Skip to main content
Erschienen in: Der Nervenarzt 9/2019

19.08.2019 | Demenz | Leitthema

Neuroinflammation als Motor der Alzheimer-Erkrankung

verfasst von: Sergio Castro-Gomez, Julius Binder, Prof. Dr. Michael T. Heneka

Erschienen in: Der Nervenarzt | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die sporadische Alzheimer-Krankheit ist die häufigste neurodegenerative Erkrankung und stellt ein sehr relevantes Problem der öffentlichen Gesundheitsversorgung mit einer verheerenden wirtschaftlichen Belastung für die Industrieländer dar. Neue Erkenntnisse aus experimentellen, epidemiologischen, bildmorphologischen und genomweiten Assoziationsstudien („genome wide association studies“, GWAS) unterstreichen die Rolle des angeborenen Immunsystems in der Pathophysiologie dieser Krankheit. Im folgenden Artikel werden die neu entdeckten krankheitsassoziierten Gene sowie die experimentellen Beweise für die Rolle der Mikrogliazellen bei der Entstehung des Fortschreitens der Alzheimer-Krankheit diskutiert und zusammengefasst. Die Entdeckung verschiedener pathologieassoziierten Mikrogliaphänotypen sowie neuer molekularer Akteure wird die Entwicklung neuer präventiver und therapeutischer Strategien durch die Modulation der Neuroinflammation bei neurodegenerativen Erkrankungen ermöglichen.
Literatur
1.
2.
Zurück zum Zitat Kierdorf K et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways. Nat Neurosci 16:273–280CrossRefPubMed Kierdorf K et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1-and Irf8-dependent pathways. Nat Neurosci 16:273–280CrossRefPubMed
3.
Zurück zum Zitat Askew K et al (2017) Coupled proliferation and Apoptosis maintain the rapid turnover of Microglia in the adult brain. Cell Rep 18:391–405CrossRefPubMedPubMedCentral Askew K et al (2017) Coupled proliferation and Apoptosis maintain the rapid turnover of Microglia in the adult brain. Cell Rep 18:391–405CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Benarroch EE (2013) Microglia: Multiple roles in surveillance, circuit shaping, and response to injury. Baillieres Clin Neurol 81:1079–1088 Benarroch EE (2013) Microglia: Multiple roles in surveillance, circuit shaping, and response to injury. Baillieres Clin Neurol 81:1079–1088
5.
Zurück zum Zitat Pierre WC et al (2017) Neonatal microglia: the cornerstone of brain fate. Brain Behav Immun 59:333–345CrossRefPubMed Pierre WC et al (2017) Neonatal microglia: the cornerstone of brain fate. Brain Behav Immun 59:333–345CrossRefPubMed
6.
Zurück zum Zitat Parkhurst CN et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609CrossRefPubMedPubMedCentral Parkhurst CN et al (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596–1609CrossRefPubMedPubMedCentral
7.
8.
Zurück zum Zitat Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) VIEWPOINT an English translation of alzheimer’s 1907 paper „Über eine eigenartige Erkrankung der Hirnrinde“. Clin Anat 8:429–443CrossRefPubMed Stelzmann RA, Schnitzlein HN, Murtagh FR (1995) VIEWPOINT an English translation of alzheimer’s 1907 paper „Über eine eigenartige Erkrankung der Hirnrinde“. Clin Anat 8:429–443CrossRefPubMed
10.
Zurück zum Zitat Wang J et al (2015) Anti-inflammatory drugs and risk of alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimer’s Dis 44:385–396CrossRef Wang J et al (2015) Anti-inflammatory drugs and risk of alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimer’s Dis 44:385–396CrossRef
11.
Zurück zum Zitat I. TJ, E. EW, S. DM, L. KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304:1787–1794CrossRef I. TJ, E. EW, S. DM, L. KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304:1787–1794CrossRef
14.
Zurück zum Zitat Kwiatek-Majkusiak J et al (2015) Relationships between typical histopathological hallmarks and the ferritin in the hippocampus from patients with Alzheimer’s disease. Acta Neurobiol Exp (wars) 75:391–398 Kwiatek-Majkusiak J et al (2015) Relationships between typical histopathological hallmarks and the ferritin in the hippocampus from patients with Alzheimer’s disease. Acta Neurobiol Exp (wars) 75:391–398
15.
