Skip to main content
Erschienen in: Journal of Medical Case Reports 1/2016

Open Access 01.12.2016 | Case report

Desmoid-type fibromatosis of the head and neck in children: a case report and review of the literature

verfasst von: Hidetaka Miyashita, Seiji Asoda, Tomoya Soma, Kanako Munakata, Masaki Yazawa, Taneaki Nakagawa, Hiromasa Kawana

Erschienen in: Journal of Medical Case Reports | Ausgabe 1/2016

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Desmoid-type fibromatosis is defined as an intermediate tumor that rarely occurs in the head and neck of children. There is no doubt as to the value of complete surgical excision for desmoid-type fibromatosis. However, in pediatric patients, surgeons may often be concerned about making a wide excision because of the potential for functional morbidity. Some studies have reported a lack of correlation between margin status and recurrence. Therefore, we discussed our findings with a focus on the state of surgical margins.

Case presentation

We report an unusual case of a 9-month-old Japanese girl who prior to presenting at our hospital underwent debulking surgery twice with chemotherapy for desmoid-type fibromatosis of the tongue at another hospital. We performed a partial glossectomy and simultaneous reconstruction with local flap and achieved microscopic complete resection. We also reviewed available literature of pediatric desmoid-type fibromatosis in the head and neck.

Conclusions

We described successful treatment for the refractory case of pediatric desmoid-type fibromatosis. The review results showed that some microscopic incomplete resections of tumors in pediatric patients with desmoid-type fibromatosis tended to be acceptable with surgical treatment.

Background

According to the World Health Organization’s classification of head and neck tumors [1], desmoid-type fibromatosis (DF) is defined as a borderline tumor of soft tissues that has low malignant potential. DF is characterized by local aggressiveness with an approximate 20 % local recurrence rate, but without metastasis [1]. The annual incidence of DF is presumed to be 0.2 to 0.4 per 100,000 individuals [2]. Among cases of DF, 7 to 15 % of tumors occur in the head and neck [1, 3, 4]. A paper on the European Organisation for Research and Treatment of Cancer (EORTC)/Soft Tissue and Bone Sarcoma Group’s position on DF reported that a “watch and wait strategy” is the first choice in the treatment of DF in all populations and that resection with a clear margin should be considered to be a treatment option if postoperative morbidity is acceptable [5]. Although complete resection (negative microscopic margin; CR) of the tumor is thought to be the reference standard for successful treatment in patients with DF uncontrolled by other treatment approaches, resection in the head and neck region is often difficult because of the presence of vital structures [6]. This problem is worse in pediatric patients. In pediatric patients with DF uncontrolled by non-surgical treatments, surgeons sometimes are concerned about performing wide resections because of the high potential of postoperative morbidity. When a large tumor exists close to a vital structure, surgery with an adequate safety margin may be challenging. Although some successful cases with incomplete resection or without surgery have been reported [712], a randomized trial of treatment strategies has not yet been reported.
In our view, many surgeons have limited experience on how to decide on performing ablation in pediatric patients with DF. Thus, we reviewed the available literature to determine various factors that could influence treatment decisions in pediatric DF. In particular, we focused on the correlation between margin status and disease condition and if there are differences in disease condition between microscopic incomplete resection (microscopic positive margin but no remaining gross tumor; MIR) and gross incomplete resection. As part of our study, we included a case involving a 9-month-old Japanese girl with DF of the tongue who was surgically treated at our oral and maxillofacial surgery division.

Case presentation

A 9-month-old Japanese girl was referred to our hospital because of a growing tumor on her tongue. Her family noted the mass in her tongue at the age of 3 months. She twice underwent debulking surgery with medical treatment, involving NSAIDs, vinblastine plus methotrexate, and vinblastine plus actinomycin-d at another hospital. The analysis of a resected specimen led to the diagnosis of DF at the age of 7 months. However, the tumor was not controlled. When she was brought to our hospital, the tumor rapidly increased, and a portion popped out of her mouth (Fig. 1). She could not close her mouth completely, but swallowing dysfunction and upper respiratory infection was not observed. Her swallowing function was complemented by trick motion of the unaffected side. She had no history of any disorders associated with DF. A whole body computed tomography examination revealed no signs of any other tumoral lesions. On the basis of radiological examinations and the clinical course, we made the decision to perform radical surgery. Magnetic resonance imaging (MRI) with contrast enhancement showed the mass (Fig. 2). A partial glossectomy with a 5-mm safety margin and simultaneous reconstruction with a local flap were performed under general anesthesia (Fig. 3). After excision, primary wound closure was performed without any graft while being careful to preserve postoperative function. We confirmed a microscopic CR in a pathological examination of the surgical specimen. Her postoperative progress was extremely good, and no functional morbidity, such as eating dysfunction or dysphonia, was observed. She had no indication of recurrence after a year (Fig. 4).

