Skip to main content
Erschienen in: Medical Microbiology and Immunology 2/2019

22.01.2019 | Original Investigation

Development of a novel multiepitope chimeric vaccine against anthrax

verfasst von: Somya Aggarwal, Vikas Kumar Somani, Sonal Gupta, Rajni Garg, Rakesh Bhatnagar

Erschienen in: Medical Microbiology and Immunology | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Bacillus anthracis (BA), the etiological agent of anthrax, secretes protective antigen (PA), lethal factor (LF), and edema factor (EF) as major virulence mediators. Amongst these, PA-based vaccines are most effective for providing immunity against BA, but their low shelf life limits their usage. Previous studies showed that B-cell epitopes, ID II and ID III present in PA domain IV possess higher toxin neutralization activity and elicit higher antibody titer than ID I. Moreover, N-terminal region of both LF and EF harbors PA-binding sites which share 100% identity with each other. Here, in this study, we have developed an epitope-based chimeric vaccine (ID–LFn) comprising ID II–ID III region of PA and N-terminal region of LF. We have also evaluated its protective efficacy as well as stability and found it to be more stable than PA-based vaccine. Binding reactivities of ID–LFn with anti-PA/LF/EF antibodies were determined by ELISA. The stability of chimeric vaccine was assessed using circular dichroism spectroscopy. ID–LFn response was characterized by toxin neutralization, lymphocyte proliferation isotyping and cytokine profiling. The protective efficacy was analyzed by challenging ID–LFn-immunized mice with B. anthracis (pXO1+ and pXO2+). ID–LFn was found to be significantly stable as compared to PA. Anti-ID–LFn antibodies recognized PA, LF as well as EF. The T-cell response and the protective efficacy of ID–LFn were found to be almost similar to PA. ID–LFn exhibits equal protective efficacy in mice and possesses more stability as compared to PA along with the capability of recognizing PA, LF and EF at the same time. Thus, it can be considered as an improved vaccine against anthrax with better shelf life.