Zurück zum Zitat Zeineh MM et al (2015) Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease. Neurobiol Aging 36:2483–2500CrossRefPubMedPubMedCentral Zeineh MM et al (2015) Activated iron-containing microglia in the human hippocampus identified by magnetic resonance imaging in Alzheimer disease. Neurobiol Aging 36:2483–2500CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Cosenza-Nashat M et al (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35:306–328CrossRefPubMed Cosenza-Nashat M et al (2009) Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 35:306–328CrossRefPubMed
17.
Zurück zum Zitat Kreisl WC et al (2013) In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 136:2228–2238CrossRefPubMedPubMedCentral Kreisl WC et al (2013) In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain 136:2228–2238CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Kunkle BW et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51:414–430CrossRefPubMedPubMedCentral Kunkle BW et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51:414–430CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Jansen IE et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51:404–413CrossRefPubMedPubMedCentral Jansen IE et al (2019) Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet 51:404–413CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Lambert JC et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458CrossRefPubMedPubMedCentral Lambert JC et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Huang K et al (2017) A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci 20:1052–1061CrossRefPubMedPubMedCentral Huang K et al (2017) A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat Neurosci 20:1052–1061CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Guerreiro R et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127CrossRefPubMed Guerreiro R et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127CrossRefPubMed
24.
Zurück zum Zitat Jonsson T et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116CrossRefPubMed Jonsson T et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116CrossRefPubMed
26.
Zurück zum Zitat Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, Kunkle BW, Boland A, Raybould R, Bis JC, Martin ER, Grenier-Boley B, Heilmann-Heimbach S, Chouraki V, Kuzma AB, Sleegers K, Vronskaya M, Ruiz A, Graham RR, Olaso R, Hoffmann P (2017) S. G. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. https://doi.org/10.1038/ng.3916 CrossRefPubMedPubMedCentral Sims R, van der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J, Kunkle BW, Boland A, Raybould R, Bis JC, Martin ER, Grenier-Boley B, Heilmann-Heimbach S, Chouraki V, Kuzma AB, Sleegers K, Vronskaya M, Ruiz A, Graham RR, Olaso R, Hoffmann P (2017) S. G. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet. https://​doi.​org/​10.​1038/​ng.​3916 CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Huang Y, Weisgraber KH, Mucke L, Mahley RW (2004) Apolipoprotein E. J Mol Neurosci 23:189–204CrossRefPubMed Huang Y, Weisgraber KH, Mucke L, Mahley RW (2004) Apolipoprotein E. J Mol Neurosci 23:189–204CrossRefPubMed
28.
Zurück zum Zitat Keren-shaul H et al (2017) A unique Microglia type associated with restricting development of alzheimer’s disease article A unique Microglia type associated with restricting development of alzheimer’s disease. Cell 169(7):1276–1290.e1CrossRefPubMed Keren-shaul H et al (2017) A unique Microglia type associated with restricting development of alzheimer’s disease article A unique Microglia type associated with restricting development of alzheimer’s disease. Cell 169(7):1276–1290.e1CrossRefPubMed
29.
Zurück zum Zitat Krasemann S et al (2017) The TREM2-APOE pathway drives the Transcriptional phenotype of dysfunctional Microglia in Neurodegenerative diseases. Immunity 47:566–581.e9CrossRefPubMedPubMedCentral Krasemann S et al (2017) The TREM2-APOE pathway drives the Transcriptional phenotype of dysfunctional Microglia in Neurodegenerative diseases. Immunity 47:566–581.e9CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Dickson DW et al (1988) Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol 132:86–101PubMedPubMedCentral Dickson DW et al (1988) Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol 132:86–101PubMedPubMedCentral