Discussion

We performed a review of the literature by searching PubMed and using the keywords “desmoid,” “fibromatosis,” and “pediatric.” We found 97 articles from 1982 to 2015 when we searched cross-sectionally. The established exclusion criteria were as follows: details in individual cases not described, patients who were >19-years old, reports not written in English, and tumor sites not in the head and neck. We examined the following factors in all cases: age, sex, tumor site, tumor size, treatment, margin status, recurrence, complication, disease condition, and follow-up duration. The descriptive terms of incomplete resection (MIR), residual tumor, positive, and CR, which relate to margin status, were defined as follows: MIR, microscopic positive margin but no remaining gross tumor; residual tumor, remaining gross tumor; positive, positive resection margin, but we could not determine if it was MIR or a residual tumor; CR, negative microscopic margin; and NR, data not shown. The cases were reviewed in detail and are discussed in this case report.
We identified 141 patients with DF in the head and neck [7, 8, 1372]. Age at diagnosis ranged from birth to 18 years, and the mean age was 4 years 3 months. The sex of the patient was reported in 92 % of all cases (67 males and 63 females). Regarding the tumor sites, a majority of tumors arose from the mandible (25 %). Other sites were as follows: submandibular area, infratemporal fossa, neck, peritracheal area, and paraspinal area. A list of tumor sites is presented in Table 1. We were able to identify the tumor size in 78 (55 %) patients. The average tumor size was 43.6 mm (range, 5 to 100 mm). Surgery was performed in 125 (88.6 %) patients during the treatment period, and the remaining patients were treated only with chemotherapy (12 patients), the watch and wait strategy (3 patients), or a combination of radiation and chemotherapy (1 patient). Margin status was identified in 78 (62.4 %) of the 125 patients. The number of patients who had MIR, residual tumors, positive status, and CRs was 24, 19, 19, and 16, respectively. Recurrence was observed in 34 (27.2 %) of the 125 patients with surgery. The most common margin status was residual, which was observed in 14 patients. The number of patients who had positive status, MIR, CR, and NR was 7, 8, 1, and 4, respectively (Fig. 5). Postoperative complications were identified in detail in 13 patients. Trismus was the most common complication (n=6). Two patients experienced secondary papillary carcinoma due to radiation therapy. Osteomyelitis (n=2), slight ptosis due to a sectioned facial nerve (n=1), restrictive neck movement (n=1), and Claude–Bernard–Horner syndrome (n=1) were confirmed. The disease condition was identified in 126 of the 140 patients (Fig. 6). Details were not reported for 15 patients. Ninety-seven patients showed no evidence of disease (NED). Stable disease (SD), partial response (PR), progressive disease (PD), and death occurred in 15, 6, 5, and 3 patients, respectively. The average follow-up duration was 53.3 months (range, 2 to 298 months).
Table 1
Primary tumor sites
Location of tumors
The number of patients
Mandible
35 (2)
Submandibular area
22 (2)
Neck
13 (5)
Tongue
12 (3)
Cervical paraspinal area
8 (7)
Infratemporal fossa
8 (3)
Parapharyngeal space
7 (1)
Maxilla
7 (2)
Peritracheal area
3 (3)
Paranasal sinus (ethmoidal, sphenoid)
3 (1)
Floor of mouth
2 (1)
Forehead skin
2
Lip
2
Parotid gland
2
Parietal
2
Nuchal area
2 (1)
Cervicothoracic
1 (1)
Suprahyoid
1 (1)
Canthus
1
Cheek
1
Hypoglossal
1
Oropharynx
1 (1)
Hypopharynx
1
Orbit
1
Periorbital
1
Submental
1
Scalp skin
1
The numbers within parentheses are the numbers of recurrences in patients with surgery
The most common tumor site in the recurrent patients was the cervical paraspinal region (seven patients). The next most common tumor site was the neck (five patients). Other sites we could identify were as follows: peritracheal area, infratemporal fossa, submandibular area, and tongue. All tumor sites in the recurrent patients are shown in Table 1. The recurrence rates for each margin status were MIR, 7 (29.1 %) of 24; residual, 14 (73.6 %) of 19; positive, 8 (42.1 %) of 19; and CR, 1 (6.2 %) of 16 patients (Fig. 7). There were 29 patients with positive margins without recurrence; “positive” status as used here includes MIR, residual, and positive status. Adjuvant therapies for these patients were as follows. In the case of MIR without recurrence (n=15), observation (n=9), chemotherapy (n=4), and radiation (n=2) were performed. In the case of residual tumors without recurrence (n=4), all patients spontaneously regressed. In positive patients without recurrence (n=10), observation (n=3), only chemotherapy (n=5), and administration of NSAIDs plus chemotherapy (n=2) were performed.
In recurrent patients, the relationship between margin status (n=31) and disease condition was confirmed as follows (Fig. 8). In the case of MIR (n=7), six (85.7 %) of seven patients had NED because second surgeries had been performed. One of the seven patients with SD was treated only with chemotherapy. In the case of residual tumors (n=14), there were two patients with NED, seven with SD, two with PR, two with PD, and one who died. Only 14.2 % of the patients showed controlled NED. In the case of positive status (n=9), there were two patients with NED, five with SD, one with PD, and one who died. There was NED in 11.1 % of the patients. The patient having CR with recurrence (n=1) had controlled NED. The patients having MIR (85.7 %) and CR (100 %) with recurrence had high rates of NED. It is notable that all recurrent patients with controlled NED were rescued by second surgery.
The number of patients for each disease condition in all recurrent patients (n=34) with surgery was 14 with NED, 13 with SD, 2 with PR, 3 with PD, and 2 who died (Fig. 5). Of all recurrent patients with surgery, 41.1 % had controlled NED. Consequently, in all cases in which surgery was performed, 91 (72.8 %) patients had controlled NED. The mean follow-up duration for patients with surgery was 53.3 months. The result of our literature review was summarized in Table 2.
Table 2
The results of literature review
Summary of literature review
The number of patients
141
Mean age (years)
4.3
Gender
 Male
67
 Female
63
 NR
11
Treatment
 With surgery
125
 Without surgery
16
Recurrence rate (%) in patients with surgery
27.2
Average follow-up duration (months)
53.3
Abstraction of principal information
1. In the margin positive patients (N=62), 29 patients did not show recurrence. After initial surgery, 16 of them did not need additional treatment.
2. In the patients having MIR, the recurrence rate (29.1 %) is lower and the NED rate (85.7 %) is higher than other margin positive status.
3. In the recurrent patients who had NED, all of them were treated with second surgery.
4. We identified postoperative complications in detail in 13 patients including radiation-induced secondary papillary carcinoma.
MIR microscopic incomplete resection, NED no evidence of disease, NR no report
The main finding of our study was that the tumor control rate tended to be high in cases of MIR. Moreover, there were 29 margin-positive patients who were without recurrence. A majority of these patients had MIR (n=15), and 15 (62.5 %) of 24 patients with MIR did not show recurrence. In our view, these results suggest that a finding of MIR could be acceptable during local aggressive DF treatment in children. A paper on EORTC’s position on DF in all populations [5] proposed that if positive microscopic surgical margins were found at a pathological examination, no further treatment should be considered. Our review results supported this position in pediatric patients with head and neck DF. Wide resection may induce long-term functional morbidity, especially in children, and may require reconstruction. Even though microvascular reconstruction is useful in pediatric patients for well-experienced surgeons [73, 74], the decision to proceed with wide resection should be carefully considered; the results of this study may be useful when making decisions in such cases.
If progression occurs after the watch and wait strategy has been pursued, medical therapy is clearly recommended in patients with head and neck DF according to the paper on EORTC’s position [5]. However, a standard treatment is yet to be established. Previous prospective studies in pediatric patients with DF, including a phase II trial of vinblastine plus methotrexate and tamoxifen plus NSAIDs, have reported that the CR and PR rates were 19.2 % and 8 %, respectively [75, 76]. Even when CRs are included, the total response rate is insufficient. The restrictive effectiveness of chemotherapy regimens, such as liposomal doxorubicin, anthracycline-based regimen, imatinib, and sorafenib, in the total population has been confirmed [7780]. However, no high-grade evidence study (that is, a randomized phase III trial) has been reported. In the present study, in only one patient, chemotherapy using Adriamycin (doxorubicin) and dacarbazine achieved CR. Furthermore, in the recurrent patients, there were none with controlled NED who had been treated only with subsequent chemotherapy. They were rescued by second surgery. Therefore, at present, the therapeutic effect of chemotherapy may be limited in pediatric DF treatment. A randomized trial would be needed to confirm the efficacy of chemotherapy in pediatric DF treatment.
Although previous reports have indicated that treatments with surgery and radiotherapy in all populations improve the progression-free survival rate relative to that of surgery alone [3, 81], the use of radiotherapy during DF treatment is controversial. However, in pediatric patients, radiotherapy may be less available because of late adverse effects and lower effectiveness. Side effects including secondary carcinoma related to radiotherapy for DF in pediatric and young-adult patients have been reported [53, 82]. A medium-sized retrospective study involving 30 patients in a single institution who were treated with radiotherapy for pediatric and young-adult DF reported a lower regional control rate for patients who were <18-years old (20 %) than for those who were 18 to 30-years old (63 %) [53]. In the present study, 13 patients received radiotherapy, and complications were identified in three patients: two patients developed secondary papillary thyroid cancer after total doses of 55 Gy and 50 to 60 Gy (not specified), and one developed osteoradionecrosis after a total dose of 55 Gy. There is no clearly standardized evidence-based radiation strategy for pediatric head and neck DF. Some refractory patients may need radiation therapy. However, it may not be reasonable to routinely consider radiotherapy for pediatric patients with DF having positive margins.

