Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2017

14.02.2017

Crosstalk signaling in targeted melanoma therapy

verfasst von: Svenja Meierjohann

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Inhibition of the BRAF/MAPK pathway belongs to the standard therapies for patients with activating BRAFV600E/K mutations. However, even in well-responding tumors, anti-tumorigenic effect and clinical benefit are only transient, and the original tumors often relapse. This demonstrates that there are remaining residual tumors, which have withstood therapy-induced apoptosis and which have the potential to resume growth. Although BRAF mutant melanoma cells seem to depend on BRAF/MAPK signaling, the inhibition of this pathway triggers several events, which modulate the tumor as well as the tumor niche. After a certain adaptation period, this can turn out to be beneficial for tumor growth and metastasis—even in cases of good initial tumor response. This review sheds light on the biology of BRAF/MEK inhibitor-sensitive melanoma cells, which survive targeted therapy and will address the crosstalk signaling events occurring in BRAF mutant melanomas when the BRAF/MAPK pathway is fully blocked. The knowledge of these events is important for potential future drug combinations, which enhance the inhibitory effect of BRAF/MEK inhibition, particularly in patients not eligible for immune therapy.
Literatur
1.
2.
Zurück zum Zitat Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380(9839), 358–365. doi:10.1016/S0140-6736(12)60868-X.CrossRefPubMed Hauschild, A., Grob, J. J., Demidov, L. V., Jouary, T., Gutzmer, R., Millward, M., et al. (2012). Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet, 380(9839), 358–365. doi:10.​1016/​S0140-6736(12)60868-X.CrossRefPubMed
3.
4.
Zurück zum Zitat Robert, C., Schachter, J., Long, G. V., Arance, A., Grob, J. J., Mortier, L., et al. (2015). Pembrolizumab versus Ipilimumab in advanced melanoma. The New England Journal of Medicine, 372(26), 2521–2532. doi:10.1056/NEJMoa1503093.CrossRefPubMed Robert, C., Schachter, J., Long, G. V., Arance, A., Grob, J. J., Mortier, L., et al. (2015). Pembrolizumab versus Ipilimumab in advanced melanoma. The New England Journal of Medicine, 372(26), 2521–2532. doi:10.​1056/​NEJMoa1503093.CrossRefPubMed
5.
Zurück zum Zitat Weber, J. S., D’Angelo, S. P., Minor, D., Hodi, F. S., Gutzmer, R., Neyns, B., et al. (2015). Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. The Lancet Oncology, 16(4), 375–384. doi:10.1016/S1470-2045(15)70076-8.CrossRefPubMed Weber, J. S., D’Angelo, S. P., Minor, D., Hodi, F. S., Gutzmer, R., Neyns, B., et al. (2015). Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. The Lancet Oncology, 16(4), 375–384. doi:10.​1016/​S1470-2045(15)70076-8.CrossRefPubMed
6.
Zurück zum Zitat Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373(1), 23–34. doi:10.1056/NEJMoa1504030.CrossRefPubMed Larkin, J., Chiarion-Sileni, V., Gonzalez, R., Grob, J. J., Cowey, C. L., Lao, C. D., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373(1), 23–34. doi:10.​1056/​NEJMoa1504030.CrossRefPubMed
9.
Zurück zum Zitat Lee, J. T., Li, L., Brafford, P. A., van den Eijnden, M., Halloran, M. B., Sproesser, K., et al. (2010). PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas. Pigment Cell & Melanoma Research, 23(6), 820–827. doi:10.1111/j.1755-148X.2010.00763.x.CrossRef Lee, J. T., Li, L., Brafford, P. A., van den Eijnden, M., Halloran, M. B., Sproesser, K., et al. (2010). PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas. Pigment Cell & Melanoma Research, 23(6), 820–827. doi:10.​1111/​j.​1755-148X.​2010.​00763.​x.CrossRef
10.
