Skip to main content
Erschienen in: Journal of Translational Medicine 1/2022

Open Access 01.12.2022 | Research

Diabetes, hypertension, and cardiovascular disease development

verfasst von: Fu-Shun Yen, James Cheng-Chung Wei, Lu-Ting Chiu, Chih-Cheng Hsu, Chii-Min Hwu

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2022

Abstract

Background

We aimed to compare cardiovascular risks among participants with T2DM with and without subsequent HTN and participants with HTN with and without subsequent T2DM.

Methods

From January 1, 2000, to December 31, 2018, we identified 16,236 matched pairs of T2DM participants with and without HTN (T2DM cohorts), 53,509 pairs of HTN participants with and without T2DM (HTN cohorts), and 21,158 pairs of comorbid HTN and T2DM participants with T2DM history or HTN history (comorbid cohorts) from Taiwan’s National Health Insurance Research Database. Cox proportional-hazard models were used to calculate the risk of cardiovascular disease.

Results

The mean follow-up time of this study was 6.75 years. Mean incident rates of coronary artery disease for T2DM cohorts, HTN cohorts, and comorbid cohorts were 16.80, 23.18, and 31.53 per 1000 person-years, respectively. The adjusted hazard ratios (HRs) (95% confidence intervals [95% CIs]) for incident coronary artery disease, stroke, and heart failure in T2DM participants with versus without HTN were 2.22 (2.07–2.37), 1.19 (1.16–1.23), and 0.92 (0.82–1.02), respectively; the adjusted HRs for HTN participants with versus without T2DM were 1.69 (1.55–1.84), 1.25 (1.21–1.30), and 0.98 (0.93–1.05), respectively; the adjusted HRs for comorbid T2DM and HTN participants with previous T2DM versus previous HTN were 2.78 (2.37–3.27), 1.20 (1.13–1.28), and 0.95 (0.88–1.03), respectively.

Conclusions

This nationwide cohort study demonstrated that both T2DM with subsequent HTN and HTN with subsequent diabetes were associated with higher cardiovascular disease risks.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
T2DM
Type 2 diabetes mellitus
HTN
Hypertension
CAD
Coronary artery disease
CVD
Cardiovascular disease
HbA1c
Hemoglobin A1C
AGE
Advanced glycation end-product
ROS
Reactive oxygen species
CKD
Chronic kidney disease
COPD
Chronic obstructive pulmonary disease
CCI
Charlson comorbidity index
DCSI
Diabetes complication severity index

Background

The 2019 Global Burden of Disease Study indicated that ischemic heart disease, stroke, and hypertensive heart disease ranked as the first, second, and twenty-second leading causes of death, respectively, in persons aged 50–74 years [1]. The global number of patients with ischemic heart disease, stroke, and hypertensive heart disease was approximately 197.2, 101.5, and 18.6 million, respectively, in 2019 [2], which led to 9.1, 6.6, and 1.2 million cases of premature mortality, 176.6, 125.4, and 15.0 million years of life lost, and 5.4, 17.7, and 1.5 million years of living with a disability [2]. Both diabetes mellitus (DM) and hypertension (HTN) are important risk factors for atherosclerosis and cardiovascular disease (CVD) development [3]. Reports show that persons with type 2 diabetes mellitus (T2DM) are at 2.3 times (approximately) higher risk of cardiovascular disease than nondiabetics [3]; about one-third to two-thirds of T2DM patients died from CVD [3, 4]. Compared with non-HTN, HTN also significantly increased the risk and severity of CVD [5], and comorbid DM and HTN significantly increased cardiovascular risks [68].
Studies have reported that the treatment of hyperglycemia may reduce the risk of cardiovascular events [4, 9]. Numerous studies have reported that HTN treatment can reduce the risk of coronary artery disease, stroke, and heart failure [4, 9, 10]. A meta-analysis of randomized studies of comorbid persons with coexisting T2DM and HTN substantiated that a reduction in hemoglobin A1C (HbA1c) by 0.9% may reduce cardiovascular events by 9% [11], and systolic blood pressure reduction by 10 mmHg can reduce myocardial infarction by 12% and stroke events by 23% [12]. Another meta-analysis estimated that for every 200 persons with T2DM treated for 5 years, 3 myocardial infarction events could be prevented by a 0.9% reduction in HbA1c, and 14 events could be prevented by a 4 mmHg reduction in systolic blood pressure [13]. Diabetes, HTN, and lowering blood pressure or glucose may have different impacts on CVD risks. As there are few studies to evaluate the varying effects of diabetes and HTN on the risks of CVD, we conducted this study to determine if any difference exists in the risk of CVD in T2DM patients with or without subsequent HTN, hypertensive patients with or without subsequent T2DM, and patients with comorbid T2DM and HTN with previous T2DM or HTN history.

