
19.56
14
2
7
21.09
0.01
1.5
12
1
5
18.73
10
1
4
13.81
13
2
5
15.03
9
1
4
12.57
0.01
1.8
7
0
2
8.80
10
1
3
11.21
6
0
2
7.62
8
0
3
9.87
0.01
2.0
8
0
2
9.19
8
0
2
8.84
8
0
2
8.58
7
0
2
7.82

Results

A comparative study is carried out between the proposed sampling plans with the existing sampling plans available in the literature with respect to the sample size in this section. We know the cost of the study is always directly proportional to the sample size, a plan is said to be economical if it requires a smaller number of samples for testing the hypothesis about the daily new deaths from COVID-19. The proposed repetitive sampling plan under uncertainty/indeterminacy for Weibull distribution is the generalization of the testing average wind speed using sampling plan for Weibull distribution under indeterminacy plan developed by [42]. The comparison for the proposed and the existing sampling plan for Weibull distribution under indeterminacy plan developed by [42] are displayed in Tables 7 and 8 for \(\tilde{\alpha }=0.10;\beta =2\) at a = 0.5 and 1.0. The developed sampling plan reduces to the existing sampling plan when c1 = c2 = c. From Tables 7 and 8, it is noticed that the values of the sample size required for testing H0 : μN = μ0N smaller for the proposed sampling plan as compared with the existing sampling plan developed by [42]. For example, when μN/μ0N =1.1 and a =0.5 from Table 7, it can be seen that ASN = 491.58 from the plan proposed sampling plan whereas existing sampling plan sample size n = 617 when IN =0.02, β = 2 and a = 0.5. Hence, the proposed sampling plan is more economical than the existing sampling plan.
Table 7
Sample size comparison between the proposed plan and existing plan for \(\tilde{\alpha }=0.10;\beta =2\) and a = 0.5
\(\tilde{\beta }\)
\(\frac{\mu_N}{\mu_{0N}}\)
IU=0.00
IU=0.02
IU=0.04
IU=0.05
Proposed
Existing
Proposed
Existing
Proposed
Existing
Proposed
Existing
0.25
1.1
517.20
646
491.58
617
456.12
573
449.42
558
0.25
1.2
155.09
198
150.09
181
136.88
172
134.22
167
0.25
1.3
85.43
110
80.86
103
76.77
97
74.76
94
0.25
1.4
54.61
66
52.16
62
42.59
59
47.73
58
0.25
1.5
40.34
47
45.48
45
38.75
42
35.43
41
0.25
1.8
28.00
29
20.75
27
19.54
25
18.53
25
0.25
2.0
21.00
21
21.00
20
20.00
19
11.94
19
0.10
1.1
778.83
1122
731.36
1049
693.87
993
666.03
967
0.10
1.2
231.97
327
218.82
315
204.39
298
197.78
285
0.10
1.3
126.10
174
114.70
164
108.58
155
105.81
151
0.10
1.4
83.19
117
78.82
110
68.56
105
69.39
101
0.10
1.5
61.36
84
52.13
79
49.61
76
58.24
73
0.10
1.8
34.22
50
32.40
47
35.08
45
29.81
44
0.10
2.0
26.36
36
24.93
34
23.66
32
22.99
31
0.05
1.1
921.90
1467
860.99
1370
809.80
1297
789.07
1257
0.05
1.2
276.86
435
258.41
411
243.33
383
237.39
373
0.05
1.3
148.49
230
142.08
218
127.94
213
126.23
200
0.05
1.4
97.89
153
89.79
145
90.71
142
82.73
132
0.05
1.5
74.60
112
64.99
106
65.87
100
60.20
98
0.05
1.8
51.50
64
37.07
60
35.08
57
34.70
55
0.05
2.0
35.44
49
33.32
46
31.33
44
30.38
44
0.01
1.1
646
617
573
558
0.01
1.2
351.10
198
331.10
181
312.40
172
301.03
167
0.01
1.3
187.90
110
169.80
103
166.28
97
154.38
94
0.01
1.4
120.60
66
113.10
62
107.50
59
104.49
58
0.01
1.5
87.32
47
82.88
45
82.24
42
75.69
41
0.01
1.8
49.47
29
50.64
27
48.14
25
46.16
25
0.01
2.0
46.08
21
42.60
20
40.05
19
31.76
19
Here hyphens (−) indicates that the parameters cannot be found to satisfy conditions
Table 8
Sample size comparison between the proposed plan and existing plan for \(\tilde{\alpha }=0.10;\beta =2\) and a = 1.0
\(\tilde{\beta }\)
\(\frac{\mu_N}{\mu_{0N}}\)
IU=0.00
IU=0.02
IU=0.04
IU=0.05
Proposed
Existing
Proposed
Existing
Proposed
Existing
Proposed
Existing
0.25
1.1
180.96
229
167.43
206
158.45
190
152.44
188
0.25
1.2
55.27
65
49.78
60
48.58
59
48.38
56
0.25
1.3
31.20
36
26.98
35
26.05
33
27.77
32
0.25
1.4
20.21
25
18.62
23
17.60
22
18.00
18
0.25
1.5
13.71
17
16.85
16
10.47
15
11.57
15
0.25
1.8
6.95
11
8.00
11
10.82
10
8.23
9
0.25
2.0
7.42
10
6.75
10
6.00
9
7.76
9
0.10
1.1
263.63
371
250.98
352
233.82
324
220.09
317
0.10
1.2
78.21
109
79.30
104
75.79
99
67.40
97
0.10
1.3
43.98
56
36.43
55
34.72
51
36.26
51
0.10
1.4
26.78
38
26.29
36
26.89
35
23.41
35
0.10
1.5
19.27
30
19.59
28
19.95
27
18.92
24
0.10
1.8
13.62
15
8.74
14
11.31
14
11.16
13
0.10
2.0
10.25
13
8.74
13
9.66
12
9.05
9
0.05
1.1
313.09
494
289.79
462
271.36
431
261.00
416
0.05
1.2
88.23
146
91.16
138
80.65
129
78.19
119
0.05
1.3
50.18
73
44.56
69
43.38
66
38.63
65
0.05
1.4
33.51
49
30.35
44
27.18
42
28.07
41
0.05
1.5
22.62
38
19.74
37
20.04
35
18.92
30
0.05
1.8
13.24
22
12.52
21
13.51
20
11.65
18
0.05
2.0
11.67
20
9.99
18
9.66
17
11.65
16
0.01
1.1
405.20
229
370.60
206
349.70
190
345.60
188
0.01
1.2
115.10
65
111.20
60
98.57
59
98.24
56
0.01
1.3
60.36
36
54.33
35
52.56
33
49.45
32
0.01
1.4
40.78
25
37.17
23
34.68
22
34.57
18
0.01
1.5
29.01
17
30.69
16
24.68
15
25.42
15
0.01
1.8
15.97
11
13.37
11
14.35
10
14.17
9
0.01
2.0
16.25
10
13.07
10
11.13
9
10.62
9