32.
Zurück zum Zitat Martin E, Boucher C, Fontaine B, Delarasse C (2017) Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer’s disease models: effects of aging and amyloid pathology. Aging Cell 16:27–38CrossRefPubMed Martin E, Boucher C, Fontaine B, Delarasse C (2017) Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer’s disease models: effects of aging and amyloid pathology. Aging Cell 16:27–38CrossRefPubMed
33.
Zurück zum Zitat Venegas C, Heneka MT (2017) Danger-associated molecular patterns in Alzheimer’s disease. J Leukoc Biol 101:87–98CrossRefPubMed Venegas C, Heneka MT (2017) Danger-associated molecular patterns in Alzheimer’s disease. J Leukoc Biol 101:87–98CrossRefPubMed
34.
Zurück zum Zitat Du Yan S et al (1996) RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691CrossRefPubMed Du Yan S et al (1996) RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 382:685–691CrossRefPubMed
35.
Zurück zum Zitat Landreth GE, Reed-geaghan EG (2009) Toll-like receptors: roles in infection and neuropathology Bd. 336. Springer, Berlin Heidelberg Landreth GE, Reed-geaghan EG (2009) Toll-like receptors: roles in infection and neuropathology Bd. 336. Springer, Berlin Heidelberg
36.
Zurück zum Zitat El Khoury J et al (1996) Scavenger receptor-mediated adhesion of microglia to β‑amyloid fibrils. Nature 382:716–719CrossRefPubMed El Khoury J et al (1996) Scavenger receptor-mediated adhesion of microglia to β‑amyloid fibrils. Nature 382:716–719CrossRefPubMed
37.
Zurück zum Zitat Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 23:2665–2674CrossRefPubMedPubMedCentral Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neurosci 23:2665–2674CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Sheedy FJ et al (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14:812–820CrossRefPubMedPubMedCentral Sheedy FJ et al (2013) CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol 14:812–820CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Venegas C et al (2017) Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552:355–361CrossRefPubMed Venegas C et al (2017) Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552:355–361CrossRefPubMed
41.
44.
Zurück zum Zitat Füger P et al (2017) Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci 20:1371–1376CrossRefPubMed Füger P et al (2017) Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci 20:1371–1376CrossRefPubMed
45.
Zurück zum Zitat Olmos-Alonso A et al (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139:891–907CrossRefPubMedPubMedCentral Olmos-Alonso A et al (2016) Pharmacological targeting of CSF1R inhibits microglial proliferation and prevents the progression of Alzheimer’s-like pathology. Brain 139:891–907CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Kamphuis W, Orre M, Kooijman L, Dahmen M, Hol EM (2012) Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer’s disease mouse model. Glia 60:615–629CrossRefPubMed Kamphuis W, Orre M, Kooijman L, Dahmen M, Hol EM (2012) Differential cell proliferation in the cortex of the APPswePS1dE9 Alzheimer’s disease mouse model. Glia 60:615–629CrossRefPubMed
47.
Zurück zum Zitat Frank S, Copanaki E, Burbach GJ, Müller UC, Deller T (2009) Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice. Neurosci Lett 453:41–44CrossRefPubMed Frank S, Copanaki E, Burbach GJ, Müller UC, Deller T (2009) Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice. Neurosci Lett 453:41–44CrossRefPubMed
49.
Zurück zum Zitat Reed-Geaghan EG, Reed QW, Cramer PE, Landreth GE (2010) Deletion of CD14 attenuates alzheimer’s disease pathology by influencing the brain’s inflammatory milieu. J Neurosci 30:15369–15373CrossRefPubMedPubMedCentral Reed-Geaghan EG, Reed QW, Cramer PE, Landreth GE (2010) Deletion of CD14 attenuates alzheimer’s disease pathology by influencing the brain’s inflammatory milieu. J Neurosci 30:15369–15373CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Wang YL et al (2013) Toll-like receptor 9 promoter polymorphism is associated with decreased risk of Alzheimer’s disease in Han Chinese. J Neuroinflammation 10:1–5CrossRef Wang YL et al (2013) Toll-like receptor 9 promoter polymorphism is associated with decreased risk of Alzheimer’s disease in Han Chinese. J Neuroinflammation 10:1–5CrossRef