Graphical abstract

ID-LFn, a novel multiepitope chimeric anthrax vaccine: ID-LFn comprises of immunodominant epitopes of domain 4 of PA and N-terminal homologous stretch of LF and EF. The administration of this protein as a vaccine provides protection against anthrax.
Literatur
1.
Zurück zum Zitat Lamps LW, Havens JM, Sjostedt A, Page DL, Scott MA (2004) Histologic and molecular diagnosis of tularemia: a potential bioterrorism agent endemic to North America. Mod Pathol 17(5):489CrossRefPubMed Lamps LW, Havens JM, Sjostedt A, Page DL, Scott MA (2004) Histologic and molecular diagnosis of tularemia: a potential bioterrorism agent endemic to North America. Mod Pathol 17(5):489CrossRefPubMed
2.
Zurück zum Zitat Riedel S (2005) Anthrax: a continuing concern in the era of bioterrorism. Proc Baylor Univ Med Center. 18(3):234CrossRef Riedel S (2005) Anthrax: a continuing concern in the era of bioterrorism. Proc Baylor Univ Med Center. 18(3):234CrossRef
3.
Zurück zum Zitat Grundmann O (2014) The current state of bioterrorist attack surveillance and preparedness in the US. Risk Manage Healthcare Pol 7:177CrossRef Grundmann O (2014) The current state of bioterrorist attack surveillance and preparedness in the US. Risk Manage Healthcare Pol 7:177CrossRef
4.
Zurück zum Zitat Cogliati S, Costa J, Ayala F, Donato V, Grau R (2016) Bacterial spores and its relatives as agents of mass destruction. J Bioterror Biodef 7:141CrossRef Cogliati S, Costa J, Ayala F, Donato V, Grau R (2016) Bacterial spores and its relatives as agents of mass destruction. J Bioterror Biodef 7:141CrossRef
5.
Zurück zum Zitat Cybulski RJ Jr, Sanz P, O’Brien AD (2009) Anthrax vaccination strategies. Mol Asp Med 30(6):490–502CrossRef Cybulski RJ Jr, Sanz P, O’Brien AD (2009) Anthrax vaccination strategies. Mol Asp Med 30(6):490–502CrossRef
6.
Zurück zum Zitat Kaur M, Bhatnagar R (2011) Recent progress in the development of anthrax vaccines. Recent Patents Biotechnol 5(3):148–159CrossRef Kaur M, Bhatnagar R (2011) Recent progress in the development of anthrax vaccines. Recent Patents Biotechnol 5(3):148–159CrossRef
8.
Zurück zum Zitat Merkel TJ, Perera P-Y, Lee GM, Verma A, Hiroi T, Yokote H et al (2013) Protective-antigen (PA) based anthrax vaccines confer protection against inhalation anthrax by precluding the establishment of a systemic infection. Hum Vaccines Immunother 9(9):1841–1848CrossRef Merkel TJ, Perera P-Y, Lee GM, Verma A, Hiroi T, Yokote H et al (2013) Protective-antigen (PA) based anthrax vaccines confer protection against inhalation anthrax by precluding the establishment of a systemic infection. Hum Vaccines Immunother 9(9):1841–1848CrossRef
9.
Zurück zum Zitat Kaur M, Chug H, Singh H, Chandra S, Mishra M, Sharma M et al (2009) Identification and characterization of immunodominant B-cell epitope of the C-terminus of protective antigen of Bacillus anthracis. Mol Immunol 46(10):2107–2115CrossRefPubMed Kaur M, Chug H, Singh H, Chandra S, Mishra M, Sharma M et al (2009) Identification and characterization of immunodominant B-cell epitope of the C-terminus of protective antigen of Bacillus anthracis. Mol Immunol 46(10):2107–2115CrossRefPubMed
10.
Zurück zum Zitat Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385(6619):833CrossRefPubMed Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddington RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385(6619):833CrossRefPubMed
11.
Zurück zum Zitat Williams AS, Lovell S, Anbanandam A, El-Chami R, Bann JG (2009) Domain 4 of the anthrax protective antigen maintains structure and binding to the host receptor CMG2 at low pH. Protein Sci 18(11):2277–2286CrossRefPubMedPubMedCentral Williams AS, Lovell S, Anbanandam A, El-Chami R, Bann JG (2009) Domain 4 of the anthrax protective antigen maintains structure and binding to the host receptor CMG2 at low pH. Protein Sci 18(11):2277–2286CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Flick-Smith HC, Walker NJ, Gibson P, Bullifent H, Hayward S, Miller J et al (2002) A recombinant carboxy-terminal domain of the protective antigen of Bacillus anthracis protects mice against anthrax infection. Infect Immun 70(3):1653–1656CrossRefPubMedPubMedCentral Flick-Smith HC, Walker NJ, Gibson P, Bullifent H, Hayward S, Miller J et al (2002) A recombinant carboxy-terminal domain of the protective antigen of Bacillus anthracis protects mice against anthrax infection. Infect Immun 70(3):1653–1656CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Price