Discussions

At this juncture, application of the proposed methodology will be illustrated using COVID-19 data belong to Italy of 111 days that are recorded from 1 April to 20 July 2020. The data are available at https://​covid19.​who.​int/​. This data is made up of the ratio of daily new deaths (i.e. daily number of deaths over new cases). The data is reported in Table 9. We have taken this data from [46] and they studied applications of COVID-19 data for Kumaraswamy inverted Topp-Leone distribution. Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. A large number of people affected by the COVID-19 virus and it are infected at random and uncertain, the COVID-19 data follows a certain statistical distribution under neutrosophic statistics. The World health organization and different countries’ health administrators are involved to check the daily affected cases, recovered cases and deaths under indeterminacy. It is found that the COVID-19 data follows the Weibull distribution with shape parameter \(\hat{\beta}=\) 2.2222 with the standard error (SE) as 0.1596 and scale parameter \(\hat{\alpha}=0.1880\) with SE value as 0.00845. The Kolmogorov-Smirnov test and it p value are D = 0.0684 and p = 0.6766. The goodness of fit of the Weibull distribution is highlight by depicts the histogram and quantile-quantile (Q-Q) plot in Fig. 1. We also applied various life distributions to fit the COVID-19 data set for the intention of comparative study. We have considered here the existing three models like odds Weibull distribution (OWD), Nadarajah-Haghighi distribution (NHD) and Exponentiated Nadarajah-Haghighi distribution (ENHD) for the same data. For more details please refer to [47].
Table 9
COVID-19 data belong to Italy from 1 April to 20 July 2020
0.0138
0.0365
0.0372
0.0385
0.0385
0.0435
0.0457
0.0476
0.0476
0.0537
0.0561
0.0562
0.0673
0.0769
0.0777
0.0802
0.0864
0.0870
0.0894
0.0942
0.1041
0.1053
0.1071
0.1119
0.1149
0.1154
0.1176
0.1180
0.1221
0.1227
0.1253
0.1264
0.1297
0.1302
0.1311
0.1319
0.1369
0.1375
0.1387
0.1390
0.1398
0.1408
0.1417
0.1421
0.1443
0.1456
0.1491
0.1493
0.1520
0.1522
0.1548
0.1593
0.1597
0.1619
0.1620
0.1628
0.1641
0.1646
0.1666
0.1686
0.1730
0.1749
0.1754
0.1761
0.1767
0.1779
0.1789
0.1791
0.1827
0.1831
0.1856
0.1915
0.1956
0.1957
0.1965
0.1987
0.1993
0.1994
0.1994
0.2003
0.2012
0.2032
0.2057
0.2070
0.2113
0.2148
0.2167
0.2190
0.2195
0.2195
0.2196
0.2212
0.2254
0.2321
0.2406
0.2421
0.2430
0.2495
0.2555
0.2641
0.2667
0.2668
0.2690
0.2792
0.3067
0.3067
0.3176
0.3371
0.3436
0.3515
0.4972
         
