Skip to main content
Erschienen in: Seminars in Immunopathology 3/2022

01.03.2022 | Review

Development of vascular disease models to explore disease causation and pathomechanisms of rare vascular diseases

verfasst von: Rebecca L. Harper, Elisa A. Ferrante, Manfred Boehm

Erschienen in: Seminars in Immunopathology | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

As the field of medicine is striving forward heralded by a new era of next-generation sequencing (NGS) and integrated technologies such as bioprinting and biological material development, the utility of rare monogenetic vascular disease modeling in this landscape is starting to emerge. With their genetic simplicity and broader applicability, these patient-specific models are at the forefront of modern personalized medicine. As a collective, rare diseases are a significant burden on global healthcare systems, and rare vascular diseases make up a significant proportion of this. High costs are due to a lengthy diagnostic process, affecting all ages from infants to adults, as well as the severity and chronic nature of the disease. Their complex nature requires sophisticated disease models and integrated approaches involving multidisciplinary teams. Here, we review these emerging vascular disease models, how they contribute to our understanding of the pathomechanisms in rare vascular diseases and provide useful platforms for therapeutic discovery.
Literatur
1.
Zurück zum Zitat Boycott KM, Ardigó D (2018) Addressing challenges in the diagnosis and treatment of rare genetic diseases. Nat Rev Drug Discovery 17:151–152PubMedCrossRef Boycott KM, Ardigó D (2018) Addressing challenges in the diagnosis and treatment of rare genetic diseases. Nat Rev Drug Discovery 17:151–152PubMedCrossRef
2.
Zurück zum Zitat Dawkins HJS, Draghia-Akli R, Lasko P, Lau LPL, Jonker AH, Cutillo CM, Rath A, Boycott KM, Baynam G, Lochmüller H, Kaufmann P, Le Cam Y, Hivert V, Austin CP (2018) Progress in rare diseases research 2010–2016: an IRDiRC perspective. Clin Transl Sci 11:11–20PubMedCrossRef Dawkins HJS, Draghia-Akli R, Lasko P, Lau LPL, Jonker AH, Cutillo CM, Rath A, Boycott KM, Baynam G, Lochmüller H, Kaufmann P, Le Cam Y, Hivert V, Austin CP (2018) Progress in rare diseases research 2010–2016: an IRDiRC perspective. Clin Transl Sci 11:11–20PubMedCrossRef
3.
Zurück zum Zitat Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, Korolj A, Ahadian S, Radisic M (2019) Cardiovascular disease models: a game changing paradigm in drug discovery and screening. Biomaterials 198:3–26PubMedCrossRef Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, Korolj A, Ahadian S, Radisic M (2019) Cardiovascular disease models: a game changing paradigm in drug discovery and screening. Biomaterials 198:3–26PubMedCrossRef
4.
Zurück zum Zitat Mensah GA, Roth GA, Fuster V (2019) The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol 74:2529–2532PubMedCrossRef Mensah GA, Roth GA, Fuster V (2019) The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am Coll Cardiol 74:2529–2532PubMedCrossRef
5.
Zurück zum Zitat Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E et al (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 76:2982–3021PubMedPubMedCentralCrossRef Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E et al (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol 76:2982–3021PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Boycott KM, Rath A, Chong JX, Hartley T, Alkuraya FS, Baynam G, Brookes AJ, Brudno M, Carracedo A, den Dunnen JT, Dyke SOM, Estivill X, Goldblatt J, Gonthier C, Groft SC, Gut I, Hamosh A, Hieter P, Höhn S, Hurles ME, Kaufmann P, Knoppers BM, Krischer JP, Macek M Jr, Matthijs G, Olry A, Parker S, Paschall J, Philippakis AA, Rehm HL, Robinson PN, Sham PC, Stefanov R, Taruscio D, Unni D, Vanstone MR, Zhang F, Brunner H, Bamshad MJ, Lochmüller H (2017) International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet 100:695–705PubMedPubMedCentralCrossRef Boycott KM, Rath A, Chong JX, Hartley T, Alkuraya FS, Baynam G, Brookes AJ, Brudno M, Carracedo A, den Dunnen JT, Dyke SOM, Estivill X, Goldblatt J, Gonthier C, Groft SC, Gut I, Hamosh A, Hieter P, Höhn S, Hurles ME, Kaufmann P, Knoppers BM, Krischer JP, Macek M Jr, Matthijs G, Olry A, Parker S, Paschall J, Philippakis AA, Rehm HL, Robinson PN, Sham PC, Stefanov R, Taruscio D, Unni D, Vanstone MR, Zhang F, Brunner H, Bamshad MJ, Lochmüller H (2017) International cooperation to enable the diagnosis of all rare genetic diseases. Am J Hum Genet 100:695–705PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Fernandez-Marmiesse A, Gouveia S, Couce ML (2018) NGS technologies as a turning point in rare disease research, diagnosis and treatment. Curr Med Chem 25:404–432PubMedPubMedCentralCrossRef Fernandez-Marmiesse A, Gouveia S, Couce ML (2018) NGS technologies as a turning point in rare disease research, diagnosis and treatment. Curr Med Chem 25:404–432PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Hood L, Tian Q (2012) Systems approaches to biology and disease enable translational systems medicine. Genomics Proteomics Bioinformatics 10:181–185PubMedPubMedCentralCrossRef Hood L, Tian Q (2012) Systems approaches to biology and disease enable translational systems medicine. Genomics Proteomics Bioinformatics 10:181–185PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Wu L, Schaid DJ, Sicotte H, Wieben ED, Li H, Petersen GM (2015) Case-only exome sequencing and complex disease susceptibility gene discovery: study design considerations. J Med Genet 52:10–16PubMedCrossRef Wu L, Schaid DJ, Sicotte H, Wieben ED, Li H, Petersen GM (2015) Case-only exome sequencing and complex disease susceptibility gene discovery: study design considerations. J Med Genet 52:10–16PubMedCrossRef
10.
