Skip to main content
Erschienen in: European Journal of Drug Metabolism and Pharmacokinetics 4/2023

02.06.2023 | Original Research Article

Development of a 2D-QSAR Model for Tissue-to-Plasma Partition Coefficient Value with High Accuracy Using Machine Learning Method, Minimum Required Experimental Values, and Physicochemical Descriptors

verfasst von: Koichi Handa, Seishiro Sakamoto, Michiharu Kageyama, Takeshi Iijima

Erschienen in: European Journal of Drug Metabolism and Pharmacokinetics | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Abstract

Background

The demand for physiologically based pharmacokinetic (PBPK) model is increasing currently. New drug application (NDA) of many compounds is submitted with PBPK models for efficient drug development. Tissue-to-plasma partition coefficient (Kp) is a key parameter for the PBPK model to describe differential equations. However, it is difficult to obtain the Kp value experimentally because the measurement of drug concentration in the tissue is much harder than that in plasma.

Objective

Instead of experiments, many researchers have sought in silico methods. Today, most of the models for Kp prediction are using in vitro and in vivo parameters as explanatory variables. We thought of physicochemical descriptors that could improve the predictability. Therefore, we aimed to develop the two-dimensional quantitative structure-activity relationship (2D-QSAR) model for Kp using physicochemical descriptors instead of in vivo experimental data as explanatory variables.

Methods

We compared our model with the conventional models using 20-fold cross-validation according to the published method (Yun et al. J Pharmacokinet Pharmacodyn 41:1–14, 2014). We used random forest algorithm, which is known to be one of the best predictors for the 2D-QSAR model. Finally, we combined minimum in vitro experimental values and physiochemical descriptors. Thus, the prediction method for Kp value using a few in vitro parameters and physicochemical descriptors was developed; this is a multimodal model.

Results

Its accuracy was found to be superior to that of the conventional models. Results of this research suggest that multimodality is useful for the 2D-QSAR model [RMSE and % of two-fold error: 0.66 and 42.2% (Berezohkovsky), 0.52 and 52.2% (Rodgers), 0.65 and 34.6% (Schmitt), 0.44 and 61.1% (published model), 0.41 and 62.1% (traditional model), 0.39 and 64.5% (multimodal model)].