Pdf and cdf of Weibull distribution are respectively
$$f(x)=\left(\frac{\beta }{\alpha}\right){\left(\frac{x}{\alpha}\right)}^{\beta -1}{e}^{-{\left(\frac{x}{\alpha}\right)}^{\beta }};x>0,\alpha >0,\beta >0$$
and \(F(x)=1-{e}^{-{\left(\frac{x}{\alpha}\right)}^{\beta }}\)x > 0, α > 0, β > 0
Pdf and cdf of odds Weibull distribution (OWD) are respectively (suggested by [48])
$$f(x)=\left(\frac{\alpha \beta}{x}\right){\left(\frac{x}{\theta}\right)}^{\alpha }{e}^{{\left(\frac{x}{\theta}\right)}^{\alpha }}{\left({e}^{{\left(\frac{x}{\theta}\right)}^{\alpha }}-1\right)}^{\beta -1}{\left[1+{\left({e}^{{\left(\frac{x}{\theta}\right)}^{\alpha }}-1\right)}^{\beta}\right]}^{-2};x>0,\alpha <0,0<\left(\beta, \theta \right)$$
and \(F(x)=1-{\left[1+{\left({e}^{{\left(\frac{x}{\theta}\right)}^{\alpha }}-1\right)}^{\beta}\right]}^{-1}\)x > 0, α < 0, 0 < (β, θ).
Pdf and cdf of Nadarajah-Haghighi distribution (NHD) are respectively (see [49])
$$f(x)=\left(\alpha \lambda \right){\left(1+\lambda x\right)}^{\alpha -1}{e}^{1-{\left(1+\lambda x\right)}^{\alpha }};x>0,\alpha >0,\lambda >0$$
and \(F(x)=1-{e}^{1-{\left(1+\lambda x\right)}^{\alpha }}\)x > 0, α > 0, λ > 0.
Pdf and cdf of Exponentiated Nadarajah-Haghighi distribution (ENHD) are respectively (see [49])
$$f(x)=\left(\alpha \lambda \theta \right){\left(1+\lambda x\right)}^{\alpha -1}{e}^{1-{\left(1+\lambda x\right)}^{\alpha }}{\left(1-{e}^{1-{\left(1+\lambda x\right)}^{\alpha }}\right)}^{\theta -1};x>0,\alpha >0,\lambda >0,\theta >0$$
and \(F(x)={\left(1-{e}^{1-{\left(1+\lambda x\right)}^{\alpha }}\right)}^{\theta }\)x > 0, α > 0, λ > 0, θ > 0.
We have estimated the parameters and good fit for the COVID-19 data for WD, OWD, NHD and ENHD, and are reported in Table 10 and depicted in Fig. 2. From Table 10 and Fig. 2 it is noticed that WD shows less AIC, BIC and -2logLL, moreover OWD and NHD are not fitted for COVID-19 data. Hence, Weibull distribution shows a good fit for the COVID-19 data belongs to Italy. The plan parameters for this shape parameter are shown in Tables 11 and 12. For the proposed plan, the shape parameter is \({\hat{\beta}}_N=\left(1+0.04\right)\times 2.2222\approx 2.31\) when IU =0.04.
Table 10
Estimation and Goodness of fit measures of fitted distribution for daily new deaths
Dist
MLEs of the parameters
KS test p-value
-2logLL
AIC
BIC
WD
\(\hat{\alpha}\) =0.1880
\(\hat{\beta}\) =2.2222
0.6766
−257.1131
−253.1131
−247.6940
OWD
\(\hat{\alpha}\)=1.7988
\(\hat{\beta}\) =1.3225
\(\hat{\theta}\) =0.1943
2.2e-16
−258.5084
−252.5084
−244.3798
NHD
\(\hat{\alpha}\)=116.5132
\(\hat{\lambda}\)=0.0353
 