Zurück zum Zitat Lippi M, Stadiotti I, Pompilio G, Sommariva E (2020) Human cell modeling for cardiovascular diseases. Int J Mol Sci 21:6388PubMedCentralCrossRef Lippi M, Stadiotti I, Pompilio G, Sommariva E (2020) Human cell modeling for cardiovascular diseases. Int J Mol Sci 21:6388PubMedCentralCrossRef
11.
Zurück zum Zitat Schuchardt M, Siegel NV, Babic M, Reshetnik A, Lützenberg R, Zidek W, van der Giet M, Tölle M (2020) A novel long-term ex vivo model for studying vascular calcification pathogenesis: the rat isolated-perfused aorta. J Vasc Res 57:46–52PubMedCrossRef Schuchardt M, Siegel NV, Babic M, Reshetnik A, Lützenberg R, Zidek W, van der Giet M, Tölle M (2020) A novel long-term ex vivo model for studying vascular calcification pathogenesis: the rat isolated-perfused aorta. J Vasc Res 57:46–52PubMedCrossRef
12.
Zurück zum Zitat Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F, Calabria A, Giannelli S, Castiello MC, Bosticardo M, Evangelio C, Assanelli A, Casiraghi M, Di Nunzio S, Callegaro L, Benati C, Rizzardi P, Pellin D, Di Serio C, Schmidt M, Von Kalle C, Gardner J, Mehta N, Neduva V, Dow DJ, Galy A, Miniero R, Finocchi A, Metin A, Banerjee PP, Orange JS, Galimberti S, Valsecchi MG, Biffi A, Montini E, Villa A, Ciceri F, Roncarolo MG, Naldini L. 2013. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341 Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, Dionisio F, Calabria A, Giannelli S, Castiello MC, Bosticardo M, Evangelio C, Assanelli A, Casiraghi M, Di Nunzio S, Callegaro L, Benati C, Rizzardi P, Pellin D, Di Serio C, Schmidt M, Von Kalle C, Gardner J, Mehta N, Neduva V, Dow DJ, Galy A, Miniero R, Finocchi A, Metin A, Banerjee PP, Orange JS, Galimberti S, Valsecchi MG, Biffi A, Montini E, Villa A, Ciceri F, Roncarolo MG, Naldini L. 2013. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science 341
13.
Zurück zum Zitat St Hilaire C, Ziegler SG, Markello TC, Brusco A, Groden C, Gill F, Carlson-Donohoe H, Lederman RJ, Chen MY, Yang D, Siegenthaler MP, Arduino C, Mancini C, Freudenthal B, Stanescu HC, Zdebik AA, Chaganti RK, Nussbaum RL, Kleta R, Gahl WA, Boehm M (2011) NT5E mutations and arterial calcifications. N Engl J Med 364:432–442PubMedPubMedCentralCrossRef St Hilaire C, Ziegler SG, Markello TC, Brusco A, Groden C, Gill F, Carlson-Donohoe H, Lederman RJ, Chen MY, Yang D, Siegenthaler MP, Arduino C, Mancini C, Freudenthal B, Stanescu HC, Zdebik AA, Chaganti RK, Nussbaum RL, Kleta R, Gahl WA, Boehm M (2011) NT5E mutations and arterial calcifications. N Engl J Med 364:432–442PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Jin H, St Hilaire C, Huang Y, Yang D, Dmitrieva NI, Negro A, Schwartzbeck R, Liu Y, Yu Z, Walts A, Davaine JM, Lee DY, Donahue D, Hsu KS, Chen J, Cheng T, Gahl W, Chen G, Boehm M. 2016. Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC. Sci Signal 9: ra121 Jin H, St Hilaire C, Huang Y, Yang D, Dmitrieva NI, Negro A, Schwartzbeck R, Liu Y, Yu Z, Walts A, Davaine JM, Lee DY, Donahue D, Hsu KS, Chen J, Cheng T, Gahl W, Chen G, Boehm M. 2016. Increased activity of TNAP compensates for reduced adenosine production and promotes ectopic calcification in the genetic disease ACDC. Sci Signal 9: ra121
15.
Zurück zum Zitat Brofferio A. 2012. Etidronate for arterial calcifications due to deficiency in CD73 (ACDC). clinicaltrials.gov Brofferio A. 2012. Etidronate for arterial calcifications due to deficiency in CD73 (ACDC). clinicaltrials.gov
16.