Zurück zum Zitat Haferkamp, S., Borst, A., Adam, C., Becker, T. M., Motschenbacher, S., Windhovel, S., et al. (2013). Vemurafenib induces senescence features in melanoma cells. The Journal of Investigative Dermatology, 133(6), 1601–1609. doi:10.1038/jid.2013.6.CrossRefPubMed Haferkamp, S., Borst, A., Adam, C., Becker, T. M., Motschenbacher, S., Windhovel, S., et al. (2013). Vemurafenib induces senescence features in melanoma cells. The Journal of Investigative Dermatology, 133(6), 1601–1609. doi:10.​1038/​jid.​2013.​6.CrossRefPubMed
11.
Zurück zum Zitat Gadiot, J., Hooijkaas, A. I., Deken, M. A., & Blank, C. U. (2013). Synchronous BRAF(V600E) and MEK inhibition leads to superior control of murine melanoma by limiting MEK inhibitor induced skin toxicity. Onco Targets Ther, 6, 1649–1658. doi:10.2147/OTT.S52552.PubMedPubMedCentral Gadiot, J., Hooijkaas, A. I., Deken, M. A., & Blank, C. U. (2013). Synchronous BRAF(V600E) and MEK inhibition leads to superior control of murine melanoma by limiting MEK inhibitor induced skin toxicity. Onco Targets Ther, 6, 1649–1658. doi:10.​2147/​OTT.​S52552.PubMedPubMedCentral
13.
Zurück zum Zitat Rizos, H., Menzies, A. M., Pupo, G. M., Carlino, M. S., Fung, C., Hyman, J., et al. (2014). BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clinical Cancer Research, 20(7), 1965–1977. doi:10.1158/1078-0432.CCR-13-3122.CrossRefPubMed Rizos, H., Menzies, A. M., Pupo, G. M., Carlino, M. S., Fung, C., Hyman, J., et al. (2014). BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clinical Cancer Research, 20(7), 1965–1977. doi:10.​1158/​1078-0432.​CCR-13-3122.CrossRefPubMed
14.
Zurück zum Zitat Van Allen, E. M., Wagle, N., Sucker, A., Treacy, D. J., Johannessen, C. M., Goetz, E. M., et al. (2014). The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discovery, 4(1), 94–109. doi:10.1158/2159-8290.CD-13-0617.CrossRefPubMed Van Allen, E. M., Wagle, N., Sucker, A., Treacy, D. J., Johannessen, C. M., Goetz, E. M., et al. (2014). The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discovery, 4(1), 94–109. doi:10.​1158/​2159-8290.​CD-13-0617.CrossRefPubMed
15.
Zurück zum Zitat Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., et al. (2014). Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New England Journal of Medicine, 371(20), 1877–1888. doi:10.1056/NEJMoa1406037.CrossRefPubMed Long, G. V., Stroyakovskiy, D., Gogas, H., Levchenko, E., de Braud, F., Larkin, J., et al. (2014). Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. The New England Journal of Medicine, 371(20), 1877–1888. doi:10.​1056/​NEJMoa1406037.CrossRefPubMed
16.
Zurück zum Zitat Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372(1), 30–39. doi:10.1056/NEJMoa1412690.CrossRefPubMed Robert, C., Karaszewska, B., Schachter, J., Rutkowski, P., Mackiewicz, A., Stroiakovski, D., et al. (2015). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 372(1), 30–39. doi:10.​1056/​NEJMoa1412690.CrossRefPubMed
18.
Zurück zum Zitat Murphy, T., Hori, S., Sewell, J., & Gnanapragasam, V. J. (2010). Expression and functional role of negative signalling regulators in tumour development and progression. International Journal of Cancer, 127(11), 2491–2499. doi:10.1002/ijc.25542.CrossRefPubMed Murphy, T., Hori, S., Sewell, J., & Gnanapragasam, V. J. (2010). Expression and functional role of negative signalling regulators in tumour development and progression. International Journal of Cancer, 127(11), 2491–2499. doi:10.​1002/​ijc.​25542.CrossRefPubMed
23.