8.549e-06
−221.1094
−217.1095
−211.6904
ENHD
\(\hat{\alpha}\)=3.7626
\(\hat{\lambda}\)=1.6968
\(\hat{\theta}\)=2.5732
0.6324
−256.9344
−250.9344
−242.8058
Table 11
The plan parameter when \(\tilde{\alpha }=0.10;\beta =2.2222\) and a = 0.5
\(\tilde{\beta }\)
\(\frac{\mu_N}{\mu_{0N}}\)
IU=0.00
IU=0.02
IU=0.04
IU=0.05
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
0.25
1.1
312
40
47
507.20
287
39
46
471.79
305
45
51
447.47
256
38
45
428.73
0.25
1.2
87
9
13
150.31
106
13
16
147.51
100
13
16
139.26
52
5
10
135.80
0.25
1.3
60
6
8
80.77
57
6
8
76.36
60
7
9
79.08
41
4
7
72.91
0.25
1.4
26
1
4
59.83
36
3
5
53.13
46
5
6
52.93
34
3
5
49.13
0.25
1.5
37
3
4
43.78
21
1
3
36.92
31
3
4
37.42
19
1
3
33.81
0.25
1.8
25
2
2
25.00
21
1
2
26.09
19
1
2
23.99
22
2
2
22.00
0.25
2.0
27
2
2
27.00
20
1
2
25.33
10
0
1
14.66
11
0
1
15.30
0.10
1.1
431
53
64
742.14
413
54
65
703.25
376
52
63
655.88
406
59
69
635.70
0.10
1.2
140
14
20
232.64
143
16
21
208.70
110
12
18
195.90
114
13
19
195.07
0.10
1.3
74
6
10
117.74
70
6
10
110.54
74
7
11
110.43
82
9
12
106.44
0.10
1.4
47
3
6
73.54
44
3
6
69.36
51
4
7
72.13
48
4
7
70.57
0.10
1.5
42
2
5
63.55
36
2
5
61.50
26
1
4
50.99
36
2
5
54.79
0.10
1.8
18
0
2
31.17
26
1
3
38.16
16
0
2
27.66
25
1
3
35.16
0.10
2.0
19
0
2
31.25
17
0
2
29.34
23
1
2
26.93
23
1
2
26.63
0.05
1.1
507
61
75
883.90
544
71
84
836.31
486
67
80
773.35
472
67
80
752.06
0.05
1.2
172
17
24
266.94
154
16
23
246.46
152
17
24
238.68
141
16
23
225.79
0.05
1.3
99
8
13
146.61
94
8
13
136.91
80
7
12
124.05
78
7
12
120.03
0.05
1.4
54
3
7
88.62
61
4
8
89.14
56
4
8
85.25
55
4
8
82.24
0.05
1.5
53
3
6
71.76
51
3
6
67.35
46
3
6
63.79
32
1
5
62.18
0.05
1.8
33
1
3
41.98
30
1
3
39.13
29
1
3
37.07
27
1
3
35.64
0.05
2.0
23
0
2
31.96
21
0
2
29.89
19
0
2
27.97
20
0
2
27.50
0.01
1.1
0.01
1.2
204
18
29
341.70
192
18
29
321.80
207
22
32
298.90
216
24
34
297.80
0.01
1.3
133
10
17
181.10
93
6
14
172.80
109
9
16
156.30
106
9
16
151.50
0.01
1.4
87
5
11
127.20
84
5
11
117.10
69
4
10
106.60
58
3
9
99.95
0.01
1.5
56
2
7
88.85
63
3
8
89.39
51
2
7
77.16
49
2
7
75.48
0.01
1.8
43
1
4
53.38
47
1
5
59.58
39
1
4
47.41
37
1
4
45.83
0.01
2.0
31
0
3
43.35
30
0
3
40.74
27
0
3
38.37
28
0
3
37.24
Here hyphens (−) indicates that the parameters cannot be found to satisfy conditions
Table 12
The plan parameter when \(\tilde{\alpha }=0.10;\beta =2.2222\) and a = 1.0
\(\tilde{\beta }\)
\(\frac{\mu_N}{\mu_{0N}}\)
IU=0.00
IU=0.02
IU=0.04
IU=0.05
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
n
c1
c2
ASN
0.25
1.1
113
55
59
151.82
86
43
48
136.48
80
42
47
130.72
73
39
44
122.99
0.25
1.2
38
17
19
48.43
41
20
21
45.66
24
11
14
41.34
20
9
12
36.62
0.25
1.3
14
5
7
21.80
15
6
8
23.22
21
10
11
24.55
14
6
8
21.94
0.25
1.4
16
6
7
18.75
14
5
7
20.53
12
5
6
14.76
12
5