Zurück zum Zitat Dmitrieva NI, Walts AD, Nguyen DP, Grubb A, Zhang X, Wang X, Ping X, Jin H, Yu Z, Yu ZX, Yang D, Schwartzbeck R, Dalgard CL, Kozel BA, Levin MD, Knutsen RH, Liu D, Milner JD, López DB, O’Connell MP, Lee CR, Myles IA, Hsu AP, Freeman AF, Holland SM, Chen G, Boehm M (2020) Impaired angiogenesis and extracellular matrix metabolism in autosomal-dominant hyper-IgE syndrome. J Clin Invest 130:4167–4181PubMedPubMedCentral Dmitrieva NI, Walts AD, Nguyen DP, Grubb A, Zhang X, Wang X, Ping X, Jin H, Yu Z, Yu ZX, Yang D, Schwartzbeck R, Dalgard CL, Kozel BA, Levin MD, Knutsen RH, Liu D, Milner JD, López DB, O’Connell MP, Lee CR, Myles IA, Hsu AP, Freeman AF, Holland SM, Chen G, Boehm M (2020) Impaired angiogenesis and extracellular matrix metabolism in autosomal-dominant hyper-IgE syndrome. J Clin Invest 130:4167–4181PubMedPubMedCentral
17.
Zurück zum Zitat Sawada H, Saito T, Nickel NP, Alastalo TP, Glotzbach JP, Chan R, Haghighat L, Fuchs G, Januszyk M, Cao A, Lai YJ, Perez VDJ, Kim YM, Wang L, Chen PI, Spiekerkoetter E, Mitani Y, Gurtner GC, Sarnow P, Rabinovitch M (2014) Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension. J Exp Med 211:263–280PubMedPubMedCentralCrossRef Sawada H, Saito T, Nickel NP, Alastalo TP, Glotzbach JP, Chan R, Haghighat L, Fuchs G, Januszyk M, Cao A, Lai YJ, Perez VDJ, Kim YM, Wang L, Chen PI, Spiekerkoetter E, Mitani Y, Gurtner GC, Sarnow P, Rabinovitch M (2014) Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension. J Exp Med 211:263–280PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Otsuki S, Saito T, Taylor S, Li D, Moonen J-R, Marciano DP, Harper RL, Cao A, Wang L, Ariza ME, Rabinovitch M. 2021. Monocyte-released HERV-K dUTPase engages TLR4 and MCAM causing endothelial mesenchymal transition. JCI Insight 6 Otsuki S, Saito T, Taylor S, Li D, Moonen J-R, Marciano DP, Harper RL, Cao A, Wang L, Ariza ME, Rabinovitch M. 2021. Monocyte-released HERV-K dUTPase engages TLR4 and MCAM causing endothelial mesenchymal transition. JCI Insight 6
19.
Zurück zum Zitat Song S, Yamamura A, Yamamura H, Ayon RJ, Smith KA, Tang H, Makino A, Yuan JX-J (2014) Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 307:C373–C383PubMedPubMedCentralCrossRef Song S, Yamamura A, Yamamura H, Ayon RJ, Smith KA, Tang H, Makino A, Yuan JX-J (2014) Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 307:C373–C383PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Kahaleh MB. 2004. Raynaud phenomenon and the vascular disease in scleroderma. Current Opinion in Rheumatology 16 Kahaleh MB. 2004. Raynaud phenomenon and the vascular disease in scleroderma. Current Opinion in Rheumatology 16
21.
Zurück zum Zitat Burger D, Touyz RM (2012) Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J Am Soc Hypertens 6:85–99PubMedCrossRef Burger D, Touyz RM (2012) Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J Am Soc Hypertens 6:85–99PubMedCrossRef
22.
Zurück zum Zitat Farinacci M, Krahn T, Dinh W, Volk H-D, Düngen H-D, Wagner J, Konen T, von Ahsen O (2019) Circulating endothelial cells as biomarker for cardiovascular diseases. Research and Practice in Thrombosis and Haemostasis 3:49–58PubMedCrossRef Farinacci M, Krahn T, Dinh W, Volk H-D, Düngen H-D, Wagner J, Konen T, von Ahsen O (2019) Circulating endothelial cells as biomarker for cardiovascular diseases. Research and Practice in Thrombosis and Haemostasis 3:49–58PubMedCrossRef
23.
Zurück zum Zitat Ormiston ML, Toshner MR, Kiskin FN, Huang CJ, Groves E, Morrell NW, Rana AA. 2015. Generation and culture of blood outgrowth endothelial cells from human peripheral blood. J Vis Exp: e53384 Ormiston ML, Toshner MR, Kiskin FN, Huang CJ, Groves E, Morrell NW, Rana AA. 2015. Generation and culture of blood outgrowth endothelial cells from human peripheral blood. J Vis Exp: e53384
24.
Zurück zum Zitat Theilmann AL, Hawke LG, Hilton LR, Whitford MKM, Cole DV, Mackeil JL, Dunham-Snary KJ, Mewburn J, James PD, Maurice DH, Archer SL, Ormiston ML (2020) Endothelial <i>BMPR2</i> loss drives a proliferative response to BMP (bone morphogenetic protein) 9 via prolonged canonical signaling. Arterioscler Thromb Vasc Biol 40:2605–2618PubMedPubMedCentralCrossRef Theilmann AL, Hawke LG, Hilton LR, Whitford MKM, Cole DV, Mackeil JL, Dunham-Snary KJ, Mewburn J, James PD, Maurice DH, Archer SL, Ormiston ML (2020) Endothelial <i>BMPR2</i> loss drives a proliferative response to BMP (bone morphogenetic protein) 9 via prolonged canonical signaling. Arterioscler Thromb Vasc Biol 40:2605–2618PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Harper RL, Maiolo S, Ward RJ, Seyfang J, Cockshell MP, Bonder CS, Reynolds PN (2019) BMPR2-expressing bone marrow-derived endothelial-like progenitor cells alleviate pulmonary arterial hypertension in vivo. Respirology 24:1095–1103PubMedCrossRef Harper RL, Maiolo S, Ward RJ, Seyfang J, Cockshell MP, Bonder CS, Reynolds PN (2019) BMPR2-expressing bone marrow-derived endothelial-like progenitor cells alleviate pulmonary arterial hypertension in vivo. Respirology 24:1095–1103PubMedCrossRef
26.