Zurück zum Zitat Werzowa, J., Koehrer, S., Strommer, S., Cejka, D., Fuereder, T., Zebedin, E., et al. (2011). Vertical inhibition of the mTORC1/mTORC2/PI3K pathway shows synergistic effects against melanoma in vitro and in vivo. The Journal of Investigative Dermatology, 131(2), 495–503. doi:10.1038/jid.2010.327.CrossRefPubMed Werzowa, J., Koehrer, S., Strommer, S., Cejka, D., Fuereder, T., Zebedin, E., et al. (2011). Vertical inhibition of the mTORC1/mTORC2/PI3K pathway shows synergistic effects against melanoma in vitro and in vivo. The Journal of Investigative Dermatology, 131(2), 495–503. doi:10.​1038/​jid.​2010.​327.CrossRefPubMed
24.
Zurück zum Zitat Sinnberg, T., Lasithiotakis, K., Niessner, H., Schittek, B., Flaherty, K. T., Kulms, D., et al. (2009). Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. The Journal of Investigative Dermatology, 129(6), 1500–1515. doi:10.1038/jid.2008.379.CrossRefPubMed Sinnberg, T., Lasithiotakis, K., Niessner, H., Schittek, B., Flaherty, K. T., Kulms, D., et al. (2009). Inhibition of PI3K-AKT-mTOR signaling sensitizes melanoma cells to cisplatin and temozolomide. The Journal of Investigative Dermatology, 129(6), 1500–1515. doi:10.​1038/​jid.​2008.​379.CrossRefPubMed
25.
Zurück zum Zitat Gopal, Y. N., Deng, W., Woodman, S. E., Komurov, K., Ram, P., Smith, P. D., et al. (2010). Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Research, 70(21), 8736–8747. doi:10.1158/0008-5472.CAN-10-0902.CrossRefPubMedPubMedCentral Gopal, Y. N., Deng, W., Woodman, S. E., Komurov, K., Ram, P., Smith, P. D., et al. (2010). Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Research, 70(21), 8736–8747. doi:10.​1158/​0008-5472.​CAN-10-0902.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Sun, C., Wang, L., Huang, S., Heynen, G. J., Prahallad, A., Robert, C., et al. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature, 508(7494), 118–122. doi:10.1038/nature13121.CrossRefPubMed Sun, C., Wang, L., Huang, S., Heynen, G. J., Prahallad, A., Robert, C., et al. (2014). Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature, 508(7494), 118–122. doi:10.​1038/​nature13121.CrossRefPubMed
28.
Zurück zum Zitat Prahallad, A., Sun, C., Huang, S., Di Nicolantonio, F., Salazar, R., Zecchin, D., et al. (2012). Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 483(7387), 100–103. doi:10.1038/nature10868.CrossRefPubMed Prahallad, A., Sun, C., Huang, S., Di Nicolantonio, F., Salazar, R., Zecchin, D., et al. (2012). Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature, 483(7387), 100–103. doi:10.​1038/​nature10868.CrossRefPubMed
29.