Conclusions

The present study cannot provide the same level of evidence as could be obtained in a prospective study, and no single institution retrospective studies were included in the review because details were lacking. However, we believe that the collected results can be helpful in making treatment decisions, especially those involving surgery, in pediatric patients with DF. In summary, microscopic positive margins in pediatric DF did not always lead to an uncontrolled condition. In some patients, such findings appeared to be acceptable in pediatric patients with local aggressive DF. Nevertheless, further evidence-based approaches are needed before DF treatment strategies can be standardized.

Abbreviations

CR, complete resection; DF, desmoid-type fibromatosis; EORTC, European Organisation for Research and Treatment of Cancer; MIR, microscopic incomplete resection; MRI, magnetic resonance imaging; NED, no evidence of disease; NR, data not shown; PD, progressive disease; PR, partial response; SD, stable disease

Authors’ contributions

HK and HM drafted and critically reviewed the manuscript. HK, HM, and MY performed the operation and clinical follow-up of the patient. TS and KM contributed to data collection and literature search. SA and TN conceived of the study and participated in its design. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Written informed consent was obtained from the patient’s legal guardians for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Barnes L, Eveson JW, Reichart P, Sidransky D. World Health Organization classification of tumors. Pathology and genetics of head and neck tumors. Lyon: IARC; 2005. Barnes L, Eveson JW, Reichart P, Sidransky D. World Health Organization classification of tumors. Pathology and genetics of head and neck tumors. Lyon: IARC; 2005.
2.
Zurück zum Zitat Reitamo JJ, Scheinin TM, Hayry P. The desmoid syndrome. New aspects in the cause, pathogenesis and treatment of the desmoid tumor. Am J Surg. 1986;151:230–7.CrossRefPubMed Reitamo JJ, Scheinin TM, Hayry P. The desmoid syndrome. New aspects in the cause, pathogenesis and treatment of the desmoid tumor. Am J Surg. 1986;151:230–7.CrossRefPubMed
3.
Zurück zum Zitat Baumert BG, Spahr MO, Von Hochstetter A, et al. The impact of radiotherapy in the treatment of desmoid tumours. An international survey of 110 patients. A study of the Rare Cancer Network. Radiat Oncol. 2007;2:12.CrossRefPubMedPubMedCentral Baumert BG, Spahr MO, Von Hochstetter A, et al. The impact of radiotherapy in the treatment of desmoid tumours. An international survey of 110 patients. A study of the Rare Cancer Network. Radiat Oncol. 2007;2:12.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Tse GM, Chan KF, Ahuja AT, King AD, Pang PC, To EW. Fibromatosis of the head and neck region. Otolaryngol Head Neck Surg. 2001;125:516–9.PubMed Tse GM, Chan KF, Ahuja AT, King AD, Pang PC, To EW. Fibromatosis of the head and neck region. Otolaryngol Head Neck Surg. 2001;125:516–9.PubMed
5.
Zurück zum Zitat Kasper B, Baumgarten C, Bonvalot S, et al. Management of sporadic desmoid-type fibromatosis: a European consensus approach based on patients’ and professionals’ expertise – a sarcoma patients EuroNet and European Organisation for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group initiative. Eur J Cancer. 2015;51:127–36.CrossRefPubMed Kasper B, Baumgarten C, Bonvalot S, et al. Management of sporadic desmoid-type fibromatosis: a European consensus approach based on patients’ and professionals’ expertise – a sarcoma patients EuroNet and European Organisation for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group initiative. Eur J Cancer. 2015;51:127–36.CrossRefPubMed
6.
Zurück zum Zitat de Bree E, Zoras O, Hunt JL, et al. Desmoid tumors of the head and neck: a therapeutic challenge. Head Neck. 2014;36:1517–26.PubMed de Bree E, Zoras O, Hunt JL, et al. Desmoid tumors of the head and neck: a therapeutic challenge. Head Neck. 2014;36:1517–26.PubMed
7.
Zurück zum Zitat Humar A, Chou S, Carpenter B. Fibromatosis in infancy and childhood: the spectrum. J Pediatr Surg. 1993;28:1446–50.CrossRefPubMed Humar A, Chou S, Carpenter B. Fibromatosis in infancy and childhood: the spectrum. J Pediatr Surg. 1993;28:1446–50.CrossRefPubMed
8.
Zurück zum Zitat Woltsche N, Gilg MM, Fraissler L, et al. Is wide resection obsolete for desmoid tumors in children and adolescents? Evaluation of histological margins, immunohistochemical markers, and review of literature. Pediatr Hematol Oncol. 2015;32:60–9.CrossRefPubMed Woltsche N, Gilg MM, Fraissler L, et al. Is wide resection obsolete for desmoid tumors in children and adolescents? Evaluation of histological margins, immunohistochemical markers, and review of literature. Pediatr Hematol Oncol. 2015;32:60–9.CrossRefPubMed
9.
Zurück zum Zitat Gronchi A, Casali PG, Mariani L, et al. Quality of surgery and outcome in extra-abdominal aggressive fibromatosis: a series of patients surgically treated at a single institution. J Clin Oncol. 2003;21:1390–7.CrossRefPubMed Gronchi A, Casali PG, Mariani L, et al. Quality of surgery and outcome in extra-abdominal aggressive fibromatosis: a series of patients surgically treated at a single institution. J Clin Oncol. 2003;21:1390–7.CrossRefPubMed
10.