Zurück zum Zitat Sen S, McDonald SP, Coates TP, Bonder CS (2011) Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin Science 120:263–283CrossRef Sen S, McDonald SP, Coates TP, Bonder CS (2011) Endothelial progenitor cells: novel biomarker and promising cell therapy for cardiovascular disease. Clin Science 120:263–283CrossRef
27.
Zurück zum Zitat Ormiston ML, Deng Y, Stewart DJ, Courtman DW (2010) Innate immunity in the therapeutic actions of endothelial progenitor cells in pulmonary hypertension. Am J Respir Cell Mol Biol 43:546–554PubMedCrossRef Ormiston ML, Deng Y, Stewart DJ, Courtman DW (2010) Innate immunity in the therapeutic actions of endothelial progenitor cells in pulmonary hypertension. Am J Respir Cell Mol Biol 43:546–554PubMedCrossRef
28.
Zurück zum Zitat Yoder MC (2009) Defining human endothelial progenitor cells. J Thromb Haemost 7(Suppl 1):49–52PubMedCrossRef Yoder MC (2009) Defining human endothelial progenitor cells. J Thromb Haemost 7(Suppl 1):49–52PubMedCrossRef
29.
Zurück zum Zitat Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102PubMedCrossRef Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102PubMedCrossRef
30.
Zurück zum Zitat Ingram DA, Caplice NM, Yoder MC (2005) Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106:1525–1531PubMedCrossRef Ingram DA, Caplice NM, Yoder MC (2005) Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106:1525–1531PubMedCrossRef
31.
Zurück zum Zitat Spitalieri P, Talarico VR, Murdocca M, Novelli G, Sangiuolo F (2016) Human induced pluripotent stem cells for monogenic disease modelling and therapy. World journal of stem cells 8:118–135PubMedPubMedCentralCrossRef Spitalieri P, Talarico VR, Murdocca M, Novelli G, Sangiuolo F (2016) Human induced pluripotent stem cells for monogenic disease modelling and therapy. World journal of stem cells 8:118–135PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Chen D, Li Z, Liu Y, Sampaio N, Yang D, Aksentijevich I, Boehm M, Chen G. 2020. Human induced pluripotent stem cells generated from a patient with a homozygous L272P mutation in the OTULIN gene (NIHTVBi014-A). Stem Cell Res 47: 101921 Chen D, Li Z, Liu Y, Sampaio N, Yang D, Aksentijevich I, Boehm M, Chen G. 2020. Human induced pluripotent stem cells generated from a patient with a homozygous L272P mutation in the OTULIN gene (NIHTVBi014-A). Stem Cell Res 47: 101921
33.
Zurück zum Zitat Chen G, Li Z, Liu Y, Chen D, Beers J, Cudrici C, Ferrante EA, Schwartzbeck R, Dmitrieva N, Yang D, Zou J, Iruela-Arispe ML, Boehm M. 2020. Generation of human induced pluripotent stem cells (NIHTVBi004-A, NIHTVBi005-A, NIHTVBi006-A, NIHTVBi007-A, NIHTVBi008-A) from 5 CADASIL patients with NOTCH3 mutation. Stem Cell Res 45: 101821 Chen G, Li Z, Liu Y, Chen D, Beers J, Cudrici C, Ferrante EA, Schwartzbeck R, Dmitrieva N, Yang D, Zou J, Iruela-Arispe ML, Boehm M. 2020. Generation of human induced pluripotent stem cells (NIHTVBi004-A, NIHTVBi005-A, NIHTVBi006-A, NIHTVBi007-A, NIHTVBi008-A) from 5 CADASIL patients with NOTCH3 mutation. Stem Cell Res 45: 101821
34.
Zurück zum Zitat Jin H, Yu Z, Navarengom K, Liu Y, Dmitrieva N, Hsu AP, Schwartzbeck R, Cudrici C, Ferrante EA, Yang D, Holland SM, Freeman AF, Boehm M, Chen G. 2019. Generation of human induced pluripotent stem cell lines (NIHTVBi011-A, NIHTVBi012-A, NIHTVBi013-A) from autosomal dominant hyper IgE syndrome (AD-HIES) patients carrying STAT3 mutation. Stem Cell Res 41: 101586 Jin H, Yu Z, Navarengom K, Liu Y, Dmitrieva N, Hsu AP, Schwartzbeck R, Cudrici C, Ferrante EA, Yang D, Holland SM, Freeman AF, Boehm M, Chen G. 2019. Generation of human induced pluripotent stem cell lines (NIHTVBi011-A, NIHTVBi012-A, NIHTVBi013-A) from autosomal dominant hyper IgE syndrome (AD-HIES) patients carrying STAT3 mutation. Stem Cell Res 41: 101586
35.