Methods

Data sources

The Taiwanese government has implemented National Health Insurance (NHI), a compulsory insurance system, since 1995; the government and employers pay most of the premiums, and people need to pay a small part only. By 2000, approximately 99% of the 29 million people in Taiwan were insured under this insurance program [14]. Taiwan's Ministry of Health and Welfare established the Health and Welfare Data Center (HWDC) in 2016 to control the use of national health insurance big data and standardize data management for all available healthcare data. The National Health Insurance Research Database (NHIRD) contains all medical records from 1995 to the present, including the data on the patient’s age, date of birth, sex, place of residence, therapy, and disease diagnosis according to the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) and ICD-10-CM codes. This study consecutively recruited patients with newly diagnosed T2DM or HTN from the NHIRD between January 1, 2000, and December 31, 2018. Our study was approved by the Research Ethics Committee of China Medical University and Hospital (Approval No. CMUH109-109-REC2-031). All information of participants or care providers was encrypted before release to protect individual privacy; the study received a waiver of informed consent requirement from patients.

Study design and definition of the study population

In this nationwide retrospective population-based cohort study, we constructed 3 cohort studies (Fig. 1) from 2000 to 2017 to compare the risks of CVD for T2DM and HTN: (a) T2DM participants with and without HTN (T2DM cohorts) (b) HTN participants with and without T2DM (HTN cohorts) (c) participants with comorbid T2DM and HTN (comorbid cohorts). To define T2DM and HTN participants, T2DM was diagnosed based on ICD-9-CM code 250.xx or ICD-10-CM code E11, and HTN was diagnosed based on ICD-9-CM codes 401–405 and A26 or ICD-10-CM codes I10, I11, I12, I13, I15, and N26, with at least 2 outpatient claims within 1 year or one hospitalization. This method of defining T2DM and HTN diagnoses using ICD codes has been validated in previous studies [15, 16].
We divided the 2 10 534 participants with newly diagnosed T2DM (T2DM cohorts) into two groups based on subsequent HTN diagnoses. The index date was set as the date of HTN diagnosis for cases randomly assigned to controls. Participants with HTN history before T2DM were excluded. We divided the 5 51 969 participants with newly diagnosed HTN (HTN cohorts) into two groups based on subsequent T2DM diagnosis. The index date was set as the date of T2DM diagnosis for cases randomly assigned to controls. Participants with T2DM history before HTN were excluded. We categorized the 138,574 participants with comorbid T2DM and HT (comorbid cohorts) into two groups: (a) T2DM participants with HTN history, (b) HTN participants with T2DM history. The index date was set as the date of the last diagnosis for T2DM or HTN.
Exclusion criteria in this study were as follows: age below 20 years or above 80 years; unavailability of data on age or sex; the presence of type 1 DM (ICD-9-CM code 250.1x; ICD-10-CM E10), coronary artery disease, stroke, heart failure, atrial fibrillation (ICD-9-CM code 427; ICD-10-CM codes I45.0, I45.1, I45.2, I45.3, I45.4, I45.5, and I45.6), dialysis (ICD-9 codes V56.0, V56.8, and V45.1; ICD-10 codes Z49.31, Z49.32, and Z99.2), hepatic failure (ICD-9-CM codes 570, 572.2, 572.4, and 572.8; ICD-10-CM codes K72.00, K72.01, K72.10, K72.11, K72.90, K76.2, K72.90, K72.91, K76.7, and K76.81); year of index date before 2000. We also excluded participants who died or who were followed up < 180 days after the index date.
After the exclusion of ineligible participants, there were 31 335 patients with subsequent HTN and 45 007 participants without subsequent HTN in the T2DM cohorts. There were 70 156 participants with subsequent T2DM and 1 56 368 participants without subsequent T2DM in the HTN cohorts. The comorbid HTN and T2DM cohorts included 22 017 participants with previous T2DM and 27 049 participants with previous HTN.