Zurück zum Zitat Honeyman JN, Theilen TM, Knowles MA, et al. Desmoid fibromatosis in children and adolescents: a conservative approach to management. J Pediatr Surg. 2013;48:62–6.CrossRefPubMed Honeyman JN, Theilen TM, Knowles MA, et al. Desmoid fibromatosis in children and adolescents: a conservative approach to management. J Pediatr Surg. 2013;48:62–6.CrossRefPubMed
11.
Zurück zum Zitat Lev D, Kotilingam D, Wei C, et al. Optimizing treatment of desmoid tumors. J Clin Oncol. 2007;25:1785–91.CrossRefPubMed Lev D, Kotilingam D, Wei C, et al. Optimizing treatment of desmoid tumors. J Clin Oncol. 2007;25:1785–91.CrossRefPubMed
12.
Zurück zum Zitat Wang CP, Chang YL, Ko JY, Cheng CH, Yeh CF, Lou PJ. Desmoid tumor of the head and neck. Head Neck. 2006;28:1008–13.CrossRefPubMed Wang CP, Chang YL, Ko JY, Cheng CH, Yeh CF, Lou PJ. Desmoid tumor of the head and neck. Head Neck. 2006;28:1008–13.CrossRefPubMed
13.
Zurück zum Zitat Alebouyeh M, Moussavi F, Tabari AK, Vossough P. Aggressive intra-abdominal fibromatosis in children and response to chemotherapy. Pediatr Hematol Oncol. 2005;22:447–51.CrossRefPubMed Alebouyeh M, Moussavi F, Tabari AK, Vossough P. Aggressive intra-abdominal fibromatosis in children and response to chemotherapy. Pediatr Hematol Oncol. 2005;22:447–51.CrossRefPubMed
14.
Zurück zum Zitat Ayala AG, Ro JY, Goepfert H, Cangir A, Khorsand J, Flake G. Desmoid fibromatosis: a clinicopathologic study of 25 children. Semin Diagn Pathol. 1986;3:138–50.PubMed Ayala AG, Ro JY, Goepfert H, Cangir A, Khorsand J, Flake G. Desmoid fibromatosis: a clinicopathologic study of 25 children. Semin Diagn Pathol. 1986;3:138–50.PubMed
15.
Zurück zum Zitat Bisogno G, Tagarelli A, Stramare R, Beltrame V, Carli M. Hydroxyurea treatment can avoid the need for aggressive surgery in pediatric fibromatosis. J Pediatr Hematol Oncol. 2013;35:e171–3.CrossRefPubMed Bisogno G, Tagarelli A, Stramare R, Beltrame V, Carli M. Hydroxyurea treatment can avoid the need for aggressive surgery in pediatric fibromatosis. J Pediatr Hematol Oncol. 2013;35:e171–3.CrossRefPubMed
16.
Zurück zum Zitat Buitendijk S, van de Ven CP, Dumans TG, et al. Pediatric aggressive fibromatosis: a retrospective analysis of 13 patients and review of literature. Cancer. 2005;104:1090–9.CrossRefPubMed Buitendijk S, van de Ven CP, Dumans TG, et al. Pediatric aggressive fibromatosis: a retrospective analysis of 13 patients and review of literature. Cancer. 2005;104:1090–9.CrossRefPubMed
17.
Zurück zum Zitat Burlini D, Conti G, Bardellini E, Amadori F. Rare case of desmoid-type fibromatosis of the mandibular region in a child: diagnosis and surgical management. Eur J Paediatr Dent. 2013;14:333–4.PubMed Burlini D, Conti G, Bardellini E, Amadori F. Rare case of desmoid-type fibromatosis of the mandibular region in a child: diagnosis and surgical management. Eur J Paediatr Dent. 2013;14:333–4.PubMed
18.
Zurück zum Zitat Caglar K, Ozyonum H, Akalin M, Balci S. Effective treatment of multifocal aggressive fibromatosis with low-dose chemotherapy. Turk J Pediatr. 2006;48:365–8.PubMed Caglar K, Ozyonum H, Akalin M, Balci S. Effective treatment of multifocal aggressive fibromatosis with low-dose chemotherapy. Turk J Pediatr. 2006;48:365–8.PubMed
19.
Zurück zum Zitat Carr RJ, Zaki GA, Leader MB, Langdon JD. Infantile fibromatosis with involvement of the mandible. Br J Oral Maxillofac Surg. 1992;30:257–62.CrossRefPubMed Carr RJ, Zaki GA, Leader MB, Langdon JD. Infantile fibromatosis with involvement of the mandible. Br J Oral Maxillofac Surg. 1992;30:257–62.CrossRefPubMed
20.
Zurück zum Zitat Crawley MB, Anand SM, Clain JB, Scherl S, Buchbinder D, Urken ML. Trismus release in a pediatric patient using a parascapular free flap reconstruction following desmoid tumor resection. Laryngoscope. 2013;123:1451–4.CrossRefPubMed Crawley MB, Anand SM, Clain JB, Scherl S, Buchbinder D, Urken ML. Trismus release in a pediatric patient using a parascapular free flap reconstruction following desmoid tumor resection. Laryngoscope. 2013;123:1451–4.CrossRefPubMed
21.
Zurück zum Zitat De Corti F, Avanzini S, Cecchetto G, et al. The surgical approach for cervicothoracic masses in children. J Pediatr Surg. 2012;47:1662–8.CrossRefPubMed De Corti F, Avanzini S, Cecchetto G, et al. The surgical approach for cervicothoracic masses in children. J Pediatr Surg. 2012;47:1662–8.CrossRefPubMed
22.
Zurück zum Zitat De Santis D. Fibromatosis of the mandible: case report and review of previous publications. Br J Oral Maxillofac Surg. 1998;36:384–8.CrossRefPubMed De Santis D. Fibromatosis of the mandible: case report and review of previous publications. Br J Oral Maxillofac Surg. 1998;36:384–8.CrossRefPubMed
23.
Zurück zum Zitat Ekinci S, Karnak I, Tanyel FC. Infantile fibromatosis of the sternocleidomastoid muscle mimicking muscular torticollis. J Pediatr Surg. 2004;39:1424–5.CrossRefPubMed Ekinci S, Karnak I, Tanyel FC. Infantile fibromatosis of the sternocleidomastoid muscle mimicking muscular torticollis. J Pediatr Surg. 2004;39:1424–5.CrossRefPubMed
24.
Zurück zum Zitat Falco NA, Upton J. Infantile digital fibromas. J Hand Surg [Am]. 1995;20:1014–20.CrossRef Falco NA, Upton J. Infantile digital fibromas. J Hand Surg [Am]. 1995;20:1014–20.CrossRef
25.