6
14.55
0.25
1.5
9
3
4
11.62
11
4
5
13.48
5
1
3
12.11
6
2
3
8.28
0.25
1.8
8
2
3
9.85
4
0
2
8.97
5
1
2
6.60
6
2
3
8.28
0.25
2.0
3
0
1
4.60
6
2
2
6.00
6
1
2
7.05
5
1
2
6.48
0.10
1.1
144
67
75
221.16
109
52
61
209.33
114
58
66
191.67
104
54
62
184.96
0.10
1.2
44
18
22
64.25
44
19
23
62.91
38
17
21
56.83
35
16
20
54.71
0.10
1.3
23
8
11
33.52
27
11
13
33.00
18
6
10
32.88
16
6
9
27.15
0.10
1.4
18
6
8
23.33
17
6
8
22.23
11
3
6
20.57
16
6
8
20.58
0.10
1.5
8
1
4
17.30
14
4
6
17.44
8
2
4
12.83
12
4
6
16.54
0.10
1.8
9
2
3
10.36
4
0
2
8.97
10
3
4
11.40
8
2
3
9.12
0.10
2.0
5
0
2
8.54
5
0
2
7.95
6
1
2
7.05
5
0
2
7.19
0.05
1.1
178
82
92
262.01
168
82
91
240.57
126
63
73
220.31
123
63
73
217.07
0.05
1.2
45
17
23
76.34
50
21
26
71.19
47
20
26
72.09
30
12
18
65.41
0.05
1.3
33
12
15
40.86
26
9
13
37.70
18
6
10
32.88
24
9
13
35.44
0.05
1.4
14
3
7
27.30
16
4
8
26.27
16
5
8
22.68
18
6
9
23.65
0.05
1.5
13
3
6
20.78
10
2
5
18.00
12
3
6
18.41
12
3
6
17.53
0.05
1.8
10
2
4
13.55
8
1
3
10.32
11
3
4
11.95
11
3
4
11.81
0.05
2.0
8
1
3
10.95
7
1
3
10.57
9
2
3
9.82
6
1
2
6.95
0.01
1.1
195
86
102
325.80
200
94
109
305.97
214
107
121
292.44
185
94
108
275.80
0.01
1.2
69
26
34
95.71
59
23
31
88.26
54
22
30
83.99
63
27
35
85.42
0.01
1.3
38
12
18
52.35
29
9
15
46.76
32
11
17
46.48
27
9
15
43.28
0.01
1.4
21
5
10
33.36
20
5
10
31.56
19
5
10
30.11
19
5
10
28.11
0.01
1.5
21
4
9
27.10
14
2
7
24.13
16
4
8
23.27
14
3
7
19.98
0.01
1.8
16
3
5
16.99
10
1
4
13.08
11
2
4
12.32
9
1
4
12.15
0.01
2.0
10
1
3
11.31
7
0
3
11.04
6
0
3
11.45
9
1
3
9.93
Suppose that a quality medical practitioner would like to use the proposed repetitive sampling plan for Weibull distribution under indeterminacy to ensure the mean ratio of daily new deaths at least 60 days using the truncated life test for 60 days. Let the producer’s risk be 10% at μN/μ0N =1.1 and the consumer’s risk is 10%. From Table 11, with a = 1.0, \(\tilde{\beta }=0.10\) and \(\tilde{\alpha }=0.10\) for the repetitive sampling plan, it could be found that the plan parameters are c1 = 58 c2 = 66 and ASN = 191.67. Therefore, the plan could be implemented as follows: selecting a random sample of 114 patients from the arrived lot of patients, and doing the truncated life test for 60 days. The proposed sampling plan will be implemented as: accept the null hypothesis H0 : μN = 0.1665 if the average ratio of daily new deaths in 60 days is less than 58, the ratio of daily deaths, but the lot should be rejected as soon as the ratio of daily new deaths exceeds 66. Otherwise, the experiment would be repeated. Table 9 shows the 56 ratios of daily new deaths before the average ratio of daily new deaths of 0.1665. Therefore, the quality medical practitioners would have accepted the arrived lot of patients.