Conclusion

We could develop a 2D-QSAR model for Kp value with the highest accuracy using a few in vitro experimental data and physicochemical descriptors.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat PMDA. Guidelines for Non-Clinical Pharmacokinetic Studies. No 469. 1998. PMDA. Guidelines for Non-Clinical Pharmacokinetic Studies. No 469. 1998.
3.
Zurück zum Zitat US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Physiologically Based Pharmacokinetic Analyses—Format and Content Guidance for Industry. 2019. US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Physiologically Based Pharmacokinetic Analyses—Format and Content Guidance for Industry. 2019.
5.
Zurück zum Zitat Shebley M, Sandhu P, Emami Riedmaier A, Jamei M, Narayanan R, Patel A, et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther. 2018;104(1):88–110.PubMedPubMedCentralCrossRef Shebley M, Sandhu P, Emami Riedmaier A, Jamei M, Narayanan R, Patel A, et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. Clin Pharmacol Ther. 2018;104(1):88–110.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Perry C, Davis G, Conner TM, Zhang T. Utilization of physiologically based pharmacokinetic modeling in clinical pharmacology and therapeutics: an overview. Curr Pharmacol reports. 2020;6(3):71–84.CrossRef Perry C, Davis G, Conner TM, Zhang T. Utilization of physiologically based pharmacokinetic modeling in clinical pharmacology and therapeutics: an overview. Curr Pharmacol reports. 2020;6(3):71–84.CrossRef
7.
Zurück zum Zitat Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet Syst Pharmacol. 2013;2(8): e63.CrossRef Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet Syst Pharmacol. 2013;2(8): e63.CrossRef
8.
9.
Zurück zum Zitat Poulin P, Theil FP. A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci. 2000;89(1):16–35.PubMedCrossRef Poulin P, Theil FP. A priori prediction of tissue:plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci. 2000;89(1):16–35.PubMedCrossRef
10.
Zurück zum Zitat Poulin P, Schoenlein K, Theil FP. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci. 2001;90(4):436–47.PubMedCrossRef Poulin P, Schoenlein K, Theil FP. Prediction of adipose tissue: plasma partition coefficients for structurally unrelated drugs. J Pharm Sci. 2001;90(4):436–47.PubMedCrossRef
11.
Zurück zum Zitat Poulin P, Krishnan K. A biologically-based algorithm for predicting human tissue: blood partition coefficients of organic chemicals. Hum Exp Toxicol. 1995;14(3):273–80.PubMedCrossRef Poulin P, Krishnan K. A biologically-based algorithm for predicting human tissue: blood partition coefficients of organic chemicals. Hum Exp Toxicol. 1995;14(3):273–80.PubMedCrossRef
12.
Zurück zum Zitat Berezhkovskiy LM. Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci. 2004;93(6):1628–40.PubMedCrossRef Berezhkovskiy LM. Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci. 2004;93(6):1628–40.PubMedCrossRef
13.
Zurück zum Zitat Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.PubMedCrossRef Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.PubMedCrossRef
14.
Zurück zum Zitat Schmitt W. General approach for the calculation of tissue to plasma partition coefficients. Toxicol In Vitro. 2008;22(2):457–67.PubMedCrossRef Schmitt W. General approach for the calculation of tissue to plasma partition coefficients. Toxicol In Vitro. 2008;22(2):457–67.PubMedCrossRef
15.
Zurück zum Zitat Björkman S. Reduction and lumping of physiologically based pharmacokinetic models: prediction of the disposition of fentanyl and pethidine in humans by successively simplified models. J Pharmacokinet Pharmacodyn. 2003;30(4):285–307.PubMedCrossRef Björkman S. Reduction and lumping of physiologically based pharmacokinetic models: prediction of the disposition of fentanyl and pethidine in humans by successively simplified models. J Pharmacokinet Pharmacodyn. 2003;30(4):285–307.PubMedCrossRef
16.
Zurück zum Zitat Lusher SJ, McGuire R, van Schaik RC, Nicholson CD, de Vlieg J. Data-driven medicinal chemistry in the era of big data. Drug Discov Today. 2014;19(7):859–68.PubMedCrossRef Lusher SJ, McGuire R, van Schaik RC, Nicholson CD, de Vlieg J. Data-driven medicinal chemistry in the era of big data. Drug Discov Today. 2014;19(7):859–68.PubMedCrossRef