Zurück zum Zitat Federici S, Mordenti M, Domenichelli V, Pelusi G, Straziuso S, Pericoli R. Successful combined treatment for giant mesenteric desmoid tumor: case report and review of the literature. J Pediatr Surg. 2012;47:e25–30.CrossRefPubMed Federici S, Mordenti M, Domenichelli V, Pelusi G, Straziuso S, Pericoli R. Successful combined treatment for giant mesenteric desmoid tumor: case report and review of the literature. J Pediatr Surg. 2012;47:e25–30.CrossRefPubMed
26.
Zurück zum Zitat Flacke S, Pauleit D, Keller E, et al. Infantile fibromatosis of the neck with intracranial involvement: MR and CT findings. AJNR Am J Neuroradiol. 1999;20:923–5.PubMed Flacke S, Pauleit D, Keller E, et al. Infantile fibromatosis of the neck with intracranial involvement: MR and CT findings. AJNR Am J Neuroradiol. 1999;20:923–5.PubMed
27.
Zurück zum Zitat Fowler CB, Hartman KS, Brannon RB. Fibromatosis of the oral and paraoral region. Oral Surg Oral Med Oral Pathol. 1994;77:373–86.CrossRefPubMed Fowler CB, Hartman KS, Brannon RB. Fibromatosis of the oral and paraoral region. Oral Surg Oral Med Oral Pathol. 1994;77:373–86.CrossRefPubMed
28.
Zurück zum Zitat Geist ET, Kent JN, Carr RF, Super S. Case 52: Multiloculated radiolucency of the left mandible. J Oral Maxillofac Surg. 1985;43:205–9.CrossRefPubMed Geist ET, Kent JN, Carr RF, Super S. Case 52: Multiloculated radiolucency of the left mandible. J Oral Maxillofac Surg. 1985;43:205–9.CrossRefPubMed
29.
Zurück zum Zitat Goepfert H, Cangir A, Ayala AG, Eftekhari F. Chemotherapy of locally aggressive head and neck tumors in the pediatric age group. Desmoid fibromatosis and nasopharyngeal angiofibroma. Am J Surg. 1982;144:437–44.CrossRefPubMed Goepfert H, Cangir A, Ayala AG, Eftekhari F. Chemotherapy of locally aggressive head and neck tumors in the pediatric age group. Desmoid fibromatosis and nasopharyngeal angiofibroma. Am J Surg. 1982;144:437–44.CrossRefPubMed
30.
Zurück zum Zitat Gomez FM, Patel PA, Stuart S, Roebuck DJ. Systematic review of ablation techniques for the treatment of malignant or aggressive benign lesions in children. Pediatr Radiol. 2014;44:1281–9.CrossRefPubMed Gomez FM, Patel PA, Stuart S, Roebuck DJ. Systematic review of ablation techniques for the treatment of malignant or aggressive benign lesions in children. Pediatr Radiol. 2014;44:1281–9.CrossRefPubMed
31.
Zurück zum Zitat Hartstein ME, Thomas SM, Ellis LS. Orbital desmoid tumor in a pediatric patient. Ophthal Plast Reconstr Surg. 2006;22:139–41.CrossRefPubMed Hartstein ME, Thomas SM, Ellis LS. Orbital desmoid tumor in a pediatric patient. Ophthal Plast Reconstr Surg. 2006;22:139–41.CrossRefPubMed
32.
Zurück zum Zitat Hoffman CD, Levant BA, Hall RK. Aggressive infantile fibromatosis: report of a case undergoing spontaneous regression. J Oral Maxillofac Surg. 1993;51:1043–7.CrossRefPubMed Hoffman CD, Levant BA, Hall RK. Aggressive infantile fibromatosis: report of a case undergoing spontaneous regression. J Oral Maxillofac Surg. 1993;51:1043–7.CrossRefPubMed
33.
Zurück zum Zitat Jabbari S, Andolino D, Weinberg V, et al. Successful treatment of high risk and recurrent pediatric desmoids using radiation as a component of multimodality therapy. Int J Radiat Oncol Biol Phys. 2009;75:177–82.CrossRefPubMed Jabbari S, Andolino D, Weinberg V, et al. Successful treatment of high risk and recurrent pediatric desmoids using radiation as a component of multimodality therapy. Int J Radiat Oncol Biol Phys. 2009;75:177–82.CrossRefPubMed
34.
Zurück zum Zitat Jacob CI, Kumm RC. Benign anteromedial plantar nodules of childhood: a distinct form of plantar fibromatosis. Pediatr Dermatol. 2000;17:472–4.CrossRefPubMed Jacob CI, Kumm RC. Benign anteromedial plantar nodules of childhood: a distinct form of plantar fibromatosis. Pediatr Dermatol. 2000;17:472–4.CrossRefPubMed
35.
Zurück zum Zitat Kau CH, Kamel SG, Wilson J, Wong ME. New method for analysis of facial growth in a pediatric reconstructed mandible. Am J Orthod Dentofacial Orthop. 2011;139:e285–90.CrossRefPubMed Kau CH, Kamel SG, Wilson J, Wong ME. New method for analysis of facial growth in a pediatric reconstructed mandible. Am J Orthod Dentofacial Orthop. 2011;139:e285–90.CrossRefPubMed
36.
Zurück zum Zitat Koyluoglu G, Yildiz E, Koyuncu A, Atalar M. Management of an esophagogastric fibromatosis in a child: a case report. J Pediatr Surg. 2004;39:640–2.CrossRefPubMed Koyluoglu G, Yildiz E, Koyuncu A, Atalar M. Management of an esophagogastric fibromatosis in a child: a case report. J Pediatr Surg. 2004;39:640–2.CrossRefPubMed
37.
Zurück zum Zitat Kraft SM, Singh V, Sykes KJ, Gamis A, Manalang MA, Wei JL. Differentiating between congenital rhabdomyosarcoma versus fibromatosis of the pediatric tongue. Int J Pediatr Otorhinolaryngol. 2010;74:781–5.CrossRefPubMed Kraft SM, Singh V, Sykes KJ, Gamis A, Manalang MA, Wei JL. Differentiating between congenital rhabdomyosarcoma versus fibromatosis of the pediatric tongue. Int J Pediatr Otorhinolaryngol. 2010;74:781–5.CrossRefPubMed
38.
Zurück zum Zitat Kriss TC, Warf BC. Cervical paraspinous desmoid tumor in a child: case report. Neurosurgery. 1994;35:956–9. discussion 959.CrossRefPubMed Kriss TC, Warf BC. Cervical paraspinous desmoid tumor in a child: case report. Neurosurgery. 1994;35:956–9. discussion 959.CrossRefPubMed
39.