Comorbidities

The variables considered as potential confounders in this study were as follows: age, sex, and overweight (ICD-9-CM codes 278.02, 783.1, and V85.2; ICD-10-CM code R63.5); obesity (ICD-9-CM codes 278.00, 649.1, V77.8, and V85.3; ICD-10-CM codes E66.09, E66.1, E66.8, E66.9, and Z13.89); severe obesity (ICD-9-CM codes 278.01, 649.2, V45.86, and V85.4; ICD-10-CM codes E66.01 and E66.2); smoking status (ICD-9-CM codes 305.1, 649.0, and V15.82; ICD-10-CM codes F17.200, F17.201, F17.210, F17.220, F17.221, F17.290, F17.291, and Z87.891); dyslipidemia (ICD-9-CM code 272; ICD-10-CM codes E71.30, E71.31, E71.32, E71.39, E75.21, E75.22, E75.23, E75.24, E75.25, E75.29, E75.3, E75.4, E75.5, E75.6, E77, E78.0, E78.1, E78.2, E78.3, E78.4, E78.5, E78.6, E78.70, E78.71, E78.72, E78.79, E78.8, and E78.9); chronic kidney disease (CKD; ICD-9-CM codes 403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 404.92, 404.93, V42.0, and 790; ICD-10-CM codes E10.2, E10.65, E11.2, E11.65, E13.2, I12, I13, N03, N08, E10.21, E11.21, N05, N06, N07, N14, N15.0, N15.8, N15.9, N16, N17.1, N17.2, N19, and Z94.0); chronic obstructive pulmonary disease (COPD; ICD-9-CM codes 491, 492, and 496; ICD-10-CM codes J41, J42, J44, J43, and J44.9); liver cirrhosis (ICD-9-CM codes 571.5, 571.2, and 571.6; ICD-10-CM codes K70.2, K70.30, K70.31, K74.0, K74.1, K74.2, K74.60, K74.69, K74.3, K74.4, and K74.5); peripheral arterial occlusion disease (PAOD; ICD-9-CM codes 440.0, 440.20, 440.21, 440.22, 440.23, 440.24, 440.3, 440.4, 443.9, 443.81, and 443.89; ICD-10-CM codes I70.2, I70.92, I75.0, and I73.9); Charlson Comorbidity index (CCI) [17] and Diabetes Complication Severity Index (DCSI) scores [18]. Medication considerations were as follows: antidiabetic drugs, number of oral antidiabetic drugs, and insulin (Table 1); antihypertensive drugs and number of antihypertensive drugs (Table 2); statin; aspirin (Table 3). We also assessed DM duration (Table 1) and HTN duration (Table 2).
Table 1
Comparison of baseline characteristics in participants with type 2 DM
Characteristics
DM participants
SMD
Non-HTN (n = 16,236)
HTN (n = 16,236)
N
%
n
%
Age, years
 20–40
2087
12.85
2000
12.32
0.01
 40–60
9803
60.38
9918
61.09
0.01
 60–80
4346
26.77
4318
26.60
0.003
 Mean ± SD
53.25 ± 11.92
53.32 ± 11.82
0.006
Gender
 Female
7507
46.24
7440
45.82
0.008
 Male
8729
53.76
8796
54.18
0.008
Obesity
 Overweight
43
0.26
38
0.23
0.006
 Obesity
270
1.66
239
1.47
0.01
 Severe obesity
61
0.38
56
0.34
0.005
 Smoking
343
2.11
311
1.92
0.01
Comorbidity
 Dyslipidemia
8796
54.18
9078
55.91
0.03
 CKD
634
3.9
681
4.19
0.01
 COPD
2975
18.32
3049
18.78
0.01
 Liver cirrhosis
486
2.99
502
3.09
0.005
 PAOD
333
2.05
350
2.16
0.007
CCI score
 0
6383
39.31
6099
37.56
0.03
 1
4972
30.62
5132
31.61
0.02
 ≥ 2
4881
30.06
5005
30.83
0.01
DCSI score
 0
7397
45.56
7294
44.92
0.01
 1
3057
18.83
3141
19.35
0.01
 ≥ 2
5782
35.61
5801
35.73
0.002
Antidiabetic drugs
 Metformin
5874
36.18
5967
36.75
0.01
 Sulphonylurea
5391
33.20
5596
34.47
0.05
 Thiazolidinedione
1197
7.37
1245
7.67
0.01
 DPP-4 inhibitors
624
3.84
602
3.71
0.007
 α-glucosidase inhibitor
1166
7.18
1234
7.60
0.012
Number of antidiabetic drugs
 0–1
11,686
71.98
11,569
71.26
0.01
 2–3
4180
25.75
4295
26.45
0.011
 ≥ 3
370
2.28
372
2.29
0.008
 Insulin
4561
28.09
4718
29.06
0.02
Other drug
 Statin
3673
22.62
3762
23.17
0.01
 DM duration, year
3.72 ± 3.26
3.78 ± 3.84
0.01
Data are shown as n (%) or mean ± SD. DM diabetes mellitus, HTN hypertension, CKD chronic kidney disease, COPD chronic obstructive pulmonary disease, PAOD peripheral arterial occlusion disease, CCI Charlson comorbidity index, DCSI diabetes complications severity index, SMD standardized mean difference. A standardized mean difference of 0.05 or less indicates a negligible difference