17.
Zurück zum Zitat Yun YE, Cotton CA, Edginton AN. Development of a decision tree to classify the most accurate tissue-specific tissue to plasma partition coefficient algorithm for a given compound. J Pharmacokinet Pharmacodyn. 2014;41(1):1–14.PubMedCrossRef Yun YE, Cotton CA, Edginton AN. Development of a decision tree to classify the most accurate tissue-specific tissue to plasma partition coefficient algorithm for a given compound. J Pharmacokinet Pharmacodyn. 2014;41(1):1–14.PubMedCrossRef
18.
Zurück zum Zitat Russell WMS, Burch RL. The principles of humane experimental technique. Wheathampstead: Universities Federation for Animal Welfare; 1959. Russell WMS, Burch RL. The principles of humane experimental technique. Wheathampstead: Universities Federation for Animal Welfare; 1959.
19.
20.
Zurück zum Zitat Srivastava N, Salakhutdinov RR. Multimodal learning with deep Boltzmann machines. J Mach Learn Res. 2014;15:2949–80. Srivastava N, Salakhutdinov RR. Multimodal learning with deep Boltzmann machines. J Mach Learn Res. 2014;15:2949–80.
21.
Zurück zum Zitat Hofmann-Apitius M, Ball G, Gebel S, Bagewadi S, de Bono B, Schneider R, et al. Bioinformatics mining and modeling methods for the identification of disease mechanisms in neurodegenerative disorders. Int J Mol Sci. 2015;16(12):29179–206.PubMedPubMedCentralCrossRef Hofmann-Apitius M, Ball G, Gebel S, Bagewadi S, de Bono B, Schneider R, et al. Bioinformatics mining and modeling methods for the identification of disease mechanisms in neurodegenerative disorders. Int J Mol Sci. 2015;16(12):29179–206.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Wajima T, Fukumura K, Yano Y, Oguma T. Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis. J Pharm Sci. 2002;91(12):2489–99.PubMedCrossRef Wajima T, Fukumura K, Yano Y, Oguma T. Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis. J Pharm Sci. 2002;91(12):2489–99.PubMedCrossRef
24.
Zurück zum Zitat Iwata H, Matsuo T, Mamada H, Motomura T, Matsushita M, Fujiwara T, et al. Prediction of total drug clearance in humans using animal data: proposal of a multimodal learning method based on deep learning. J Pharm Sci. 2021;110(4):1834–41.PubMedCrossRef Iwata H, Matsuo T, Mamada H, Motomura T, Matsushita M, Fujiwara T, et al. Prediction of total drug clearance in humans using animal data: proposal of a multimodal learning method based on deep learning. J Pharm Sci. 2021;110(4):1834–41.PubMedCrossRef
25.
Zurück zum Zitat Schneckener S, Grimbs S, Hey J, Menz S, Osmers M, Schaper S, Hillisch A, Göller AH. Prediction of oral bioavailability in rats: transferring insights from in vitro correlations to (Deep) machine learning models using in silico model outputs and chemical structure parameters. J Chem Inf Model. 2019;59(11):4893–905.PubMedCrossRef Schneckener S, Grimbs S, Hey J, Menz S, Osmers M, Schaper S, Hillisch A, Göller AH. Prediction of oral bioavailability in rats: transferring insights from in vitro correlations to (Deep) machine learning models using in silico model outputs and chemical structure parameters. J Chem Inf Model. 2019;59(11):4893–905.PubMedCrossRef
26.
Zurück zum Zitat Kosugi Y, Hosea N. Prediction of oral pharmacokinetics using a combination of in silico descriptors and in vitro ADME properties. Mol Pharm. 2021;18(3):1071–9.PubMedCrossRef Kosugi Y, Hosea N. Prediction of oral pharmacokinetics using a combination of in silico descriptors and in vitro ADME properties. Mol Pharm. 2021;18(3):1071–9.PubMedCrossRef
27.
Zurück zum Zitat Obrezanova O, Martinsson A, Whitehead T, Mahmoud S, Bender A, Miljković F, Grabowski P, Irwin B, Oprisiu I, Conduit G, Segall M, Smith GF, Williamson B, Winiwarter S, Greene N. Prediction of in vivo pharmacokinetic parameters and time-exposure curves in rats using machine learning from the chemical structure. Mol Pharm. 2022;19(5):1488–504.PubMedCrossRef Obrezanova O, Martinsson A, Whitehead T, Mahmoud S, Bender A, Miljković F, Grabowski P, Irwin B, Oprisiu I, Conduit G, Segall M, Smith GF, Williamson B, Winiwarter S, Greene N. Prediction of in vivo pharmacokinetic parameters and time-exposure curves in rats using machine learning from the chemical structure. Mol Pharm. 2022;19(5):1488–504.PubMedCrossRef