Zurück zum Zitat Song H-Y, Yang Y-P, Chien Y, Lai W-Y, Lin Y-Y, Chou S-J, Wang M-L, Wang C-Y, Leu H-B, Yu W-C, Chien C-S (2021) Reversal of the inflammatory responses in fabry patient iPSC-derived cardiovascular endothelial cells by CRISPR/Cas9-corrected mutation. Int J Mol Sci 22:2381PubMedPubMedCentralCrossRef Song H-Y, Yang Y-P, Chien Y, Lai W-Y, Lin Y-Y, Chou S-J, Wang M-L, Wang C-Y, Leu H-B, Yu W-C, Chien C-S (2021) Reversal of the inflammatory responses in fabry patient iPSC-derived cardiovascular endothelial cells by CRISPR/Cas9-corrected mutation. Int J Mol Sci 22:2381PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Yoder MC. 2015. Differentiation of pluripotent stem cells into endothelial cells. Current Opinion in Hematology 22 Yoder MC. 2015. Differentiation of pluripotent stem cells into endothelial cells. Current Opinion in Hematology 22
37.
Zurück zum Zitat Adams William J, Zhang Y, Cloutier J, Kuchimanchi P, Newton G, Sehrawat S, Aird William C, Mayadas Tanya N, Luscinskas Francis W, García-Cardeña G (2013) Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Reports 1:105–113PubMedPubMedCentralCrossRef Adams William J, Zhang Y, Cloutier J, Kuchimanchi P, Newton G, Sehrawat S, Aird William C, Mayadas Tanya N, Luscinskas Francis W, García-Cardeña G (2013) Functional vascular endothelium derived from human induced pluripotent stem cells. Stem Cell Reports 1:105–113PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Peng GY, Lin Y, Li JJ, Wang Y, Huang HY, Shen ZY (2019) The application of induced pluripotent stem cells in pathogenesis study and gene therapy for vascular disorders: current progress and future challenges. Stem Cells Int 2019:9613258PubMedPubMedCentral Peng GY, Lin Y, Li JJ, Wang Y, Huang HY, Shen ZY (2019) The application of induced pluripotent stem cells in pathogenesis study and gene therapy for vascular disorders: current progress and future challenges. Stem Cells Int 2019:9613258PubMedPubMedCentral
39.
Zurück zum Zitat Di Bernardini E, Campagnolo P, Margariti A, Zampetaki A, Karamariti E, Hu Y, Xu Q (2014) Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor β2 (TGF-β2) pathways*. J Biol Chem 289:3383–3393PubMedCrossRef Di Bernardini E, Campagnolo P, Margariti A, Zampetaki A, Karamariti E, Hu Y, Xu Q (2014) Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor β2 (TGF-β2) pathways*. J Biol Chem 289:3383–3393PubMedCrossRef
40.
Zurück zum Zitat Sa S, Gu M, Chappell J, Shao NY, Ameen M, Elliott KA, Li D, Grubert F, Li CG, Taylor S, Cao A, Ma Y, Fong R, Nguyen L, Wu JC, Snyder MP, Rabinovitch M (2017) Induced pluripotent stem cell model of pulmonary arterial hypertension reveals novel gene expression and patient specificity. Am J Respir Crit Care Med 195:930–941PubMedPubMedCentralCrossRef Sa S, Gu M, Chappell J, Shao NY, Ameen M, Elliott KA, Li D, Grubert F, Li CG, Taylor S, Cao A, Ma Y, Fong R, Nguyen L, Wu JC, Snyder MP, Rabinovitch M (2017) Induced pluripotent stem cell model of pulmonary arterial hypertension reveals novel gene expression and patient specificity. Am J Respir Crit Care Med 195:930–941PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Gu M, Shao NY, Sa S, Li D, Termglinchan V, Ameen M, Karakikes I, Sosa G, Grubert F, Lee J, Cao A, Taylor S, Ma Y, Zhao Z, Chappell J, Hamid R, Austin ED, Gold JD, Wu JC, Snyder MP, Rabinovitch M (2017) Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers. Cell Stem Cell 20:490-504.e5PubMedCrossRef Gu M, Shao NY, Sa S, Li D, Termglinchan V, Ameen M, Karakikes I, Sosa G, Grubert F, Lee J, Cao A, Taylor S, Ma Y, Zhao Z, Chappell J, Hamid R, Austin ED, Gold JD, Wu JC, Snyder MP, Rabinovitch M (2017) Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers. Cell Stem Cell 20:490-504.e5PubMedCrossRef
42.
Zurück zum Zitat Gu M, Donato M, Guo M, Wary N, Miao Y, Mao S, Saito T, Otsuki S, Wang L, Harper RL, Sa S, Khatri P, Rabinovitch M. 2021. iPSC&#x2013;endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension. Science Translational Medicine 13: eaba6480 Gu M, Donato M, Guo M, Wary N, Miao Y, Mao S, Saito T, Otsuki S, Wang L, Harper RL, Sa S, Khatri P, Rabinovitch M. 2021. iPSC&#x2013;endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension. Science Translational Medicine 13: eaba6480
43.