Table 2
Comparison of baseline characteristics in participants with HTN
Characteristics
HTN participants
SMD
Non-DM (n = 53,509)
DM (n = 53,509)
N
%
n
%
Age, years
 20–40
4923
9.20
4555
8.51
0.03
 40–60
28,831
53.88
30,124
56.30
0.04
 60–80
19,755
36.92
18,830
35.19
0.02
 Mean ± SD
56.48 ± 12.81
56.20 ± 11.71
0.01
Gender
 Female
25,549
47.75
25,531
47.71
0.001
 Male
27,960
52.25
27,978
52.29
0.001
Obesity
 Overweight
75
0.14
81
0.15
0.002
 Obesity
695
1.30
743
1.39
0.007
 Severe obesity
152
0.28
146
0.27
0.002
 Smoking
824
1.54
856
1.60
0.005
Comorbidity
 Dyslipidemia
24,512
45.80
24,907
46.55
0.01
 CKD
2187
4.09
2318
4.33
0.01
 COPD
10,096
18.87
10,785
20.16
0.03
 Liver cirrhosis
826
1.54
889
1.66
0.01
 PAOD
1079
2.02
1093
2.04
0.001
CCI score
 0
22,517
42.08
21,167
39.56
0.05
 1
16,583
30.99
17,398
32.51
0.03
 ≥ 2
14,409
26.93
14,944
27.93
0.02
Antihypertensive drugs
 ACEI/ARB
26,416
49.37
26,930
50.33
0.01
 β-blockers
25,418
47.50
26,475
49.48
0.03
 Calcium-channel blockers
28,200
52.70
28,960
54.12
0.02
 Diuretics
19,473
36.39
20,124
37.61
0.02
Number of antihypertensive drugs
 0–1
22,709
42.44
21,851
40.84
0.03
 2–3
24,681
46.12
24,241
45.30
0.01
 ≥ 3
6119
11.44
7417
13.86
0.04
Other drug
 Statin
9976
18.64
10,523
19.67
0.02
 Aspirin
9721
18.17
10,069
18.82
0.01
 HTN duration, year
3.81 ± 3.29
3.91 ± 3.86
0.02
Data are shown as n (%) or mean ± SD. DM diabetes, HTN hypertension, CKD chronic kidney disease, COPD chronic obstructive pulmonary disease, PAOD peripheral arterial occlusion disease, ACEI angiotensin-converting enzyme inhibitor, ARB angiotensin receptor blocker, CCI Charlson comorbidity index, SMD standardized mean difference. A standardized mean difference of 0.05 or less indicates a negligible difference
Table 3
Comparison of baseline characteristics in participants with coexistence of DM and HTN
Characteristics
DM and HTN participants
SMD
With previous HTN (n = 21,158)
With previous DM (n = 21,158)
N
%
N
%
Age, years
 20–40
1368
6.47
1483
7.01
0.02
 40–60
11,131
52.61
10,945
51.73
0.01
 60–80
8659
40.93
8730
41.26
0.006
 Mean ± SD
57.61 ± 11.85
57.50 ± 11.92
0.01
Gender
 Female
10,106
47.76
10,114
47.8
0.008
 Male
11,052
52.24
11,044
52.2
0.008
Obesity
 Overweight
33
0.16
37
0.17
0.004
 Obesity
189
0.89
214
1.01
0.01
 Severe obesity
41
0.19
49
0.23
0.008
 Smoking
243
1.15
266
1.26
0.01
Comorbidity
 Dyslipidemia
10,059
52.27
11,185
52.86
0.01
 CKD
951
4.49
1035
4.89
0.01
 COPD
4097
19.36
1079
19.28
0.00
 Liver cirrhosis
520
2.45
793
3.74
0.01
 PAOD
467
2.21
489
2.31
0.007
DCSI score
 0
10,277
48.57
7989
37.76
0.01
 1
2376
11.23
3016
14.25
0.01
 ≥ 2
8505
40.20
10,153
47.99
0.02
CCI score
 0
10,433
49.31
9134
43.17
0.21
 1
6055
28.62
6515
30.79
0.09
 ≥ 2
4670
22.07
5509
26.04
0.15
Antidiabetic drugs
 Metformin
3418
16.15
7344
34.71
0.44
 Sulphonylurea
3068
14.50
7582
35.84
0.51
 Thiazolidinedione
165
0.78
1601
7.57
0.34
 DPP-4 inhibitors
123
0.58
548
2.59
0.16
 α-glucosidase inhibitor
290
1.37
1471
6.95
0.28
Number of antidiabetic drugs
 0–1
19,716
93.18
15,170
71.70
0.58
 2–3
1435
6.78
5543
26.2
0.54
 ≥ 3
7
0.03
445
2.10
0.2
 Insulin
4440
20.98
5388
25.47
0.1
Antihypertensive drugs
 ACEI/ARB
9753
46.10
6384
30.17
0.33
 β-blockers
9687
45.78
5509
26.04
0.42
 Calcium-channel blockers
10,140
47.93
5757
27.21
0.44
 Diuretics
7041
33.28
4137
19.55
0.43
Number of antihypertensive drugs
 0–1
9843
46.52
15,407
72.82
0.55
 2–3
9122
43.11
5503
26.01
0.36
 ≥ 3
2193
10.36
248
1.17
0.40
Other drug
 Statin
4065
19.21
4090
19.33
0.003
 Aspirin
2678
12.66
2836
13.40
0.02
 HTN duration, year
3.45 ± 3.41
 