Zurück zum Zitat Lackner H, Urban C, Benesch M, et al. Multimodal treatment of children with unresectable or recurrent desmoid tumors: an 11-year longitudinal observational study. J Pediatr Hematol Oncol. 2004;26:518–22.CrossRefPubMed Lackner H, Urban C, Benesch M, et al. Multimodal treatment of children with unresectable or recurrent desmoid tumors: an 11-year longitudinal observational study. J Pediatr Hematol Oncol. 2004;26:518–22.CrossRefPubMed
40.
Zurück zum Zitat Lackner H, Urban C, Kerbl R, Schwinger W, Beham A. Noncytotoxic drug therapy in children with unresectable desmoid tumors. Cancer. 1997;80:334–40.CrossRefPubMed Lackner H, Urban C, Kerbl R, Schwinger W, Beham A. Noncytotoxic drug therapy in children with unresectable desmoid tumors. Cancer. 1997;80:334–40.CrossRefPubMed
41.
Zurück zum Zitat Lakhan SE, Eager RM, Harle L. Aggressive juvenile fibromatosis of the paranasal sinuses: case report and brief review. J Hematol Oncol. 2008;1:3.CrossRefPubMedPubMedCentral Lakhan SE, Eager RM, Harle L. Aggressive juvenile fibromatosis of the paranasal sinuses: case report and brief review. J Hematol Oncol. 2008;1:3.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Maillard AA, Kountakis SE. Pediatric sino-orbital desmoid fibromatosis. Ann Otol Rhinol Laryngol. 1996;105:463–6.CrossRefPubMed Maillard AA, Kountakis SE. Pediatric sino-orbital desmoid fibromatosis. Ann Otol Rhinol Laryngol. 1996;105:463–6.CrossRefPubMed
43.
Zurück zum Zitat Mannan AA, Ray R, Sharma SC, Hatimota P. Infantile fibromatosis of the nose and paranasal sinuses: report of a rare case and brief review of the literature. Ear Nose Throat J. 2004;83:481–4.PubMed Mannan AA, Ray R, Sharma SC, Hatimota P. Infantile fibromatosis of the nose and paranasal sinuses: report of a rare case and brief review of the literature. Ear Nose Throat J. 2004;83:481–4.PubMed
44.
Zurück zum Zitat Meng J, Zhuang Q, Tian Z, Fu H, He Y. Infantile fibromatosis of the pterygomandibular space. J Craniofac Surg. 2012;23:e542–4.CrossRefPubMed Meng J, Zhuang Q, Tian Z, Fu H, He Y. Infantile fibromatosis of the pterygomandibular space. J Craniofac Surg. 2012;23:e542–4.CrossRefPubMed
45.
Zurück zum Zitat Merchant TE, Nguyen D, Walter AW, Pappo AS, Kun LE, Rao BN. Long-term results with radiation therapy for pediatric desmoid tumors. Int J Radiat Oncol Biol Phys. 2000;47:1267–71.CrossRefPubMed Merchant TE, Nguyen D, Walter AW, Pappo AS, Kun LE, Rao BN. Long-term results with radiation therapy for pediatric desmoid tumors. Int J Radiat Oncol Biol Phys. 2000;47:1267–71.CrossRefPubMed
46.
Zurück zum Zitat Neri HA, Villagra EJ, Alvarez AC, et al. Ethmoidal desmoid tumor in a pediatric patient. Otolaryngol Head Neck Surg. 2007;136:137–8.CrossRefPubMed Neri HA, Villagra EJ, Alvarez AC, et al. Ethmoidal desmoid tumor in a pediatric patient. Otolaryngol Head Neck Surg. 2007;136:137–8.CrossRefPubMed
47.
Zurück zum Zitat Otmani N, Lamalmi N, Khattab M. Treatment of submandibular fibromatosis with chemotherapy and surgery. A case report. Minerva Stomatol. 2008;57:133–7.PubMed Otmani N, Lamalmi N, Khattab M. Treatment of submandibular fibromatosis with chemotherapy and surgery. A case report. Minerva Stomatol. 2008;57:133–7.PubMed
48.
Zurück zum Zitat Pena S, Brickman T, StHilaire H, Jeyakumar A. Aggressive fibromatosis of the head and neck in the pediatric population. Int J Pediatr Otorhinolaryngol. 2014;78:1–4.CrossRefPubMed Pena S, Brickman T, StHilaire H, Jeyakumar A. Aggressive fibromatosis of the head and neck in the pediatric population. Int J Pediatr Otorhinolaryngol. 2014;78:1–4.CrossRefPubMed
49.
Zurück zum Zitat Perez-Cruet MJ, Burke JM, Weber R, DeMonte F. Aggressive fibromatosis involving the cranial base in children. Neurosurgery. 1998;43:1096–102.CrossRefPubMed Perez-Cruet MJ, Burke JM, Weber R, DeMonte F. Aggressive fibromatosis involving the cranial base in children. Neurosurgery. 1998;43:1096–102.CrossRefPubMed
50.
Zurück zum Zitat Ramirez RN, Otsuka NY, Apel DM, Bowen RE. Desmoid tumor in the pediatric population: a report of two cases. J Pediatr Orthop B. 2009;18:141–4.CrossRefPubMed Ramirez RN, Otsuka NY, Apel DM, Bowen RE. Desmoid tumor in the pediatric population: a report of two cases. J Pediatr Orthop B. 2009;18:141–4.CrossRefPubMed
51.
Zurück zum Zitat Reich S, Overberg-Schmidt US, Buhrer C, Henze G. Low-dose chemotherapy with vinblastine and methotrexate in childhood desmoid tumors. J Clin Oncol. 1999;17:1086.PubMed Reich S, Overberg-Schmidt US, Buhrer C, Henze G. Low-dose chemotherapy with vinblastine and methotrexate in childhood desmoid tumors. J Clin Oncol. 1999;17:1086.PubMed
52.
Zurück zum Zitat Roychoudhury A, Parkash H, Kumar S, Chopra P. Infantile desmoid fibromatosis of the submandibular region. J Oral Maxillofac Surg. 2002;60:1198–202.CrossRefPubMed Roychoudhury A, Parkash H, Kumar S, Chopra P. Infantile desmoid fibromatosis of the submandibular region. J Oral Maxillofac Surg. 2002;60:1198–202.CrossRefPubMed
53.
Zurück zum Zitat Rutenberg MS, Indelicato DJ, Knapik JA, et al. External-beam radiotherapy for pediatric and young adult desmoid tumors. Pediatr Blood Cancer. 2011;57:435–42.CrossRefPubMed Rutenberg MS, Indelicato DJ, Knapik JA, et al. External-beam radiotherapy for pediatric and young adult desmoid tumors. Pediatr Blood Cancer. 2011;57:435–42.CrossRefPubMed
54.
55.