Zurück zum Zitat Corcoran, R. B., Ebi, H., Turke, A. B., Coffee, E. M., Nishino, M., Cogdill, A. P., et al. (2012). EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discovery, 2(3), 227–235. doi:10.1158/2159-8290.CD-11-0341.CrossRefPubMedPubMedCentral Corcoran, R. B., Ebi, H., Turke, A. B., Coffee, E. M., Nishino, M., Cogdill, A. P., et al. (2012). EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discovery, 2(3), 227–235. doi:10.​1158/​2159-8290.​CD-11-0341.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Abel, E. V., Basile, K. J., Kugel 3rd, C. H., Witkiewicz, A. K., Le, K., Amaravadi, R. K., et al. (2013). Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. The Journal of Clinical Investigation, 123(5), 2155–2168. doi:10.1172/JCI65780.CrossRefPubMedPubMedCentral Abel, E. V., Basile, K. J., Kugel 3rd, C. H., Witkiewicz, A. K., Le, K., Amaravadi, R. K., et al. (2013). Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3. The Journal of Clinical Investigation, 123(5), 2155–2168. doi:10.​1172/​JCI65780.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Fattore, L., Marra, E., Pisanu, M. E., Noto, A., de Vitis, C., Belleudi, F., et al. (2013). Activation of an early feedback survival loop involving phospho-ErbB3 is a general response of melanoma cells to RAF/MEK inhibition and is abrogated by anti-ErbB3 antibodies. Journal of Translational Medicine, 11, 180. doi:10.1186/1479-5876-11-180.CrossRefPubMedPubMedCentral Fattore, L., Marra, E., Pisanu, M. E., Noto, A., de Vitis, C., Belleudi, F., et al. (2013). Activation of an early feedback survival loop involving phospho-ErbB3 is a general response of melanoma cells to RAF/MEK inhibition and is abrogated by anti-ErbB3 antibodies. Journal of Translational Medicine, 11, 180. doi:10.​1186/​1479-5876-11-180.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Kim, H. H., Sierke, S. L., & Koland, J. G. (1994). Epidermal growth factor-dependent association of phosphatidylinositol 3-kinase with the erbB3 gene product. The Journal of Biological Chemistry, 269(40), 24747–24755.PubMed Kim, H. H., Sierke, S. L., & Koland, J. G. (1994). Epidermal growth factor-dependent association of phosphatidylinositol 3-kinase with the erbB3 gene product. The Journal of Biological Chemistry, 269(40), 24747–24755.PubMed
37.
Zurück zum Zitat Sabbatino, F., Wang, Y., Wang, X., Flaherty, K. T., Yu, L., Pepin, D., et al. (2014). PDGFRalpha up-regulation mediated by sonic hedgehog pathway activation leads to BRAF inhibitor resistance in melanoma cells with BRAF mutation. Oncotarget, 5(7), 1926–1941. doi:10.18632/oncotarget.1878.CrossRefPubMedPubMedCentral Sabbatino, F., Wang, Y., Wang, X., Flaherty, K. T., Yu, L., Pepin, D., et al. (2014). PDGFRalpha up-regulation mediated by sonic hedgehog pathway activation leads to BRAF inhibitor resistance in melanoma cells with BRAF mutation. Oncotarget, 5(7), 1926–1941. doi:10.​18632/​oncotarget.​1878.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Stecca, B., Mas, C., Clement, V., Zbinden, M., Correa, R., Piguet, V., et al. (2007). Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5895–5900. doi:10.1073/pnas.0700776104.CrossRefPubMedPubMedCentral Stecca, B., Mas, C., Clement, V., Zbinden, M., Correa, R., Piguet, V., et al. (2007). Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5895–5900. doi:10.​1073/​pnas.​0700776104.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Villanueva, J., Vultur, A., Lee, J. T., Somasundaram, R., Fukunaga-Kalabis, M., Cipolla, A. K., et al. (2010). Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 18(6), 683–695. doi:10.1016/j.ccr.2010.11.023.CrossRefPubMedPubMedCentral Villanueva, J., Vultur, A., Lee, J. T., Somasundaram, R., Fukunaga-Kalabis, M., Cipolla, A. K., et al. (2010). Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell, 18(6), 683–695. doi:10.​1016/​j.​ccr.​2010.​11.​023.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Vultur, A., Villanueva, J., Krepler, C., Rajan, G., Chen, Q., Xiao, M., et al. (2014). MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines. Oncogene, 33(14), 1850–1861. doi:10.1038/onc.2013.131.CrossRefPubMed Vultur, A., Villanueva, J., Krepler, C., Rajan, G., Chen, Q., Xiao, M., et al. (2014). MEK inhibition affects STAT3 signaling and invasion in human melanoma cell lines. Oncogene, 33(14), 1850–1861. doi:10.​1038/​onc.​2013.​131.CrossRefPubMed
41.