Zurück zum Zitat Tseng W-L, Chou S-J, Chiang H-C, Wang M-L, Chien C-S, Chen K-H, Leu H-B, Wang C-Y, Chang Y-L, Liu Y-Y, Jong Y-J, Lin S-Z, Chiou S-H, Lin S-J, Yu W-C (2017) Imbalanced production of reactive oxygen species and mitochondrial antioxidant SOD2 in Fabry disease-specific human induced pluripotent stem cell-differentiated vascular endothelial cells. Cell Transplant 26:513–527PubMedPubMedCentralCrossRef Tseng W-L, Chou S-J, Chiang H-C, Wang M-L, Chien C-S, Chen K-H, Leu H-B, Wang C-Y, Chang Y-L, Liu Y-Y, Jong Y-J, Lin S-Z, Chiou S-H, Lin S-J, Yu W-C (2017) Imbalanced production of reactive oxygen species and mitochondrial antioxidant SOD2 in Fabry disease-specific human induced pluripotent stem cell-differentiated vascular endothelial cells. Cell Transplant 26:513–527PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Granata A, Serrano F, Bernard WG, McNamara M, Low L, Sastry P, Sinha S (2017) An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat Genet 49:97–109PubMedCrossRef Granata A, Serrano F, Bernard WG, McNamara M, Low L, Sastry P, Sinha S (2017) An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death. Nat Genet 49:97–109PubMedCrossRef
45.
Zurück zum Zitat Zohar B, Blinder Y, Mooney DJ, Levenberg S (2018) Flow-induced vascular network formation and maturation in three-dimensional engineered tissue. ACS Biomater Sci Eng 4:1265–1271PubMedCrossRef Zohar B, Blinder Y, Mooney DJ, Levenberg S (2018) Flow-induced vascular network formation and maturation in three-dimensional engineered tissue. ACS Biomater Sci Eng 4:1265–1271PubMedCrossRef
46.
Zurück zum Zitat Kim S, Kim W, Lim S, Jeon JS. 2017. Vasculature-on-a-chip for in vitro disease models. Bioengineering (Basel) 4 Kim S, Kim W, Lim S, Jeon JS. 2017. Vasculature-on-a-chip for in vitro disease models. Bioengineering (Basel) 4
47.
Zurück zum Zitat Chen EP, Toksoy Z, Davis BA, Geibel JP. 2021. 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Frontiers in Bioengineering and Biotechnology 9 Chen EP, Toksoy Z, Davis BA, Geibel JP. 2021. 3D bioprinting of vascularized tissues for in vitro and in vivo applications. Frontiers in Bioengineering and Biotechnology 9
48.
Zurück zum Zitat Zhou X, Nowicki M, Sun H, Hann SY, Cui H, Esworthy T, Lee JD, Plesniak M, Zhang LG (2020) 3D bioprinting-tunable small-diameter blood vessels with biomimetic biphasic cell layers. ACS Appl Mater Interfaces 12:45904–45915PubMedCrossRef Zhou X, Nowicki M, Sun H, Hann SY, Cui H, Esworthy T, Lee JD, Plesniak M, Zhang LG (2020) 3D bioprinting-tunable small-diameter blood vessels with biomimetic biphasic cell layers. ACS Appl Mater Interfaces 12:45904–45915PubMedCrossRef
49.
Zurück zum Zitat Cui H, Liu C, Esworthy T, Huang Y, Yu ZX, Zhou X, San H, Lee SJ, Hann SY, Boehm M, Mohiuddin M, Fisher JP, Zhang LG. 2020. 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci Adv 6: eabb5067 Cui H, Liu C, Esworthy T, Huang Y, Yu ZX, Zhou X, San H, Lee SJ, Hann SY, Boehm M, Mohiuddin M, Fisher JP, Zhang LG. 2020. 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci Adv 6: eabb5067
50.
Zurück zum Zitat Wimmer RA, Leopoldi A, Aichinger M, Kerjaschki D, Penninger JM (2019) Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc 14:3082–3100PubMedCrossRef Wimmer RA, Leopoldi A, Aichinger M, Kerjaschki D, Penninger JM (2019) Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc 14:3082–3100PubMedCrossRef
51.
Zurück zum Zitat Trillhaase A, Aherrahrou Z, Erdmann J. 2021. Abstract 10199: establishing human iPSC-derived vascular organoids as angiogenesis model. Circulation 144: A10199-A Trillhaase A, Aherrahrou Z, Erdmann J. 2021. Abstract 10199: establishing human iPSC-derived vascular organoids as angiogenesis model. Circulation 144: A10199-A
52.
Zurück zum Zitat Wagstaff PE, Heredero Berzal A, Boon CJF, Quinn PMJ, Ten Asbroek A, Bergen AA. 2021. The role of small molecules and their effect on the molecular mechanisms of early retinal organoid development. Int J Mol Sci 22 Wagstaff PE, Heredero Berzal A, Boon CJF, Quinn PMJ, Ten Asbroek A, Bergen AA. 2021. The role of small molecules and their effect on the molecular mechanisms of early retinal organoid development. Int J Mol Sci 22
53.
Zurück zum Zitat Borges AC, Broersen K, Leandro P, Fernandes TG. 2022. Engineering organoids for in vitro modeling of phenylketonuria. Frontiers in Molecular Neuroscience 14 Borges AC, Broersen K, Leandro P, Fernandes TG. 2022. Engineering organoids for in vitro modeling of phenylketonuria. Frontiers in Molecular Neuroscience 14
54.