Zurück zum Zitat Sato K, Kawana M, Nonomura N, Takahashi S. Desmoid-type infantile fibromatosis in the mandible: a case report. Am J Otolaryngol. 2000;21:207–12.CrossRefPubMed Sato K, Kawana M, Nonomura N, Takahashi S. Desmoid-type infantile fibromatosis in the mandible: a case report. Am J Otolaryngol. 2000;21:207–12.CrossRefPubMed
56.
Zurück zum Zitat Seper L, Burger H, Vormoor J, Joos U, Kleinheinz J. Agressive fibromatosis involving the mandible – case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:30–8.CrossRefPubMed Seper L, Burger H, Vormoor J, Joos U, Kleinheinz J. Agressive fibromatosis involving the mandible – case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:30–8.CrossRefPubMed
57.
Zurück zum Zitat Sharma A, Ngan BY, Sandor GK, Campisi P, Forte V. Pediatric aggressive fibromatosis of the head and neck: a 20-year retrospective review. J Pediatr Surg. 2008;43:1596–604.CrossRefPubMed Sharma A, Ngan BY, Sandor GK, Campisi P, Forte V. Pediatric aggressive fibromatosis of the head and neck: a 20-year retrospective review. J Pediatr Surg. 2008;43:1596–604.CrossRefPubMed
58.
Zurück zum Zitat Shindle MK, Khanna AJ, McCarthy EF, O’Neill PJ, Sponseller PD. Desmoid tumor of the spinal canal causing scoliosis and paralysis. Spine (Phila Pa 1976). 2002;27:E304–7.CrossRef Shindle MK, Khanna AJ, McCarthy EF, O’Neill PJ, Sponseller PD. Desmoid tumor of the spinal canal causing scoliosis and paralysis. Spine (Phila Pa 1976). 2002;27:E304–7.CrossRef
59.
Zurück zum Zitat Sinno H, Zadeh T. Desmoid tumors of the pediatric mandible: case report and review. Ann Plast Surg. 2009;62:213–9.CrossRefPubMed Sinno H, Zadeh T. Desmoid tumors of the pediatric mandible: case report and review. Ann Plast Surg. 2009;62:213–9.CrossRefPubMed
60.
Zurück zum Zitat Spiegel DA, Dormans JP, Meyer JS, et al. Aggressive fibromatosis from infancy to adolescence. J Pediatr Orthop. 1999;19:776–84.PubMed Spiegel DA, Dormans JP, Meyer JS, et al. Aggressive fibromatosis from infancy to adolescence. J Pediatr Orthop. 1999;19:776–84.PubMed
61.
Zurück zum Zitat Steuer KS. Pediatric fibromatosis requiring mandibular resection and reconstruction. AORN J. 1995;62:212. 215-224, 226.CrossRefPubMed Steuer KS. Pediatric fibromatosis requiring mandibular resection and reconstruction. AORN J. 1995;62:212. 215-224, 226.CrossRefPubMed
62.
Zurück zum Zitat Styczynski J, Lasek W, Wysocki M. Calcified fibromatosis of the neck in 4-year old girl: rapid growth, rapid therapy. Int J Pediatr Otorhinolaryngol. 2005;69:847–52.CrossRefPubMed Styczynski J, Lasek W, Wysocki M. Calcified fibromatosis of the neck in 4-year old girl: rapid growth, rapid therapy. Int J Pediatr Otorhinolaryngol. 2005;69:847–52.CrossRefPubMed
63.
Zurück zum Zitat Tandon S, Garg RK. Intraoral desmoplastic fibroma: a manifestation of tuberous sclerosis. Fetal Pediatr Pathol. 2012;31:195–201.CrossRefPubMed Tandon S, Garg RK. Intraoral desmoplastic fibroma: a manifestation of tuberous sclerosis. Fetal Pediatr Pathol. 2012;31:195–201.CrossRefPubMed
64.
Zurück zum Zitat Tostevin PM, Wyatt M, Hosni A. Six cases of fibromatosis of the head and neck in children. Int J Pediatr Otorhinolaryngol. 2000;53:235–44.CrossRefPubMed Tostevin PM, Wyatt M, Hosni A. Six cases of fibromatosis of the head and neck in children. Int J Pediatr Otorhinolaryngol. 2000;53:235–44.CrossRefPubMed
65.
Zurück zum Zitat Tzakis AG, Tryphonopoulos P, De Faria W, et al. Partial abdominal evisceration, ex vivo resection, and intestinal autotransplantation for the treatment of pathologic lesions of the root of the mesentery. J Am Coll Surg. 2003;197:770–6.CrossRefPubMed Tzakis AG, Tryphonopoulos P, De Faria W, et al. Partial abdominal evisceration, ex vivo resection, and intestinal autotransplantation for the treatment of pathologic lesions of the root of the mesentery. J Am Coll Surg. 2003;197:770–6.CrossRefPubMed
66.
Zurück zum Zitat Wang B, Ma J, Jin H. Infantile intracranial aggressive fibromatosis: report of two cases with a review of the literature. Pediatr Neurosurg. 2012;48:181–6.CrossRefPubMed Wang B, Ma J, Jin H. Infantile intracranial aggressive fibromatosis: report of two cases with a review of the literature. Pediatr Neurosurg. 2012;48:181–6.CrossRefPubMed
67.
Zurück zum Zitat Wang W, Koirala U, Ma S, et al. Age-based treatment of aggressive fibromatosis in the head and neck region. J Oral Maxillofac Surg. 2014;72:311–21.CrossRefPubMed Wang W, Koirala U, Ma S, et al. Age-based treatment of aggressive fibromatosis in the head and neck region. J Oral Maxillofac Surg. 2014;72:311–21.CrossRefPubMed
68.
Zurück zum Zitat Watzinger F, Turhani D, Wutzl A, Fock N, Sinko K, Sulzbacher I. Aggressive fibromatosis of the mandible: a case report. Int J Oral Maxillofac Surg. 2005;34:211–3.CrossRefPubMed Watzinger F, Turhani D, Wutzl A, Fock N, Sinko K, Sulzbacher I. Aggressive fibromatosis of the mandible: a case report. Int J Oral Maxillofac Surg. 2005;34:211–3.CrossRefPubMed
69.
Zurück zum Zitat Wehl G, Rossler J, Otten JE, et al. Response of progressive fibromatosis to therapy with liposomal doxorubicin. Onkologie. 2004;27:552–6.PubMed Wehl G, Rossler J, Otten JE, et al. Response of progressive fibromatosis to therapy with liposomal doxorubicin. Onkologie. 2004;27:552–6.PubMed
70.
Zurück zum Zitat Yazici N, Yalcin B, Soylemezoglu F, et al. Intracranial desmoid tumor with familial adenomatous polyposis coli. Pediatr Neurosurg. 2008;44:140–3.CrossRefPubMed Yazici N, Yalcin B, Soylemezoglu F, et al. Intracranial desmoid tumor with familial adenomatous polyposis coli. Pediatr Neurosurg. 2008;44:140–3.CrossRefPubMed