28.
Zurück zum Zitat Iwata H, Matsuo T, Mamada H, Motomura T, Matsushita M, Fujiwara T, Maeda K, Handa K. Predicting total drug clearance and volumes of distribution using the machine learning-mediated multimodal method through the imputation of various nonclinical data. J Chem Inf Model. 2022;62(17):4057–65.PubMedPubMedCentralCrossRef Iwata H, Matsuo T, Mamada H, Motomura T, Matsushita M, Fujiwara T, Maeda K, Handa K. Predicting total drug clearance and volumes of distribution using the machine learning-mediated multimodal method through the imputation of various nonclinical data. J Chem Inf Model. 2022;62(17):4057–65.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Clark RD, Morris DN, Chinigo G, Lawless MS, Prudhomme J, et al. Design and tests of prospective property predictions for novel antimalarial 2-aminopropylaminoquinolones. J Comput Aided Mol Des. 2020;34(11):1117–32.PubMedPubMedCentralCrossRef Clark RD, Morris DN, Chinigo G, Lawless MS, Prudhomme J, et al. Design and tests of prospective property predictions for novel antimalarial 2-aminopropylaminoquinolones. J Comput Aided Mol Des. 2020;34(11):1117–32.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Daga PR, Bolger MB, Haworth IS, Clark RD, Martin EJ. Physiologically Based Pharmacokinetic Modeling in Lead Optimization. 2. Rational Bioavailability Design by Global Sensitivity Analysis To Identify Properties Affecting Bioavailability. Mol Pharm. 2018;15(3):831–39. Daga PR, Bolger MB, Haworth IS, Clark RD, Martin EJ. Physiologically Based Pharmacokinetic Modeling in Lead Optimization. 2. Rational Bioavailability Design by Global Sensitivity Analysis To Identify Properties Affecting Bioavailability. Mol Pharm. 2018;15(3):831–39.
38.
Zurück zum Zitat Eertink JJ, Heymans MW, Zwezerijnen GJC, Zijlstra JM, de Vet HCW, Boellaard R. External validation: a simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients. EJNMMI Res. 2022;12(1):58.PubMedPubMedCentralCrossRef Eertink JJ, Heymans MW, Zwezerijnen GJC, Zijlstra JM, de Vet HCW, Boellaard R. External validation: a simulation study to compare cross-validation versus holdout or external testing to assess the performance of clinical prediction models using PET data from DLBCL patients. EJNMMI Res. 2022;12(1):58.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Isbell J, Yuan D, Torrao L, Gatlik E, Hoffmann L, Wipfli P. Plasma protein binding of highly bound drugs determined with equilibrium gel filtration of nonradiolabeled compounds and LC-MS/MS detection. J Pharm Sci. 2019;108(2):1053–60.PubMedCrossRef Isbell J, Yuan D, Torrao L, Gatlik E, Hoffmann L, Wipfli P. Plasma protein binding of highly bound drugs determined with equilibrium gel filtration of nonradiolabeled compounds and LC-MS/MS detection. J Pharm Sci. 2019;108(2):1053–60.PubMedCrossRef
40.
Zurück zum Zitat Chen C, Zhou H, Guan C, Zhang H, Li Y, Jiang X, Dong Z, Tao Y, Du J, Wang S, Zhang T, Du N, Guo J, Wu Y, Song Z, Luan H, Wang Y, Du H, Zhang S, Li C, Chang H, Wang T. Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates: a microdialysis study in rats. Pharmacol Res Perspect. 2020;8(2): e00575.PubMedPubMedCentralCrossRef Chen C, Zhou H, Guan C, Zhang H, Li Y, Jiang X, Dong Z, Tao Y, Du J, Wang S, Zhang T, Du N, Guo J, Wu Y, Song Z, Luan H, Wang Y, Du H, Zhang S, Li C, Chang H, Wang T. Applicability of free drug hypothesis to drugs with good membrane permeability that are not efflux transporter substrates: a microdialysis study in rats. Pharmacol Res Perspect. 2020;8(2): e00575.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Riccardi K, Cawley S, Yates PD, Chang C, Funk C, Niosi M, Lin J, Di L. Plasma protein binding of challenging compounds. J Pharm Sci. 2015;104(8):2627–36.PubMedCrossRef Riccardi K, Cawley S, Yates PD, Chang C, Funk C, Niosi M, Lin J, Di L. Plasma protein binding of challenging compounds. J Pharm Sci. 2015;104(8):2627–36.PubMedCrossRef
44.
45.
47.