 DM duration, year
3.42 ± 3.24
 
Data are shown as n (%) or mean ± SD. DM diabetes, HTN hypertension, CKD chronic kidney disease, COPD chronic obstructive pulmonary disease, PAOD peripheral arterial occlusion disease, ACEI angiotensin-converting enzyme inhibitor, ARB angiotensin receptor blocker, CCI Charlson comorbidity index, DCSI diabetes complications severity index, SMD standardized mean difference. A standardized mean difference of 0.05 or less indicates a negligible difference

Main outcomes

We investigated the development of coronary artery disease (CAD; ICD-9-CM codes 410–414; ICD-10-CM codes I20, I21, I22, I24, I25.1, I25.2, I25.3, I25.4, I25.5, I25.6, I25.7, I25.81, I25.82, I25.83, I25.84, I25.89, and I25.9), stroke (ICD-9-CM codes 430–438; ICD-10-CM codes G45.0, G45.1, G45.2, G45.3, G45.4, G45.8, G45.9, G46, I60, I61, I62, I63, I65, I66, I67.0, I67.1, I67.2, I67.3, I67.4, I67.5, I67.6, I67.7, I67.8, I67.9, I68, and I69), and heart failure (ICD-9-CM codes 398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93, 428, and 429.4; ICD-10-CM codes I09.81, I11.0, I13.0, I13.2, I50, I97.0, I97.110, I97.111, I97.120, I97.121, I97.130, I97.131, I97.190, and I97.191), with at least 2 outpatient claims within 1 year or one hospitalization from 2000 to 2018. This method of ICD codes to define cardiovascular events has been validated in previous studies in Taiwan [16, 19, 20]. The incidence rates of coronary artery disease, stroke, and heart failure were calculated and compared between the study and control participants. All study participants were followed until they were diagnosed with any outcomes, withdrew from the NHI system, or until December 31, 2018, whichever came first.

Statistical analysis

We adopted propensity-score matching to optimize comparability between the study and control groups [21]. We estimated the propensity score for every participants through nonparsimonious multivariable logistic regression and used approximately 20 clinically related variables in the analysis as control variables (Tables 1, 2, 3). The nearest-neighbor algorithm was used to generate matching pairs assuming that the proportion of 0.995–1.0 is optimal.
In descriptive statistics, a chi-square test and Student’s t-test were used to evaluate the allocation of category and continuous variables, respectively. A standardized mean difference of less than 0.1 was considered balanced distribution between the cases and controls. Crude and multivariate-adjusted Cox proportional-hazard models with robust sandwich standard error estimates were used to compare the risk of outcomes between the study and control groups. The proportional hazards assumption was not violated by comparing estimated log–log survival curves for all time-independent covariates. The results are presented as hazard ratios (HRs) and 95% confidence intervals (CIs) for the study and control groups. The incidence rates of outcomes were measured by the number of cases per 1,000 person-years. Person-years was the time from the index date to the date of events, death, or the end of follow-up (December 31, 2018), whichever occurred first.
Two-tailed P < 0.05 was considered significant. SAS v9.4 (SAS Institute, Inc., Cary, NC, USA) was used for analyses.

Results

Baseline characteristics

Demographic and clinical characteristics of the three study cohorts are presented in Tables 1, 2, 3. After propensity score matching, the distributions of all characteristics were similar between the cases and controls in the three cohorts (SMD < 0.1). In the DM cohorts, after propensity matching by age, sex, obesity, smoking, comorbidity, DCSI score, antidiabetic drugs, statins, and diabetes duration, 16 236 pairs of matched participants were selected (Table 1). The mean follow-up time was 6.46 and 7.39 years for T2DM participants with subsequent HTN and without subsequent HTN, respectively. In the HTN cohorts, after propensity matching by age, sex, obesity, smoking, comorbidity, antihypertensive diabetic drugs, statins, and HTN duration, 53 509 pairs of matched participants were selected (Table 2). The mean follow-up time was 6.57 and 7.02 years for HTN participants with subsequent T2DM and without subsequent T2DM, respectively. In the comorbid T2DM and HTN cohorts, after propensity matching by age, sex, obesity, smoking, comorbidity, DCSI score, statins, and aspirin, 21 158 pairs of matched patients were selected (Table 3). The mean follow-up time was 6.43 and 6.61 years for comorbid T2DM and HTN participants with previous T2DM and previous HTN, respectively.