71.
Zurück zum Zitat Zampieri N, Cecchetto M, Zorzi MG, Pietrobelli A, Ottolenghi A, Camoglio F. An unusual case of extra-abdominal desmoid tumour. Eur J Cancer Care (Engl). 2010;19:410–2.CrossRef Zampieri N, Cecchetto M, Zorzi MG, Pietrobelli A, Ottolenghi A, Camoglio F. An unusual case of extra-abdominal desmoid tumour. Eur J Cancer Care (Engl). 2010;19:410–2.CrossRef
72.
Zurück zum Zitat Zhou Y, Zhang Z, Fu H, Qiu W, Wang L, He Y. Clinical management of pediatric aggressive fibromatosis involving the mandible. Pediatr Blood Cancer. 2012;59:648–51.CrossRefPubMed Zhou Y, Zhang Z, Fu H, Qiu W, Wang L, He Y. Clinical management of pediatric aggressive fibromatosis involving the mandible. Pediatr Blood Cancer. 2012;59:648–51.CrossRefPubMed
73.
Zurück zum Zitat Arnold DJ, Wax MK. Microvascular Committee of the American Academy of Otolaryngology – Head and Neck Surgery. Pediatric microvascular reconstruction: a report from the Microvascular Committee. Otolaryngol Head Neck Surg. 2007;136:848–51.CrossRefPubMed Arnold DJ, Wax MK. Microvascular Committee of the American Academy of Otolaryngology – Head and Neck Surgery. Pediatric microvascular reconstruction: a report from the Microvascular Committee. Otolaryngol Head Neck Surg. 2007;136:848–51.CrossRefPubMed
74.
Zurück zum Zitat Bilkay U, Tiftikcioglu YO, Temiz G, Ozek C, Akin Y. Free-tissue transfers for reconstruction of oromandibular area in children. Microsurgery. 2008;28:91–8.CrossRefPubMed Bilkay U, Tiftikcioglu YO, Temiz G, Ozek C, Akin Y. Free-tissue transfers for reconstruction of oromandibular area in children. Microsurgery. 2008;28:91–8.CrossRefPubMed
75.
Zurück zum Zitat Skapek SX, Anderson JR, Hill DA, et al. Safety and efficacy of high-dose tamoxifen and sulindac for desmoid tumor in children: results of a Children’s Oncology Group (COG) phase II study. Pediatr Blood Cancer. 2013;60:1108–12.CrossRefPubMed Skapek SX, Anderson JR, Hill DA, et al. Safety and efficacy of high-dose tamoxifen and sulindac for desmoid tumor in children: results of a Children’s Oncology Group (COG) phase II study. Pediatr Blood Cancer. 2013;60:1108–12.CrossRefPubMed
76.
Zurück zum Zitat Skapek SX, Ferguson WS, Granowetter L, et al. Vinblastine and methotrexate for desmoid fibromatosis in children: results of a Pediatric Oncology Group Phase II Trial. J Clin Oncol. 2007;25:501–6.CrossRefPubMed Skapek SX, Ferguson WS, Granowetter L, et al. Vinblastine and methotrexate for desmoid fibromatosis in children: results of a Pediatric Oncology Group Phase II Trial. J Clin Oncol. 2007;25:501–6.CrossRefPubMed
77.
Zurück zum Zitat Constantinidou A, Jones RL, Scurr M, Al-Muderis O, Judson I. Pegylated liposomal doxorubicin, an effective, well-tolerated treatment for refractory aggressive fibromatosis. Eur J Cancer. 2009;45:2930–4.CrossRefPubMed Constantinidou A, Jones RL, Scurr M, Al-Muderis O, Judson I. Pegylated liposomal doxorubicin, an effective, well-tolerated treatment for refractory aggressive fibromatosis. Eur J Cancer. 2009;45:2930–4.CrossRefPubMed
78.
Zurück zum Zitat Garbay D, Le Cesne A, Penel N, et al. Chemotherapy in patients with desmoid tumors: a study from the French Sarcoma Group (FSG). Ann Oncol. 2012;23:182–6.CrossRefPubMed Garbay D, Le Cesne A, Penel N, et al. Chemotherapy in patients with desmoid tumors: a study from the French Sarcoma Group (FSG). Ann Oncol. 2012;23:182–6.CrossRefPubMed
79.
80.
Zurück zum Zitat Penel N, Le Cesne A, Bui BN, et al. Imatinib for progressive and recurrent aggressive fibromatosis (desmoid tumors): an FNCLCC/French Sarcoma Group phase II trial with a long-term follow-up. Ann Oncol. 2011;22:452–7.CrossRefPubMed Penel N, Le Cesne A, Bui BN, et al. Imatinib for progressive and recurrent aggressive fibromatosis (desmoid tumors): an FNCLCC/French Sarcoma Group phase II trial with a long-term follow-up. Ann Oncol. 2011;22:452–7.CrossRefPubMed
81.
Zurück zum Zitat Nuyttens JJ, Rust PF, Thomas Jr CR, Turrisi 3rd AT. Surgery versus radiation therapy for patients with aggressive fibromatosis or desmoid tumors: A comparative review of 22 articles. Cancer. 2000;88:1517–23.CrossRefPubMed Nuyttens JJ, Rust PF, Thomas Jr CR, Turrisi 3rd AT. Surgery versus radiation therapy for patients with aggressive fibromatosis or desmoid tumors: A comparative review of 22 articles. Cancer. 2000;88:1517–23.CrossRefPubMed
82.
Zurück zum Zitat Guadagnolo BA, Zagars GK, Ballo MT. Long-term outcomes for desmoid tumors treated with radiation therapy. Int J Radiat Oncol Biol Phys. 2008;71:441–7.CrossRefPubMed Guadagnolo BA, Zagars GK, Ballo MT. Long-term outcomes for desmoid tumors treated with radiation therapy. Int J Radiat Oncol Biol Phys. 2008;71:441–7.CrossRefPubMed
Metadaten
Titel
Desmoid-type fibromatosis of the head and neck in children: a case report and review of the literature
verfasst von
Hidetaka Miyashita
Seiji Asoda
Tomoya Soma
Kanako Munakata
Masaki Yazawa
Taneaki Nakagawa
Hiromasa Kawana
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Journal of Medical Case Reports / Ausgabe 1/2016
Elektronische ISSN: 1752-1947
DOI
https://doi.org/10.1186/s13256-016-0949-9

Weitere Artikel der Ausgabe 1/2016

Journal of Medical Case Reports 1/2016 Zur Ausgabe