51.
Zurück zum Zitat Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093CrossRefPubMedPubMedCentral Harold D et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 41:1088–1093CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Lambert JC et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099CrossRefPubMed Lambert JC et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099CrossRefPubMed
53.
Zurück zum Zitat Hong S et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 80(352):712–716CrossRef Hong S et al (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 80(352):712–716CrossRef
55.
Zurück zum Zitat Griffin WST, Mrak RE (2002) Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 72:233–238PubMed Griffin WST, Mrak RE (2002) Interleukin-1 in the genesis and progression of and risk for development of neuronal degeneration in Alzheimer’s disease. J Leukoc Biol 72:233–238PubMed
56.
Zurück zum Zitat Ghosh S et al (2013) Sustained Interleukin-1 Overexpression exacerbates tau pathology despite reduced Amyloid burden in an alzheimer’s mouse model. J Neurosci 33:5053–5064CrossRefPubMedPubMedCentral Ghosh S et al (2013) Sustained Interleukin-1  Overexpression exacerbates tau pathology despite reduced Amyloid burden in an alzheimer’s mouse model. J Neurosci 33:5053–5064CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Chakrabarty P et al (2009) Massive gliosis induced by interleukin-6 suppresses Aβ deposition in vivo : evidence against inflammation as a driving force for amyloid deposition. Faseb J 24:548–559CrossRefPubMed Chakrabarty P et al (2009) Massive gliosis induced by interleukin-6 suppresses Aβ deposition in vivo : evidence against inflammation as a driving force for amyloid deposition. Faseb J 24:548–559CrossRefPubMed
58.
Zurück zum Zitat Chakrabarty P et al (2010) IFN- promotes complement expression and attenuates Amyloid plaque deposition in Amyloid precursor protein Transgenic mice. J Immunol 184:5333–5343CrossRefPubMed Chakrabarty P et al (2010) IFN-  promotes complement expression and attenuates Amyloid plaque deposition in Amyloid   precursor protein Transgenic mice. J Immunol 184:5333–5343CrossRefPubMed
59.
Zurück zum Zitat Montgomery SL et al (2011) Ablation of TNF-RI/RII expression in Alzheimer’s disease mice leads to an unexpected enhancement of pathology: Implications for chronic pan-TNF-α suppressive therapeutic strategies in the brain. Am J Pathol 179:2053–2070CrossRefPubMedPubMedCentral Montgomery SL et al (2011) Ablation of TNF-RI/RII expression in Alzheimer’s disease mice leads to an unexpected enhancement of pathology: Implications for chronic pan-TNF-α suppressive therapeutic strategies in the brain. Am J Pathol 179:2053–2070CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Vom Berg J et al (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s diseasea-like pathology and cognitive decline. Nat Med 18:1812–1819CrossRefPubMed Vom Berg J et al (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s diseasea-like pathology and cognitive decline. Nat Med 18:1812–1819CrossRefPubMed
61.
Zurück zum Zitat Zetterberg H, Andreasen N, Blennow K (2004) Increased cerebrospinal fluid levels of transforming growth factor-β1 in Alzheimer’s disease. Neurosci Lett 367:194–196CrossRefPubMed Zetterberg H, Andreasen N, Blennow K (2004) Increased cerebrospinal fluid levels of transforming growth factor-β1 in Alzheimer’s disease. Neurosci Lett 367:194–196CrossRefPubMed
62.
Zurück zum Zitat Tesseur I et al (2006) Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069CrossRefPubMedPubMedCentral Tesseur I et al (2006) Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Chakrabarty P et al (2015) IL-10 alters Immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85:519–533CrossRefPubMedPubMedCentral Chakrabarty P et al (2015) IL-10 alters Immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85:519–533CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Ulland TK, Colonna M (2018) TREM2—a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14:667–675CrossRefPubMed Ulland TK, Colonna M (2018) TREM2—a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14:667–675CrossRefPubMed