Main outcomes

Table 4 demonstrates the overall incidence rates of coronary artery disease, stroke, and heart failure between the cases and controls among the three cohorts. For the risk of coronary artery disease development, in the T2DM cohorts, 2514 (15.48%) participants with subsequent HTN and 1353 (8.33%) without subsequent HTN developed coronary artery disease during the follow-up period (incidence rate of 22.68 vs. 10.91 per 1000 person-years). The multivariable-adjusted HR (95% CI) for participants with subsequent HTN compared to participants without HTN was 2.22 (2.07–2.37). In the HTN cohorts, 9690 (18.11%) participants with subsequent T2DM and 8540 (15.96%) without subsequent T2DM developed coronary artery disease during the follow-up period (incidence rate of 25.22 vs. 21.14 per 1000 person-years). The adjusted HR (95% CI) for patients with subsequent T2DM compared to participants without T2DM was 1.19 (1.16–1.23). In the comorbid DM and HTN cohorts, 4847 (22.91%) participants with previous T2DM and 4962 (23.45%) participants with previous HTN developed coronary artery disease during the follow-up period (incidence rate of 31.56 vs. 31.50 per 1000 person-years). The adjusted HR (95% CI) for patients with previous T2DM compared to participants with previous HTN was 0.92 (0.82–1.02).
Table 4
HRs and 95% CIs for the outcomes of cardiovascular diseases
Outcomes
DM participants
Crude HR (95% CI)
Adjusted HRa (95% CI)
Without HTN (n = 16,236)
With HTN (n = 16,236)
Events
PY
IR
Events
PY
IR
CAD
1353
124,027
10.91
2514
110,871
22.68
2.21 (2.07–2.38)
2.22 (2.07–2.37)
Stroke
863
126,799
6.81
1349
119,087
11.33
1.64 (1.50–1.78)
1.69 (1.55–1.84)
Heart failure
208
130,144
1.60
564
123,184
4.58
2.82 (2.40–3.31)
2.78 (2.37–3.27)
Outcomes
HTN participants
Crude HR (95% CI)
Adjusted HRb (95% CI)
Without DM (n = 53,509)
With DM (n = 53,509)
Events
PY
IR
Events
PY
IR
CAD
8540
403,982
21.14
9690
384,191
25.22
1.18 (1.15–1.22)
1.19 (1.16–1.23)
Stroke
5236
431,530
12.13
6081
415,229
14.64
1.20 (1.16–1.25)
1.25 (1.21–1.30)
Heart failure
1796
453,406
3.96
2040
442,778
4.61
1.16 (1.09–1.24)
1.20 (1.13–1.28)
Outcomes
Coexisted DM and HTN participants
Crude HR (95% CI)
Adjusted HRc (95% CI)
Previous HTN (n = 21,158)
Previous DM (n = 21,158)
Events
PY
IR
Events
PY
IR
CAD
4962
157,525
31.50
4847
153,584
31.56
0.99 (0.85–1.03)
0.92 (0.82–1.02)
Stroke
3099
174,743
17.73
3374
167,244
20.17
1.12 (1.07–1.18)
0.98 (0.93–1.05)
Heart failure
1196
189,855
6.30
1319
181,499
7.27
1.16 (1.08–1.25)
0.95 (0.88–1.03)
DM diabetes mellitus, HTN hypertension, CAD coronary artery disease, PY person-years, IR incidence rate, per 1000 person-years, HR hazard ratio, CI confidence interval. a aHR adjusted for age, sex, obesity, smoking, dyslipidemia, chronic kidney disease (CKD), chronic obstructive pulmonary disease (COPD), liver cirrhosis, peripheral arterial occlusive disease (PAOD), Charlson comorbidity index (CCI) score, Diabetes Complications Severity Index (DCSI) score, antidiabetic drugs, statin, DM duration and index year. b aHR adjusted for age, gender, obesity, smoking, dyslipidemia, CKD, COPD, liver cirrhosis, PAOD, CCI score, antihypertensive drugs, statin, aspirin, HTN duration, and index year. c aHR adjusted for age, sex, obesity, smoking, dyslipidemia, CKD, COPD, liver cirrhosis, PAOD, statin, aspirin, and index year
For the risk of stroke, the adjusted HRs (95% CIs) for incident stroke in T2DM participants with HTN and without HTN, HTN participants with T2DM and without T2DM, and comorbid DM and HTN participants with previous T2DM and previous HTN were 1.69 (1.55–1.84), 1.25 (1.21–1.30), and 0.98 (0.93–1.05), respectively. For risk of heart failure, the adjusted HRs (95% CIs) for incident heart failure in T2DM participants with HTN and without HTN, HTN participants with T2DM and without T2DM, comorbid DM and HTN participants with previous T2DM and previous HTN were 2.78 (2.37–3.27), 1.20 (1.13–1.28), and 0.95 (0.88–1.03), respectively.
In these 3 cohorts, the mean incident rates of coronary artery disease, stroke, and heart failure were 23.84, 13.80, and 4.72 per 1000 person-years, respectively (Table 4). Figure 2 separately presents the incidence rates of coronary artery disease, stroke, and heart failure among these cohorts. From Fig. 2, comorbid DM and HTN participants seemed to have a higher risk of CVD than HTN patients, and HTN participants had a higher risk of CVD than T2DM participants. T2DM participants with subsequent HTN compared to participants without HTN and HTN participants with subsequent T2DM compared to participants without T2DM had significantly higher risks of coronary artery disease, stroke, and heart failure (Table 4 and Fig. 2). The increased CVD risk for T2DM participants with HTN compared to participants without HTN was higher than that for HTN participants with T2DM compared to participants without T2DM (Fig. 2).