Zurück zum Zitat Wellbrock, C., & Arozarena, I. (2015). Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell & Melanoma Research, 28(4), 390–406. doi:10.1111/pcmr.12370.CrossRef Wellbrock, C., & Arozarena, I. (2015). Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell & Melanoma Research, 28(4), 390–406. doi:10.​1111/​pcmr.​12370.CrossRef
45.
Zurück zum Zitat Huber, W. E., Price, E. R., Widlund, H. R., Du, J., Davis, I. J., Wegner, M., et al. (2003). A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. The Journal of Biological Chemistry, 278(46), 45224–45230. doi:10.1074/jbc.M309036200.CrossRefPubMed Huber, W. E., Price, E. R., Widlund, H. R., Du, J., Davis, I. J., Wegner, M., et al. (2003). A tissue-restricted cAMP transcriptional response: SOX10 modulates alpha-melanocyte-stimulating hormone-triggered expression of microphthalmia-associated transcription factor in melanocytes. The Journal of Biological Chemistry, 278(46), 45224–45230. doi:10.​1074/​jbc.​M309036200.CrossRefPubMed
46.
47.
52.
Zurück zum Zitat Sensi, M., Catani, M., Castellano, G., Nicolini, G., Alciato, F., Tragni, G., et al. (2011). Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase. The Journal of Investigative Dermatology, 131(12), 2448–2457. doi:10.1038/jid.2011.218.CrossRefPubMed Sensi, M., Catani, M., Castellano, G., Nicolini, G., Alciato, F., Tragni, G., et al. (2011). Human cutaneous melanomas lacking MITF and melanocyte differentiation antigens express a functional Axl receptor kinase. The Journal of Investigative Dermatology, 131(12), 2448–2457. doi:10.​1038/​jid.​2011.​218.CrossRefPubMed
55.
Zurück zum Zitat Ueno, Y., Sakurai, H., Tsunoda, S., Choo, M. K., Matsuo, M., Koizumi, K., et al. (2008). Heregulin-induced activation of ErbB3 by EGFR tyrosine kinase activity promotes tumor growth and metastasis in melanoma cells. International Journal of Cancer, 123(2), 340–347. doi:10.1002/ijc.23465.CrossRefPubMed Ueno, Y., Sakurai, H., Tsunoda, S., Choo, M. K., Matsuo, M., Koizumi, K., et al. (2008). Heregulin-induced activation of ErbB3 by EGFR tyrosine kinase activity promotes tumor growth and metastasis in melanoma cells. International Journal of Cancer, 123(2), 340–347. doi:10.​1002/​ijc.​23465.CrossRefPubMed
57.
Zurück zum Zitat Buac, K., Xu, M., Cronin, J., Weeraratna, A. T., Hewitt, S. M., & Pavan, W. J. (2009). NRG1 / ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation. Pigment Cell & Melanoma Research, 22(6), 773–784. doi:10.1111/j.1755-148X.2009.00616.x.CrossRef Buac, K., Xu, M., Cronin, J., Weeraratna, A. T., Hewitt, S. M., & Pavan, W. J. (2009). NRG1 / ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation. Pigment Cell & Melanoma Research, 22(6), 773–784. doi:10.​1111/​j.​1755-148X.​2009.​00616.​x.CrossRef
58.
Zurück zum Zitat Kundu, A., Quirit, J. G., Khouri, M. G., & Firestone, G. L. (2016). Inhibition of oncogenic BRAF activity by indole-3-carbinol disrupts microphthalmia-associated transcription factor expression and arrests melanoma cell proliferation. Molecular Carcinogenesis. doi:10.1002/mc.22472.PubMedCentral Kundu, A., Quirit, J. G., Khouri, M. G., & Firestone, G. L. (2016). Inhibition of oncogenic BRAF activity by indole-3-carbinol disrupts microphthalmia-associated transcription factor expression and arrests melanoma cell proliferation. Molecular Carcinogenesis. doi:10.​1002/​mc.​22472.PubMedCentral
61.