65.
Zurück zum Zitat Hsieh CL et al (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109:1144–1156CrossRefPubMedPubMedCentral Hsieh CL et al (2009) A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J Neurochem 109:1144–1156CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Gurvit H et al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra86–243ra86CrossRefPubMed Gurvit H et al (2014) TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 6:243ra86–243ra86CrossRefPubMed
70.
71.
72.
Zurück zum Zitat Jiang T et al (2015) Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiol Aging 36:3176–3186CrossRefPubMed Jiang T et al (2015) Silencing of TREM2 exacerbates tau pathology, neurodegenerative changes, and spatial learning deficits in P301S tau transgenic mice. Neurobiol Aging 36:3176–3186CrossRefPubMed
73.
Zurück zum Zitat Cronk JC et al (2018) Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 215:1627–1647CrossRefPubMedPubMedCentral Cronk JC et al (2018) Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 215:1627–1647CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Marsh SE et al (2016) The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc Natl Acad Sci U S A 113:E1316–E1325CrossRefPubMedPubMedCentral Marsh SE et al (2016) The adaptive immune system restrains Alzheimer’s disease pathogenesis by modulating microglial function. Proc Natl Acad Sci U S A 113:E1316–E1325CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Katsimpardi L et al (2014) Vascular and Neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 80(344):630–634CrossRef Katsimpardi L et al (2014) Vascular and Neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 80(344):630–634CrossRef
76.
Zurück zum Zitat Domercq M, Vazquez-Villoldo N, Matute C (2013) Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci 7:1–17 Domercq M, Vazquez-Villoldo N, Matute C (2013) Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci 7:1–17
77.
Zurück zum Zitat Kim TS et al (2008) Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 436:196–200CrossRefPubMed Kim TS et al (2008) Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 436:196–200CrossRefPubMed
79.
Zurück zum Zitat Heneka MT et al (2010) Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 107:6058–6063CrossRefPubMedPubMedCentral Heneka MT et al (2010) Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 107:6058–6063CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Martorell AJ et al (2019) Multi-sensory gamma stimulation ameliorates alzheimer’s-associated pathology and improves cognition. Cell 177:256–271.e22CrossRefPubMedPubMedCentral Martorell AJ et al (2019) Multi-sensory gamma stimulation ameliorates alzheimer’s-associated pathology and improves cognition. Cell 177:256–271.e22CrossRefPubMedPubMedCentral
Metadaten
Titel
Neuroinflammation als Motor der Alzheimer-Erkrankung
verfasst von
Sergio Castro-Gomez
Julius Binder
Prof. Dr. Michael T. Heneka
Publikationsdatum
19.08.2019
Verlag
Springer Medizin
Erschienen in
Der Nervenarzt / Ausgabe 9/2019
Print ISSN: 0028-2804
Elektronische ISSN: 1433-0407
DOI
https://doi.org/10.1007/s00115-019-0778-3

Weitere Artikel der Ausgabe 9/2019

Der Nervenarzt 9/2019 Zur Ausgabe

Einführung zum Thema

Quo vadis Alzheimer?

Mitteilungen der DGPPN

Mitteilungen der DGPPN 9/2019

Neu in den Fachgebieten Neurologie und Psychiatrie

Chirurginnen und Chirurgen sind stark suizidgefährdet

07.05.2024 Suizid Nachrichten

Der belastende Arbeitsalltag wirkt sich negativ auf die psychische Gesundheit der Angehörigen ärztlicher Berufsgruppen aus. Chirurginnen und Chirurgen bilden da keine Ausnahme, im Gegenteil.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

„Restriktion auf vier Wochen Therapie bei Schlaflosigkeit ist absurd!“

06.05.2024 Insomnie Nachrichten

Chronische Insomnie als eigenständiges Krankheitsbild ernst nehmen und adäquat nach dem aktuellen Forschungsstand behandeln: Das forderte der Schlafmediziner Dr. Dieter Kunz von der Berliner Charité beim Praxis Update.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.