Zurück zum Zitat Mohan SC, Lee T-Y, Giuliano AE, Cui X. 2021. Current status of breast organoid models. Frontiers in Bioengineering and Biotechnology 9 Mohan SC, Lee T-Y, Giuliano AE, Cui X. 2021. Current status of breast organoid models. Frontiers in Bioengineering and Biotechnology 9
55.
Zurück zum Zitat Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, Taubenschmid J, Hämmerle M, Esk C, Bagley JA, Lindenhofer D, Chen G, Boehm M, Agu CA, Yang F, Fu B, Zuber J, Knoblich JA, Kerjaschki D, Penninger JM (2019) Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565:505–510PubMedPubMedCentralCrossRef Wimmer RA, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, Taubenschmid J, Hämmerle M, Esk C, Bagley JA, Lindenhofer D, Chen G, Boehm M, Agu CA, Yang F, Fu B, Zuber J, Knoblich JA, Kerjaschki D, Penninger JM (2019) Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565:505–510PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Khan AO, Reyat JS, Bourne JH, Colicchia M, Newby ML, Allen JD, Crispin M, Youd E, Murray PG, Taylor G, Stamataki Z, Richter AG, Cunningham AF, Pugh M, Rayes J. 2021. Stimulation of vascular organoids with SARS-CoV-2 antigens increases endothelial permeability and regulates vasculopathy. medRxiv: 2021.04.25.21255890 Khan AO, Reyat JS, Bourne JH, Colicchia M, Newby ML, Allen JD, Crispin M, Youd E, Murray PG, Taylor G, Stamataki Z, Richter AG, Cunningham AF, Pugh M, Rayes J. 2021. Stimulation of vascular organoids with SARS-CoV-2 antigens increases endothelial permeability and regulates vasculopathy. medRxiv: 2021.04.25.21255890
57.
Zurück zum Zitat Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS, Conder R, Montserrat N, Mirazimi A, Penninger JM (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181:905–13.e7PubMedPubMedCentralCrossRef Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, Leopoldi A, Garreta E, Hurtado Del Pozo C, Prosper F, Romero JP, Wirnsberger G, Zhang H, Slutsky AS, Conder R, Montserrat N, Mirazimi A, Penninger JM (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181:905–13.e7PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat von Scheidt M, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, Schunkert H, Lusis AJ (2017) Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab 25:248–261CrossRef von Scheidt M, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, Schunkert H, Lusis AJ (2017) Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab 25:248–261CrossRef
60.
Zurück zum Zitat Institute of Medicine Committee on Accelerating Rare Diseases R, Orphan Product D. 2010. The national academies collection: reports funded by National Institutes of Health. In Rare diseases and orphan products: accelerating research and development, ed. MJ Field, TF Boat. Washington (DC): National Academies Press (US) Copyright © 2010, National Academy of Sciences. Institute of Medicine Committee on Accelerating Rare Diseases R, Orphan Product D. 2010. The national academies collection: reports funded by National Institutes of Health. In Rare diseases and orphan products: accelerating research and development, ed. MJ Field, TF Boat. Washington (DC): National Academies Press (US) Copyright © 2010, National Academy of Sciences.
61.
Zurück zum Zitat Gold K, Gaharwar AK, Jain A (2019) Emerging trends in multiscale modeling of vascular pathophysiology: organ-on-a-chip and 3D printing. Biomaterials 196:2–17PubMedCrossRef Gold K, Gaharwar AK, Jain A (2019) Emerging trends in multiscale modeling of vascular pathophysiology: organ-on-a-chip and 3D printing. Biomaterials 196:2–17PubMedCrossRef
62.
Zurück zum Zitat Kühn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429PubMedCrossRef Kühn R, Schwenk F, Aguet M, Rajewsky K (1995) Inducible gene targeting in mice. Science 269:1427–1429PubMedCrossRef
63.
Zurück zum Zitat Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H, Li E, Raizada MK, Bloch KD, Oh SP (2008) Genetic ablation of the Bmpr2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118:722–730PubMedPubMedCentralCrossRef Hong KH, Lee YJ, Lee E, Park SO, Han C, Beppu H, Li E, Raizada MK, Bloch KD, Oh SP (2008) Genetic ablation of the Bmpr2 gene in pulmonary endothelium is sufficient to predispose to pulmonary arterial hypertension. Circulation 118:722–730PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J, Hoedt-Miller M, Tada Y, Ozimek J, Tuder R, Rodman DM (2004) Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 94:1109–1114PubMedCrossRef West J, Fagan K, Steudel W, Fouty B, Lane K, Harral J, Hoedt-Miller M, Tada Y, Ozimek J, Tuder R, Rodman DM (2004) Pulmonary hypertension in transgenic mice expressing a dominant-negative BMPRII gene in smooth muscle. Circ Res 94:1109–1114PubMedCrossRef
65.
Zurück zum Zitat Yona S, Kim K, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91PubMedCrossRef Yona S, Kim K, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91PubMedCrossRef
66.