Zurück zum Zitat César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, et al. A call for systematic research on solute carriers. Cell. 2015;162(3):478–87.PubMedCrossRef César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, et al. A call for systematic research on solute carriers. Cell. 2015;162(3):478–87.PubMedCrossRef
48.
Zurück zum Zitat Mikkaichi T, Nakai D, Yoshigae Y, Imaoka T, Okudaira N, Izumi T. Liver-selective distribution in rats supports the importance of active uptake into the liver via organic anion transporting polypeptides (OATPs) in humans. Drug Metab Pharmacokinet. 2015;30(5):334–40.PubMedCrossRef Mikkaichi T, Nakai D, Yoshigae Y, Imaoka T, Okudaira N, Izumi T. Liver-selective distribution in rats supports the importance of active uptake into the liver via organic anion transporting polypeptides (OATPs) in humans. Drug Metab Pharmacokinet. 2015;30(5):334–40.PubMedCrossRef
49.
Zurück zum Zitat Kawai R, Lemaire M, Steimer JL, Bruelisauer A, Niederberger W, Rowland M. Physiologically based pharmacokinetic study on a cyclosporin derivative, SDZ IMM 125. J Pharmacokinet Biopharm. 1994;22(5):327–65.PubMedCrossRef Kawai R, Lemaire M, Steimer JL, Bruelisauer A, Niederberger W, Rowland M. Physiologically based pharmacokinetic study on a cyclosporin derivative, SDZ IMM 125. J Pharmacokinet Biopharm. 1994;22(5):327–65.PubMedCrossRef
50.
Zurück zum Zitat Orozco CC, Atkinson K, Ryu S, Chang G, Keefer C, Lin J, et al. Structural attributes influencing unbound tissue distribution. Eur J Med Chem. 2020;185: 111813.PubMedCrossRef Orozco CC, Atkinson K, Ryu S, Chang G, Keefer C, Lin J, et al. Structural attributes influencing unbound tissue distribution. Eur J Med Chem. 2020;185: 111813.PubMedCrossRef
51.
Zurück zum Zitat Tiwari R, Jaimini M, Mohan S, Sharma S. Transdermal drug delivery system: a review. Int J Ther Appl. 2013;14:22–8. Tiwari R, Jaimini M, Mohan S, Sharma S. Transdermal drug delivery system: a review. Int J Ther Appl. 2013;14:22–8.
52.
Zurück zum Zitat Baba H, Ueno Y, Hashida M, Yamashita F. Quantitative prediction of ionization effect on human skin permeability. Int J Pharm. 2017;522(1–2):222–33.PubMedCrossRef Baba H, Ueno Y, Hashida M, Yamashita F. Quantitative prediction of ionization effect on human skin permeability. Int J Pharm. 2017;522(1–2):222–33.PubMedCrossRef
53.
Zurück zum Zitat Baba H, Takahara J, Mamitsuka H. In silico predictions of human skin permeability using nonlinear quantitative structure-property relationship models. Pharm Res. 2015;32(7):2360–71.PubMedCrossRef Baba H, Takahara J, Mamitsuka H. In silico predictions of human skin permeability using nonlinear quantitative structure-property relationship models. Pharm Res. 2015;32(7):2360–71.PubMedCrossRef
54.
Zurück zum Zitat Baba H, Takahara J, Yamashita F, Hashida M. Modeling and prediction of solvent effect on human skin permeability using support vector regression and random forest. Pharm Res. 2015;32(11):3604–17.PubMedCrossRef Baba H, Takahara J, Yamashita F, Hashida M. Modeling and prediction of solvent effect on human skin permeability using support vector regression and random forest. Pharm Res. 2015;32(11):3604–17.PubMedCrossRef
55.
Zurück zum Zitat Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R. Comparison of different approaches to define the applicability domain of QSAR models. Molecules. 2012;17(5):4791–810.PubMedPubMedCentralCrossRef Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R. Comparison of different approaches to define the applicability domain of QSAR models. Molecules. 2012;17(5):4791–810.PubMedPubMedCentralCrossRef
Metadaten
Titel
Development of a 2D-QSAR Model for Tissue-to-Plasma Partition Coefficient Value with High Accuracy Using Machine Learning Method, Minimum Required Experimental Values, and Physicochemical Descriptors
verfasst von
Koichi Handa
Seishiro Sakamoto
Michiharu Kageyama
Takeshi Iijima
Publikationsdatum
02.06.2023
Verlag
Springer International Publishing
Erschienen in
European Journal of Drug Metabolism and Pharmacokinetics / Ausgabe 4/2023
Print ISSN: 0378-7966
Elektronische ISSN: 2107-0180
DOI
https://doi.org/10.1007/s13318-023-00832-w

Weitere Artikel der Ausgabe 4/2023

European Journal of Drug Metabolism and Pharmacokinetics 4/2023 Zur Ausgabe