Conclusions

An elaborated investigation of COVID-19 data for Weibull distribution under indeterminacy using time truncated repetitive sampling plan is studied. The proposed design parameters are obtained for known values of the indeterminacy parameters. The plan parameters and corresponding tables are developed for the industrial purposes at specified indeterminacy parametric values. The proposed sampling plan is compared with the existing sampling plans. The result shows that the proposed repetitive sampling plan is more economical than the existing sampling plan. The proposed sampling plan saves time; labor and amount for experimentation, the proposed plan is recommended to apply for testing the average number of deaths due to COVID-19. Also, noticed that if the indeterminacy values increase then the average sample number is decreased. The developed repetitive sampling plan procedure is illustrated with COVID-19 data belong to Italy as an application. The proposed sampling plan can be implemented in various industries covering the packing industry, medical sciences, food industries and electronic industries. Further research can be established to extend our study to group sampling plans, multiple dependent state sampling plans, and multiple dependent state repetitive sampling plans.

Acknowledgements

The authors are deeply thankful to the editor and reviewers for their valuable suggestions to improve the quality of the paper.

Declarations

N/A.
N/A.

Competing interests

None.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Mizumoto K, et al. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25(10):2000180.PubMedCentralCrossRef Mizumoto K, et al. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25(10):2000180.PubMedCentralCrossRef
2.
3.
Zurück zum Zitat Kantam RRL, Rosaiah K, Rao GS. Acceptance sampling based on life tests: log-logistic model. J Appl Stat. 2001;28(1):121–8.CrossRef Kantam RRL, Rosaiah K, Rao GS. Acceptance sampling based on life tests: log-logistic model. J Appl Stat. 2001;28(1):121–8.CrossRef
4.
Zurück zum Zitat Tsai T-R, Wu S-J. Acceptance sampling based on truncated life tests for generalized Rayleigh distribution. J Appl Stat. 2006;33(6):595–600.CrossRef Tsai T-R, Wu S-J. Acceptance sampling based on truncated life tests for generalized Rayleigh distribution. J Appl Stat. 2006;33(6):595–600.CrossRef
5.
Zurück zum Zitat Balakrishnan N, Leiva V, López J. Acceptance sampling plans from truncated life tests based on the generalized Birnbaum–Saunders distribution. Commun Stat Simul Comput. 2007;36(3):643–56.CrossRef Balakrishnan N, Leiva V, López J. Acceptance sampling plans from truncated life tests based on the generalized Birnbaum–Saunders distribution. Commun Stat Simul Comput. 2007;36(3):643–56.CrossRef
6.
Zurück zum Zitat Lio YL, Tsai T-R, Wu S-J. Acceptance sampling plans from truncated life tests based on the Birnbaum–Saunders distribution for percentiles. Commun Stat Simul Comput. 2009;39(1):119–36.CrossRef Lio YL, Tsai T-R, Wu S-J. Acceptance sampling plans from truncated life tests based on the Birnbaum–Saunders distribution for percentiles. Commun Stat Simul Comput. 2009;39(1):119–36.CrossRef
7.
Zurück zum Zitat Lio YL, Tsai T-R, Wu S-J. Acceptance sampling plans from truncated life tests based on the Burr type XII percentiles. J Chin Inst Ind Eng. 2010;27(4):270–80. Lio YL, Tsai T-R, Wu S-J. Acceptance sampling plans from truncated life tests based on the Burr type XII percentiles. J Chin Inst Ind Eng. 2010;27(4):270–80.
8.
Zurück zum Zitat Al-Omari A, Al-Hadhrami S. Acceptance sampling plans based on truncated life tests for Extended Exponential distribution. Kuwait J Sci. 2018;45(2):30–41. Al-Omari A, Al-Hadhrami S. Acceptance sampling plans based on truncated life tests for Extended Exponential distribution. Kuwait J Sci. 2018;45(2):30–41.
9.
Zurück zum Zitat Al-Omari AI. Time truncated acceptance sampling plans for generalized inverted exponential distribution. Electron J Appl Stat Anal. 2015;8(1):1–12. Al-Omari AI. Time truncated acceptance sampling plans for generalized inverted exponential distribution. Electron J Appl Stat Anal. 2015;8(1):1–12.
10.
Zurück zum Zitat Yan A, Liu S, Dong X. Variables two stage sampling plans based on the coefficient of variation. J Adv Mech Des Syst Manuf. 2016;10(1):1–12.CrossRef Yan A, Liu S, Dong X. Variables two stage sampling plans based on the coefficient of variation. J Adv Mech Des Syst Manuf. 2016;10(1):1–12.CrossRef
11.
Zurück zum Zitat Yen C-H, et al. A rectifying acceptance sampling plan based on the process capability index. Mathematics. 2020;8(1):141.CrossRef Yen C-H, et al. A rectifying acceptance sampling plan based on the process capability index. Mathematics. 2020;8(1):141.CrossRef
12.
Zurück zum Zitat Aslam M, et al. Decision rule of repetitive acceptance sampling plans assuring percentile life. Sci Iran. 2012;19(3):879–84.CrossRef Aslam M, et al. Decision rule of repetitive acceptance sampling plans assuring percentile life. Sci Iran. 2012;19(3):879–84.CrossRef
13.
Zurück zum Zitat Sherman RE. Design and evaluation of a repetitive group sampling plan. Technometrics. 1965;7(1):11–21.CrossRef Sherman RE. Design and evaluation of a repetitive group sampling plan. Technometrics. 1965;7(1):11–21.CrossRef
14.