BM, Liner AL, Park S, Leppla SH, Mateczun A, Galloway DR (2001) Protection against anthrax lethal toxin challenge by genetic immunization with a plasmid encoding the lethal factor protein. Infect Immun 69(7):4509–4515CrossRefPubMedPubMedCentral Price BM, Liner AL, Park S, Leppla SH, Mateczun A, Galloway DR (2001) Protection against anthrax lethal toxin challenge by genetic immunization with a plasmid encoding the lethal factor protein. Infect Immun 69(7):4509–4515CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kulshreshtha P, Bhatnagar R (2011) Inhibition of anthrax toxins with a bispecific monoclonal antibody that cross reacts with edema factor as well as lethal factor of Bacillus anthracis. Mol Immunol 48(15–16):1958–1965CrossRefPubMed Kulshreshtha P, Bhatnagar R (2011) Inhibition of anthrax toxins with a bispecific monoclonal antibody that cross reacts with edema factor as well as lethal factor of Bacillus anthracis. Mol Immunol 48(15–16):1958–1965CrossRefPubMed
15.
Zurück zum Zitat Lacy DB, Mourez M, Fouassier A, Collier RJ (2002) Mapping the anthrax protective antigen binding site on the lethal and edema factors. J Biol Chem 277(4):3006–3010CrossRefPubMed Lacy DB, Mourez M, Fouassier A, Collier RJ (2002) Mapping the anthrax protective antigen binding site on the lethal and edema factors. J Biol Chem 277(4):3006–3010CrossRefPubMed
16.
Zurück zum Zitat Nguyen ML, Terzyan S, Ballard JD, James JA, Farris AD (2009) The major neutralizing antibody responses to recombinant anthrax lethal and edema factors are directed to non-cross-reactive epitopes. Infect Immun 77(11):4714–4723CrossRefPubMedPubMedCentral Nguyen ML, Terzyan S, Ballard JD, James JA, Farris AD (2009) The major neutralizing antibody responses to recombinant anthrax lethal and edema factors are directed to non-cross-reactive epitopes. Infect Immun 77(11):4714–4723CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Robinson A, Farrar GH, Wiblin CN (2003) Vaccine protocols. Springer, New YorkCrossRef Robinson A, Farrar GH, Wiblin CN (2003) Vaccine protocols. Springer, New YorkCrossRef
18.
Zurück zum Zitat Singh D, Somani VK, Aggarwal S, Bhatnagar R (2015) PLGA (85: 15) nanoparticle based delivery of rL7/L12 ribosomal protein in mice protects against Brucella abortus 544 infection: a promising alternate to traditional adjuvants. Mol Immunol 68(2):272–279CrossRefPubMed Singh D, Somani VK, Aggarwal S, Bhatnagar R (2015) PLGA (85: 15) nanoparticle based delivery of rL7/L12 ribosomal protein in mice protects against Brucella abortus 544 infection: a promising alternate to traditional adjuvants. Mol Immunol 68(2):272–279CrossRefPubMed
19.
Zurück zum Zitat Somani VK, Aggarwal S, Singh D, Prasad T, Bhatnagar R (2016) Identification of novel raft marker protein, FlotP in Bacillus anthracis. Front Microbiol 7:169CrossRefPubMedPubMedCentral Somani VK, Aggarwal S, Singh D, Prasad T, Bhatnagar R (2016) Identification of novel raft marker protein, FlotP in Bacillus anthracis. Front Microbiol 7:169CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Aggarwal S, Somani VK, Gupta V, Kaur J, Singh D, Grover A et al. Functional characterization of PhoPR two component system and its implication in regulating phosphate homeostasis in Bacillus anthracis. Biochimica et Biophysica Acta (BBA)-general subjects. 2017;1861(1):2956–2970 Aggarwal S, Somani VK, Gupta V, Kaur J, Singh D, Grover A et al. Functional characterization of PhoPR two component system and its implication in regulating phosphate homeostasis in Bacillus anthracis. Biochimica et Biophysica Acta (BBA)-general subjects. 2017;1861(1):2956–2970
21.
Zurück zum Zitat Quinn CP, Sabourin CL, Niemuth NA, Li H, Semenova VA, Rudge TL et al (2012) A three-dose intramuscular injection schedule of anthrax vaccine adsorbed generates sustained humoral and cellular immune responses to protective antigen and provides long-term protection against inhalation anthrax in rhesus macaques. Clin Vaccine Immunol 19(11):1730–1745CrossRefPubMedPubMedCentral Quinn CP, Sabourin CL, Niemuth NA, Li H, Semenova VA, Rudge TL et al (2012) A three-dose intramuscular injection schedule of anthrax vaccine adsorbed generates sustained humoral and cellular immune responses to protective antigen and provides long-term protection against inhalation anthrax in rhesus macaques. Clin Vaccine Immunol 19(11):1730–1745CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Manish M, Rahi A, Kaur M, Bhatnagar R, Singh S (2013) A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLoS One 8(4):e61885CrossRefPubMedPubMedCentral Manish M, Rahi A, Kaur M, Bhatnagar R, Singh S (2013) A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLoS One 8(4):e61885CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Organizaion WH (2009) Guidelines on stability evaluation of vaccines. Biologicals 37(6):424–434CrossRef Organizaion WH (2009) Guidelines on stability evaluation of vaccines. Biologicals 37(6):424–434CrossRef