Zurück zum Zitat Biechele, T. L., Kulikauskas, R. M., Toroni, R. A., Lucero, O. M., Swift, R. D., James, R. G., et al. (2012). Wnt/beta-catenin signaling and AXIN1 regulate apoptosis triggered by inhibition of the mutant kinase BRAFV600E in human melanoma. Science Signaling, 5(206), ra3. doi:10.1126/scisignal.2002274.PubMedPubMedCentral Biechele, T. L., Kulikauskas, R. M., Toroni, R. A., Lucero, O. M., Swift, R. D., James, R. G., et al. (2012). Wnt/beta-catenin signaling and AXIN1 regulate apoptosis triggered by inhibition of the mutant kinase BRAFV600E in human melanoma. Science Signaling, 5(206), ra3. doi:10.​1126/​scisignal.​2002274.PubMedPubMedCentral
63.
64.
Zurück zum Zitat Anastas, J. N., Kulikauskas, R. M., Tamir, T., Rizos, H., Long, G. V., von Euw, E. M., et al. (2014). WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. The Journal of Clinical Investigation, 124(7), 2877–2890. doi:10.1172/JCI70156.CrossRefPubMedPubMedCentral Anastas, J. N., Kulikauskas, R. M., Tamir, T., Rizos, H., Long, G. V., von Euw, E. M., et al. (2014). WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors. The Journal of Clinical Investigation, 124(7), 2877–2890. doi:10.​1172/​JCI70156.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Dissanayake, S. K., Olkhanud, P. B., O’Connell, M. P., Carter, A., French, A. D., Camilli, T. C., et al. (2008). Wnt5A regulates expression of tumor-associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation. Cancer Research, 68(24), 10205–10214. doi:10.1158/0008-5472.CAN-08-2149.CrossRefPubMedPubMedCentral Dissanayake, S. K., Olkhanud, P. B., O’Connell, M. P., Carter, A., French, A. D., Camilli, T. C., et al. (2008). Wnt5A regulates expression of tumor-associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation. Cancer Research, 68(24), 10205–10214. doi:10.​1158/​0008-5472.​CAN-08-2149.CrossRefPubMedPubMedCentral
66.
67.
68.
Zurück zum Zitat Ohanna, M., Giuliano, S., Bonet, C., Imbert, V., Hofman, V., Zangari, J., et al. (2011). Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes & Development, 25(12), 1245–1261. doi:10.1101/gad.625811.CrossRef Ohanna, M., Giuliano, S., Bonet, C., Imbert, V., Hofman, V., Zangari, J., et al. (2011). Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes & Development, 25(12), 1245–1261. doi:10.​1101/​gad.​625811.CrossRef
69.
Zurück zum Zitat Hanna, S. C., Krishnan, B., Bailey, S. T., Moschos, S. J., Kuan, P. F., Shimamura, T., et al. (2013). HIF1alpha and HIF2alpha independently activate SRC to promote melanoma metastases. The Journal of Clinical Investigation, 123(5), 2078–2093. doi:10.1172/JCI66715.CrossRefPubMedPubMedCentral Hanna, S. C., Krishnan, B., Bailey, S. T., Moschos, S. J., Kuan, P. F., Shimamura, T., et al. (2013). HIF1alpha and HIF2alpha independently activate SRC to promote melanoma metastases. The Journal of Clinical Investigation, 123(5), 2078–2093. doi:10.​1172/​JCI66715.CrossRefPubMedPubMedCentral
70.