Zurück zum Zitat Aslam M, Lio YL, Jun C-H. Repetitive acceptance sampling plans for burr type XII percentiles. Int J Adv Manuf Technol. 2013;68(1):495–507.CrossRef Aslam M, Lio YL, Jun C-H. Repetitive acceptance sampling plans for burr type XII percentiles. Int J Adv Manuf Technol. 2013;68(1):495–507.CrossRef
15.
Zurück zum Zitat Aslam M, Azam M, Jun C-H. Decision rule based on group sampling plan under the inverse Gaussian distribution. Seq Anal. 2013;32(1):71–82.CrossRef Aslam M, Azam M, Jun C-H. Decision rule based on group sampling plan under the inverse Gaussian distribution. Seq Anal. 2013;32(1):71–82.CrossRef
16.
Zurück zum Zitat Singh N, Singh N, Kaur H. A repetitive acceptance sampling plan for generalized inverted exponential distribution based on truncated life test. Int J Sci Res Math Stat Sci. 2018;5(3):58–64. Singh N, Singh N, Kaur H. A repetitive acceptance sampling plan for generalized inverted exponential distribution based on truncated life test. Int J Sci Res Math Stat Sci. 2018;5(3):58–64.
17.
Zurück zum Zitat Yan A, Liu S. Designing a repetitive group sampling plan for Weibull distributed processes. Math Probl Eng. 2016;2016:5862071.CrossRef Yan A, Liu S. Designing a repetitive group sampling plan for Weibull distributed processes. Math Probl Eng. 2016;2016:5862071.CrossRef
18.
Zurück zum Zitat Aslam M, et al. Designing of a new monitoring t-chart using repetitive sampling. Inf Sci. 2014;269:210–6.CrossRef Aslam M, et al. Designing of a new monitoring t-chart using repetitive sampling. Inf Sci. 2014;269:210–6.CrossRef
19.
Zurück zum Zitat Yen C-H, Chang C-H, Aslam M. Repetitive variable acceptance sampling plan for one-sided specification. J Stat Comput Simul. 2015;85(6):1102–16.CrossRef Yen C-H, Chang C-H, Aslam M. Repetitive variable acceptance sampling plan for one-sided specification. J Stat Comput Simul. 2015;85(6):1102–16.CrossRef
20.
Zurück zum Zitat Smarandache F. Neutrosophy. Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, vol. 105. Ann Arbor: American Research Press; 1998. p. 118–23. Smarandache F. Neutrosophy. Neutrosophic Probability, Set, and Logic, ProQuest Information & Learning, vol. 105. Ann Arbor: American Research Press; 1998. p. 118–23.
21.
Zurück zum Zitat Smarandache, F. and H.E. Khalid, Neutrosophic precalculus and neutrosophic calculus 2015: Infinite Study. Smarandache, F. and H.E. Khalid, Neutrosophic precalculus and neutrosophic calculus 2015: Infinite Study.
22.
Zurück zum Zitat Peng X, Dai J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput & Applic. 2018;29(10):939–54.CrossRef Peng X, Dai J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput & Applic. 2018;29(10):939–54.CrossRef
23.
Zurück zum Zitat Abdel-Basset M, et al. Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif Intell Med. 2019;101:101735.PubMedCrossRef Abdel-Basset M, et al. Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif Intell Med. 2019;101:101735.PubMedCrossRef
24.
Zurück zum Zitat Nabeeh NA, et al. An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access. 2019;7:29734–44.CrossRef Nabeeh NA, et al. An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access. 2019;7:29734–44.CrossRef
25.
Zurück zum Zitat Pratihar J, et al. Transportation problem in neutrosophic environment. In: Neutrosophic Graph Theory and Algorithms. Hershey: IGI Global; 2020. p. 180–212. Pratihar J, et al. Transportation problem in neutrosophic environment. In: Neutrosophic Graph Theory and Algorithms. Hershey: IGI Global; 2020. p. 180–212.
27.
Zurück zum Zitat Smarandache, F., Introduction to neutrosophic statistics 2014: Infinite Study. Smarandache, F., Introduction to neutrosophic statistics 2014: Infinite Study.
28.
Zurück zum Zitat Chen J, Ye J, Du S. Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry. 2017;9(10):208.CrossRef Chen J, Ye J, Du S. Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry. 2017;9(10):208.CrossRef
29.
Zurück zum Zitat Chen J, et al. Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry. 2017;9(7):123.CrossRef Chen J, et al. Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry. 2017;9(7):123.CrossRef
30.
Zurück zum Zitat Aslam M. A new failure-censored reliability test using neutrosophic statistical interval method. Int J Fuzzy Syst. 2019;21(4):1214–20.CrossRef Aslam M. A new failure-censored reliability test using neutrosophic statistical interval method. Int J Fuzzy Syst. 2019;21(4):1214–20.CrossRef
31.
Zurück zum Zitat Aslam M. A new sampling plan using Neutrosophic process loss consideration. Symmetry. 2018;10(5):132.CrossRef Aslam M. A new sampling plan using Neutrosophic process loss consideration. Symmetry. 2018;10(5):132.CrossRef
32.
Zurück zum Zitat Aslam M. Design of Sampling Plan for exponential distribution under Neutrosophic statistical interval method. IEEE Access. 2018;6:64153–8.CrossRef Aslam M. Design of Sampling Plan for exponential distribution under Neutrosophic statistical interval method. IEEE Access. 2018;6:64153–8.CrossRef
33.
Zurück zum Zitat Aslam M. A new attribute sampling plan using neutrosophic statistical interval method. Complex Intell Syst. 2019;5(4):365–70. Aslam M. A new attribute sampling plan using neutrosophic statistical interval method. Complex Intell Syst. 2019;5(4):365–70.
34.