24.
Zurück zum Zitat Friedlander AM, Little SF (2009) Advances in the development of next-generation anthrax vaccines. Vaccine 27:D28–D32CrossRefPubMed Friedlander AM, Little SF (2009) Advances in the development of next-generation anthrax vaccines. Vaccine 27:D28–D32CrossRefPubMed
25.
Zurück zum Zitat Kaur M, Singh S, Bhatnagar R (2013) Anthrax vaccines: present status and future prospects. Expert Rev vaccines 12(8):955–970CrossRefPubMed Kaur M, Singh S, Bhatnagar R (2013) Anthrax vaccines: present status and future prospects. Expert Rev vaccines 12(8):955–970CrossRefPubMed
26.
Zurück zum Zitat Little SF, Leppla SH, Cora E (1988) Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin. Infect Immun 56(7):1807–1813PubMedPubMedCentral Little SF, Leppla SH, Cora E (1988) Production and characterization of monoclonal antibodies to the protective antigen component of Bacillus anthracis toxin. Infect Immun 56(7):1807–1813PubMedPubMedCentral
27.
Zurück zum Zitat Sinha K, Bhatnagar R (2010) GroEL provides protection against Bacillus anthracis infection in BALB/c mice. Mol Immunol 48(1–3):264–271CrossRefPubMed Sinha K, Bhatnagar R (2010) GroEL provides protection against Bacillus anthracis infection in BALB/c mice. Mol Immunol 48(1–3):264–271CrossRefPubMed
28.
Zurück zum Zitat Aggarwal S, Somani VK, Bhatnagar R (2015) Phosphate starvation enhances the pathogenesis of Bacillus anthracis. Int J Med Microbiol 305(6):523–531CrossRefPubMed Aggarwal S, Somani VK, Bhatnagar R (2015) Phosphate starvation enhances the pathogenesis of Bacillus anthracis. Int J Med Microbiol 305(6):523–531CrossRefPubMed
29.
Zurück zum Zitat Pitt M, Little S, Ivins B, Fellows P, Boles J, Barth J et al (1999) In vitro correlate of immunity in an animal model of inhalational anthrax. J Appl Microbiol 87(2):304-CrossRefPubMed Pitt M, Little S, Ivins B, Fellows P, Boles J, Barth J et al (1999) In vitro correlate of immunity in an animal model of inhalational anthrax. J Appl Microbiol 87(2):304-CrossRefPubMed
30.
Zurück zum Zitat Baillie LW, Huwar TB, Moore S, Mellado-Sanchez G, Rodriguez L, Neeson BN et al (2010) An anthrax subunit vaccine candidate based on protective regions of Bacillus anthracis protective antigen and lethal factor. Vaccine 28(41):6740–6748CrossRefPubMedPubMedCentral Baillie LW, Huwar TB, Moore S, Mellado-Sanchez G, Rodriguez L, Neeson BN et al (2010) An anthrax subunit vaccine candidate based on protective regions of Bacillus anthracis protective antigen and lethal factor. Vaccine 28(41):6740–6748CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Suryanarayana N, Verma M, Thavachelvam K, Saxena N, Mankere B, Tuteja U et al (2016) Generation of a novel chimeric PALFn antigen of Bacillus anthracis and its immunological characterization in mouse model. Appl Microbiol Biotechnol 100(19):8439–8451CrossRefPubMed Suryanarayana N, Verma M, Thavachelvam K, Saxena N, Mankere B, Tuteja U et al (2016) Generation of a novel chimeric PALFn antigen of Bacillus anthracis and its immunological characterization in mouse model. Appl Microbiol Biotechnol 100(19):8439–8451CrossRefPubMed
32.
Zurück zum Zitat Varshney A, Puranik N, Kumar M, Goel A (2016) Immunogenecity of a chimeric protein of Bacillus anthracis protective antigen and lethal factor in murine model. Int J Infect Dis 45:426 Varshney A, Puranik N, Kumar M, Goel A (2016) Immunogenecity of a chimeric protein of Bacillus anthracis protective antigen and lethal factor in murine model. Int J Infect Dis 45:426
Metadaten
Titel
Development of a novel multiepitope chimeric vaccine against anthrax
verfasst von
Somya Aggarwal
Vikas Kumar Somani
Sonal Gupta
Rajni Garg
Rakesh Bhatnagar
Publikationsdatum
22.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical Microbiology and Immunology / Ausgabe 2/2019
Print ISSN: 0300-8584
Elektronische ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-019-00577-x

Weitere Artikel der Ausgabe 2/2019

Medical Microbiology and Immunology 2/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.