Discussion

This large-series cohort study demonstrated the following: (1) In participants with T2DM or HTN, the incidence rate of coronary artery disease was higher than that of stroke and heart failure. (2) Comorbid DM and HTN participants had a higher risk of CVD than HTN participants, and HTN participants had a higher risk of CVD than T2DM participants. (3) T2DM with subsequent HTN was associated with a significantly higher risk of CVD than T2DM without HTN; HTN with subsequent T2DM was associated with a significantly higher risk of CVD than HTN without T2DM. (4) The increased CVD risk of T2DM with subsequent HTN was higher than that of HTN with subsequent T2DM.
In most countries, coronary artery disease is the main cardiovascular disease in patients with T2DM or HTN. However, in other countries, stroke is the main cardiovascular event [2]. The incidence of coronary artery disease was higher than that of stroke in this study. In the United States, due to advances in treatment, coronary artery disease and stroke incidence have significantly reduced, whereas heart failure incidence has gradually increased [22]. However, the incidence of stroke and coronary artery disease was still much higher than that of heart failure in this study. Taiwan’s 2019 Diabetes Atlas also revealed that patients with T2DM had higher incidence rates of coronary artery disease than those with stroke and heart failure [23].
Our study revealed that T2DM with subsequent HTN, HTN with subsequent T2DM, and comorbid T2DM and HTN were associated with higher risks of CVD. HTN may accelerate the deleterious effects of diabetes for CVD development, and diabetes may potentiate the detrimental effects of HTN for CVD development. This phenomenon has been reported by previous studies, in which individuals with combined HTN and T2DM had a higher risk of cardiovascular events [6, 7, 24, 25]. The interactive mechanisms may be responsible for the accelerated development of CVD in patients with diabetes and HTN. Our study demonstrated that HTN compared to T2DM cohorts, and T2DM patients with subsequent HTN compared to those without subsequent HTN had higher risks of CVD. HTN seemed to confer a higher risk of CVD than T2DM. Meta-analyses have also demonstrated that the reduction of systolic blood pressure has a greater impact on the decrease in CVD risk than the reduction of blood glucose [4, 1113, 26]. To explain this observation, the possible mechanisms of CVD caused by diabetes and HTN need consideration.
Hyperglycemia in diabetes triggers the generation of reactive oxygen species (ROS) and advanced glycation end-products, leading to the initiation and progression of atherosclerosis. ROS can induce endothelial dysfunction [4, 8], trigger blood coagulability, and increase thrombosis risk in vessels. ROS can also lead to microvascular complications and cardiomyopathy, which may increase the risk of heart failure. Chronic hyperglycemia can produce low-grade systemic inflammation, cause thrombosis in atherosclerotic arteries, and promote the development of cardiovascular events. Hyperglycemia and insulin resistance can activate the renin–angiotensin–aldosterone system and increase the risk of CVD [4, 26]. HTN patients usually have metabolic syndrome caused by insulin resistance and hyperactivity of the sympathetic tone, which can activate the renin–angiotensin–aldosterone system and promote atherosclerosis development. Chronic HTN is associated with increased vascular inflammation, oxidative stress, endothelial dysfunction, hyperviscosity, and a prothrombotic state. Mechanical stress is the main factor for HTN that leads to the development of atherosclerosis and includes three-dimensional forces: shear stress, transmural pressure, and wall stress. Studies show that shear stress activates angiotensin II in HTN patients; transmural pressure produces a net pressure effect on endothelial cells and vascular smooth muscle cells. Wall stress can stretch smooth cells, increasing angiotensinogen-converting enzyme activity and cell growth, and finally cause muscle cell hypertrophy. Mechanical stress can cause irreversible elastin fragmentation and collagen deposition in blood vessels, leading to arterial stiffness [27]. Moreover, a long-term hypertensive state can lead to cardiac hypertrophy and increase the risks of myocardial infarction and heart failure [27, 28]. The specific factor of mechanical stress induced by HTN may have a greater impact on CVD occurrence.
People without HTN or patients with diabetes who have not developed HTN should avoid weight gain and obesity, avoid an unhealthy diet or excessive sodium intake, ensure adequate potassium intake, stay physically active, and reduce alcohol consumption [29]. These measures may reduce the occurrence of HTN, stabilize atherosclerotic status, and reduce cardiovascular events.
This study has some strengths. First, Taiwan’s NHI program is mandatory and covers approximately all people of this country (99%). This nationwide cohort study recruited patients from the NHIRD, which may reduce selection bias. Second, the data collection period was approximately 18 years from 2000 to 2018, sufficiently long for observing CVD occurrence. However, this study has some limitations. First, this study lacks data on blood pressure, glucose, HbA1C, biochemical results, CT images, and echocardiograms for HTN, T2DM, and CVD diagnosis. We used ICD codes for disease diagnosis; this method has been validated in previous studies with acceptable accuracy. The study lacked blood pressure and glucose data; therefore, we had no information on the treatment status and severity of HTN and diabetes. Instead, we matched the number of antihypertensive and antidiabetic drugs to balance the severity and treatment status of HTN and diabetes. Second, this administrative dataset lacks information on family history, physical activity, and alcohol drinking. This study included important variables, such as age, sex, obesity, smoking status, comorbidity, diabetes complications, and medications, and used propensity-score matching to balance study and control groups. However, unmeasured or unknown confounders may still affect our results. Finally, this population-based study mainly included the Chinese population; thus, the results cannot be generalized to other ethnicities. This study was a retrospective cohort study with some inevitable bias, and prospective randomized studies are needed to verify our results.