Zurück zum Zitat Aslam M, et al. Time-truncated group plan under a Weibull distribution based on Neutrosophic statistics. Mathematics. 2019;7(10):905.CrossRef Aslam M, et al. Time-truncated group plan under a Weibull distribution based on Neutrosophic statistics. Mathematics. 2019;7(10):905.CrossRef
35.
Zurück zum Zitat Alhasan, K.F.H. and F. Smarandache, Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution 2019: Infinite Study. Alhasan, K.F.H. and F. Smarandache, Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution 2019: Infinite Study.
36.
Zurück zum Zitat Jamkhaneh EB, Sadeghpour-Gildeh B, Yari G. Important criteria of rectifying inspection for single sampling plan with fuzzy parameter. Int J Contemp Math Sci. 2009;4(36):1791–801. Jamkhaneh EB, Sadeghpour-Gildeh B, Yari G. Important criteria of rectifying inspection for single sampling plan with fuzzy parameter. Int J Contemp Math Sci. 2009;4(36):1791–801.
37.
Zurück zum Zitat Jamkhaneh EB, Sadeghpour-Gildeh B, Yari G. Inspection error and its effects on single sampling plans with fuzzy parameters. Struct Multidiscip Optim. 2011;43(4):555–60.CrossRef Jamkhaneh EB, Sadeghpour-Gildeh B, Yari G. Inspection error and its effects on single sampling plans with fuzzy parameters. Struct Multidiscip Optim. 2011;43(4):555–60.CrossRef
38.
Zurück zum Zitat Sadeghpour Gildeh B. E. Baloui Jamkhaneh, and G. Yari, acceptance single sampling plan with fuzzy parameter. Iran J Fuzzy Syst. 2011;8(2):47–55. Sadeghpour Gildeh B. E. Baloui Jamkhaneh, and G. Yari, acceptance single sampling plan with fuzzy parameter. Iran J Fuzzy Syst. 2011;8(2):47–55.
39.
Zurück zum Zitat Afshari R, Sadeghpour Gildeh B. Designing a multiple deferred state attribute sampling plan in a fuzzy environment. Am J Math Manag Sci. 2017;36(4):328–45. Afshari R, Sadeghpour Gildeh B. Designing a multiple deferred state attribute sampling plan in a fuzzy environment. Am J Math Manag Sci. 2017;36(4):328–45.
40.
Zurück zum Zitat Tong X, Wang Z. Fuzzy acceptance sampling plans for inspection of geospatial data with ambiguity in quality characteristics. Comput Geosci. 2012;48:256–66.CrossRef Tong X, Wang Z. Fuzzy acceptance sampling plans for inspection of geospatial data with ambiguity in quality characteristics. Comput Geosci. 2012;48:256–66.CrossRef
41.
Zurück zum Zitat Uma G, Ramya K. Impact of fuzzy logic on acceptance sampling plans–a review. Automation Autonomous Syst. 2015;7(7):181–5. Uma G, Ramya K. Impact of fuzzy logic on acceptance sampling plans–a review. Automation Autonomous Syst. 2015;7(7):181–5.
43.
Zurück zum Zitat Balamurali S, Jun C-H. Repetitive group sampling procedure for variables inspection. J Appl Stat. 2006;33(3):327–38.CrossRef Balamurali S, Jun C-H. Repetitive group sampling procedure for variables inspection. J Appl Stat. 2006;33(3):327–38.CrossRef
44.
Zurück zum Zitat Aslam M, Yen C-H, Jun C-H. Variable repetitive group sampling plans with process loss consideration. J Stat Comput Simul. 2011;81(11):1417–32.CrossRef Aslam M, Yen C-H, Jun C-H. Variable repetitive group sampling plans with process loss consideration. J Stat Comput Simul. 2011;81(11):1417–32.CrossRef
45.
Zurück zum Zitat Aslam M, et al. Developing a variables repetitive group sampling plan based on process capability index C pk with unknown mean and variance. J Stat Comput Simul. 2013;83(8):1507–17.CrossRef Aslam M, et al. Developing a variables repetitive group sampling plan based on process capability index C pk with unknown mean and variance. J Stat Comput Simul. 2013;83(8):1507–17.CrossRef
46.
Zurück zum Zitat Hassan A-S, Almetwally E-M, Ibrahim G-M. Kumaraswamy Inverted Topp–Leone Distribution with Applications to COVID-19 Data. Comput Mater Continua. 2021;68(1):337–58.CrossRef Hassan A-S, Almetwally E-M, Ibrahim G-M. Kumaraswamy Inverted Topp–Leone Distribution with Applications to COVID-19 Data. Comput Mater Continua. 2021;68(1):337–58.CrossRef
47.
Zurück zum Zitat Lemonte AJ. A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function. Comput Stat Data Anal. 2013;62:149–70.CrossRef Lemonte AJ. A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function. Comput Stat Data Anal. 2013;62:149–70.CrossRef
48.
Zurück zum Zitat Cooray K. Generalization of the Weibull distribution: the odd Weibull family. Stat Model. 2006;6(3):265–77.CrossRef Cooray K. Generalization of the Weibull distribution: the odd Weibull family. Stat Model. 2006;6(3):265–77.CrossRef
49.
Zurück zum Zitat Alhussain ZA, Ahmed EA. Estimation of exponentiated Nadarajah-Haghighi distribution under progressively type-II censored sample with application to bladder cancer data. Indian J Pure Appl Math. 2020;51(2):631–57.CrossRef Alhussain ZA, Ahmed EA. Estimation of exponentiated Nadarajah-Haghighi distribution under progressively type-II censored sample with application to bladder cancer data. Indian J Pure Appl Math. 2020;51(2):631–57.CrossRef
Metadaten
Titel
Inspection plan for COVID-19 patients for Weibull distribution using repetitive sampling under indeterminacy
verfasst von
G. Srinivasa Rao
Muhammad Aslam
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Schlagwort
COVID-19
Erschienen in
BMC Medical Research Methodology / Ausgabe 1/2021
Elektronische ISSN: 1471-2288
DOI
https://doi.org/10.1186/s12874-021-01387-7

Weitere Artikel der Ausgabe 1/2021

BMC Medical Research Methodology 1/2021 Zur Ausgabe