Zurück zum Zitat Alastalo TP, Li M, de Jesus PV, Pham D, Sawada H, Wang JK, Koskenvuo M, Wang L, Freeman BA, Chang HY, Rabinovitch M (2011) Disruption of PPARγ/β-catenin–mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Investig 121:3735–3746PubMedPubMedCentralCrossRef Alastalo TP, Li M, de Jesus PV, Pham D, Sawada H, Wang JK, Koskenvuo M, Wang L, Freeman BA, Chang HY, Rabinovitch M (2011) Disruption of PPARγ/β-catenin–mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J Clin Investig 121:3735–3746PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Appleby SL, Mitrofan C, Crosby A, Hoenderdos K, Lodge K, Upton PD, Yates CM, Nash GB, Chilvers ER, Morrell NW (2016) Bone morphogenetic protein 9 enhances lipopolysaccharide-induced leukocyte recruitment to the vascular endothelium. J Immunol 197:3302–3314PubMedCrossRef Appleby SL, Mitrofan C, Crosby A, Hoenderdos K, Lodge K, Upton PD, Yates CM, Nash GB, Chilvers ER, Morrell NW (2016) Bone morphogenetic protein 9 enhances lipopolysaccharide-induced leukocyte recruitment to the vascular endothelium. J Immunol 197:3302–3314PubMedCrossRef
68.
Zurück zum Zitat Yu YA, Malakhau Y, Yu CA, Phelan SJ, Cumming IR, Kan MJ, Mao L, Rajagopal S, Piantadosi CA, Gunn MD. 2020. Nonclassical monocytes sense hypoxia, regulate pulmonary vascular remodeling, and promote pulmonary hypertension. The Journal of Immunology: ji1900239 Yu YA, Malakhau Y, Yu CA, Phelan SJ, Cumming IR, Kan MJ, Mao L, Rajagopal S, Piantadosi CA, Gunn MD. 2020. Nonclassical monocytes sense hypoxia, regulate pulmonary vascular remodeling, and promote pulmonary hypertension. The Journal of Immunology: ji1900239
69.
Zurück zum Zitat Tojais NF, Cao A, Lai YJ, Wang L, Chen PI, Alcazar MAA, de Jesus Perez VA, Hopper RK, Rhodes CJ, Bill MA, Sakai LY, Rabinovitch M (2017) Codependence of bone morphogenetic protein receptor 2 and transforming growth factor-β in elastic fiber assembly and its perturbation in pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 37:1559–1569PubMedPubMedCentralCrossRef Tojais NF, Cao A, Lai YJ, Wang L, Chen PI, Alcazar MAA, de Jesus Perez VA, Hopper RK, Rhodes CJ, Bill MA, Sakai LY, Rabinovitch M (2017) Codependence of bone morphogenetic protein receptor 2 and transforming growth factor-β in elastic fiber assembly and its perturbation in pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 37:1559–1569PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Hurst LA, Dunmore BJ, Long L, Crosby A, Al-Lamki R, Deighton J, Southwood M, Yang X, Nikolic MZ, Herrera B, Inman GJ, Bradley JR, Rana AA, Upton PD, Morrell NW (2017) TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling 8:14079 Hurst LA, Dunmore BJ, Long L, Crosby A, Al-Lamki R, Deighton J, Southwood M, Yang X, Nikolic MZ, Herrera B, Inman GJ, Bradley JR, Rana AA, Upton PD, Morrell NW (2017) TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling 8:14079
71.
Zurück zum Zitat Feng F, Harper RL, PlN R (2016) BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-β-mediated pulmonary cell signalling. Respirology 21:526–532PubMedCrossRef Feng F, Harper RL, PlN R (2016) BMPR2 gene delivery reduces mutation-related PAH and counteracts TGF-β-mediated pulmonary cell signalling. Respirology 21:526–532PubMedCrossRef
72.
Zurück zum Zitat Siedel H, Roers A, Rösen-Wolff A, Luksch H. 2020. Type I interferon-independent T cell impairment in a Tmem173 N153S/WT mouse model of STING associated vasculopathy with onset in infancy (SAVI). Clinical Immunology 216: 108466 Siedel H, Roers A, Rösen-Wolff A, Luksch H. 2020. Type I interferon-independent T cell impairment in a Tmem173 N153S/WT mouse model of STING associated vasculopathy with onset in infancy (SAVI). Clinical Immunology 216: 108466
73.
74.
Zurück zum Zitat Salinas Cisneros G, Thein SL. 2020. Recent advances in the treatment of sickle cell disease. Frontiers in Physiology 11 Salinas Cisneros G, Thein SL. 2020. Recent advances in the treatment of sickle cell disease. Frontiers in Physiology 11
Metadaten
Titel
Development of vascular disease models to explore disease causation and pathomechanisms of rare vascular diseases
verfasst von
Rebecca L. Harper
Elisa A. Ferrante
Manfred Boehm
Publikationsdatum
01.03.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 3/2022
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-022-00925-9

Weitere Artikel der Ausgabe 3/2022

Seminars in Immunopathology 3/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Triglyzeridsenker schützt nicht nur Hochrisikopatienten

10.05.2024 Hypercholesterinämie Nachrichten

Patienten mit Arteriosklerose-bedingten kardiovaskulären Erkrankungen, die trotz Statineinnahme zu hohe Triglyzeridspiegel haben, profitieren von einer Behandlung mit Icosapent-Ethyl, und zwar unabhängig vom individuellen Risikoprofil.

Gibt es eine Wende bei den bioresorbierbaren Gefäßstützen?

In den USA ist erstmals eine bioresorbierbare Gefäßstütze – auch Scaffold genannt – zur Rekanalisation infrapoplitealer Arterien bei schwerer PAVK zugelassen worden. Das markiert einen Wendepunkt in der Geschichte dieser speziellen Gefäßstützen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.