Zurück zum Zitat Shaverdashvili, K., Wong, P., Ma, J., Zhang, K., Osman, I., & Bedogni, B. (2014). MT1-MMP modulates melanoma cell dissemination and metastasis through activation of MMP2 and RAC1. Pigment Cell & Melanoma Research, 27(2), 287–296. doi:10.1111/pcmr.12201.CrossRef Shaverdashvili, K., Wong, P., Ma, J., Zhang, K., Osman, I., & Bedogni, B. (2014). MT1-MMP modulates melanoma cell dissemination and metastasis through activation of MMP2 and RAC1. Pigment Cell & Melanoma Research, 27(2), 287–296. doi:10.​1111/​pcmr.​12201.CrossRef
71.
73.
74.
Zurück zum Zitat Fedorenko, I. V., Abel, E. V., Koomen, J. M., Fang, B., Wood, E. R., Chen, Y. A., et al. (2016). Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene, 35(10), 1225–1235. doi:10.1038/onc.2015.188.CrossRefPubMed Fedorenko, I. V., Abel, E. V., Koomen, J. M., Fang, B., Wood, E. R., Chen, Y. A., et al. (2016). Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene, 35(10), 1225–1235. doi:10.​1038/​onc.​2015.​188.CrossRefPubMed
77.
Zurück zum Zitat Ngiow, S. F., Meeth, K. M., Stannard, K., Barkauskas, D. S., Bollag, G., Bosenberg, M., et al. (2016). Co-inhibition of colony stimulating factor-1 receptor and BRAF oncogene in mouse models of BRAFV600E melanoma. Oncoimmunology, 5(3), e1089381. doi:10.1080/2162402X.2015.1089381.CrossRefPubMed Ngiow, S. F., Meeth, K. M., Stannard, K., Barkauskas, D. S., Bollag, G., Bosenberg, M., et al. (2016). Co-inhibition of colony stimulating factor-1 receptor and BRAF oncogene in mouse models of BRAFV600E melanoma. Oncoimmunology, 5(3), e1089381. doi:10.​1080/​2162402X.​2015.​1089381.CrossRefPubMed
81.
Zurück zum Zitat Liu, C., Peng, W., Xu, C., Lou, Y., Zhang, M., Wargo, J. A., et al. (2013). BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clinical Cancer Research, 19(2), 393–403. doi:10.1158/1078-0432.CCR-12-1626.CrossRefPubMed Liu, C., Peng, W., Xu, C., Lou, Y., Zhang, M., Wargo, J. A., et al. (2013). BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clinical Cancer Research, 19(2), 393–403. doi:10.​1158/​1078-0432.​CCR-12-1626.CrossRefPubMed
84.
Zurück zum Zitat Minor, D. R., Puzanov, I., Callahan, M. K., Hug, B. A., & Hoos, A. (2015). Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab. Pigment Cell & Melanoma Research, 28(5), 611–612. doi:10.1111/pcmr.12383.CrossRef Minor, D. R., Puzanov, I., Callahan, M. K., Hug, B. A., & Hoos, A. (2015). Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab. Pigment Cell & Melanoma Research, 28(5), 611–612. doi:10.​1111/​pcmr.​12383.CrossRef
85.
Zurück zum Zitat Ribas, A., Hodi, F. S., Callahan, M., Konto, C., & Wolchok, J. (2013). Hepatotoxicity with combination of vemurafenib and ipilimumab. The New England Journal of Medicine, 368(14), 1365–1366. doi:10.1056/NEJMc1302338.CrossRefPubMed Ribas, A., Hodi, F. S., Callahan, M., Konto, C., & Wolchok, J. (2013). Hepatotoxicity with combination of vemurafenib and ipilimumab. The New England Journal of Medicine, 368(14), 1365–1366. doi:10.​1056/​NEJMc1302338.CrossRefPubMed
Metadaten
Titel
Crosstalk signaling in targeted melanoma therapy
verfasst von
Svenja Meierjohann
Publikationsdatum
14.02.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2017
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9659-z

Weitere Artikel der Ausgabe 1/2017

Cancer and Metastasis Reviews 1/2017 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.