Conclusions

Our study demonstrated that diabetes participants with subsequent HTN and HTN participants with subsequent diabetes showed significantly higher risks of CVD. In addition, the magnitudes of the point estimated CVD risk of HTN participants, and T2DM participants with subsequent HTN showed higher risk than T2DM participants without subsequent HTN. HTN seemed to have a greater impact on CVD risk. Participants should maintain healthy lifestyles to prevent the development of HTN and reduce the occurrence of future cardiovascular events.

Acknowledgements

This manuscript was edited by Wallace Academic Editing.

Declarations

Our study was approved by the Research Ethics Committee of China Medical University and Hospital (Approval No. CMUH109-109-REC2-031). To protect individual privacy, all information of patients or care providers is encrypted before release. Therefore, this study was waived from the requirement of obtaining informed consent from patients.
Not applicable.

Competing interests

The authors declare that they have no competing interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
15.
Zurück zum Zitat Lin CC, Lai MS, Syu CY, Chang SC, Tseng FY. Accuracy of diabetes diagnosis in health insurance claims data in Taiwan. J Formos Med Assoc. 2005;104:157–63.PubMed Lin CC, Lai MS, Syu CY, Chang SC, Tseng FY. Accuracy of diabetes diagnosis in health insurance claims data in Taiwan. J Formos Med Assoc. 2005;104:157–63.PubMed
18.
Zurück zum Zitat Young BA, Lin E, Von Korff M, Simon G, Ciechanowski P, Ludman EJ, et al. Diabetes complications severity index and risk of mortality, hospitalization, and health care utilization. Am J Manag Care. 2008;14:15–23.PubMedPubMedCentral Young BA, Lin E, Von Korff M, Simon G, Ciechanowski P, Ludman EJ, et al. Diabetes complications severity index and risk of mortality, hospitalization, and health care utilization. Am J Manag Care. 2008;14:15–23.PubMedPubMedCentral
Metadaten
Titel
Diabetes, hypertension, and cardiovascular disease development
verfasst von
Fu-Shun Yen
James Cheng-Chung Wei
Lu-Ting Chiu
Chih-Cheng Hsu
Chii-Min Hwu
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2022
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-03217-2

Weitere Artikel der Ausgabe 1/2022

Journal of Translational Medicine 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Frauen bekommen seltener eine intensive Statintherapie

30.04.2024 Statine Nachrichten

Frauen in den Niederlanden erhalten bei vergleichbarem kardiovaskulärem Risiko seltener eine intensive Statintherapie als Männer. Ihre LDL-Zielwerte erreichen sie aber fast ähnlich oft.

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.