Skip to main content
Erschienen in: Lasers in Medical Science 4/2018

07.12.2017 | Original Article

Direct biological effects of fractional ultrapulsed CO2 laser irradiation on keratinocytes and fibroblasts in human organotypic full-thickness 3D skin models

verfasst von: L. Schmitt, S. Huth, P. M. Amann, Y. Marquardt, R. Heise, K. Fietkau, L. Huth, T. Steiner, F. Hölzle, J.M. Baron

Erschienen in: Lasers in Medical Science | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Molecular effects of various ablative and non-ablative laser treatments on human skin cells—especially primary effects on epidermal keratinocytes and dermal fibroblasts—are not yet fully understood. We present the first study addressing molecular effects of fractional non-sequential ultrapulsed CO2 laser treatment using a 3D skin model that allows standardized investigations of time-dependent molecular changes ex vivo. While histological examination was performed to assess morphological changes, we utilized gene expression profiling using microarray and qRT-PCR analyses to identify molecular effects of laser treatment. Irradiated models exhibited dose-dependent morphological changes resulting in an almost complete recovery of the epidermis 5 days after irradiation. On day 5 after laser injury with a laser fluence of 100 mJ/cm2, gene array analysis identified an upregulation of genes associated with tissue remodeling and wound healing (e.g., COL12A1 and FGF7), genes that are involved in the immune response (e.g., CXCL12 and CCL8) as well as members of the heat shock protein family (e.g., HSPB3). On the other hand, we detected a downregulation of matrix metalloproteinases (e.g., MMP3), differentiation markers (e.g., LOR and S100A7), and the pro-inflammatory cytokine IL1α.
Overall, our findings substantiate the understanding of time-dependent molecular changes after CO2 laser treatment. The utilized 3D skin model system proved to be a reliable, accurate, and reproducible tool to explore the effects of various laser settings both on skin morphology and gene expression during wound healing.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Neis MM, Wendel A, Wiederholt T, Marquardt Y, Joussen S, Baron JM, Merk HF (2010) Expression and induction of cytochrome p450 isoenzymes in human skin equivalents. Skin Pharmacol Physiol 23:29–39CrossRefPubMed Neis MM, Wendel A, Wiederholt T, Marquardt Y, Joussen S, Baron JM, Merk HF (2010) Expression and induction of cytochrome p450 isoenzymes in human skin equivalents. Skin Pharmacol Physiol 23:29–39CrossRefPubMed
2.
Zurück zum Zitat Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Lüscher-Firzlaff J, Lüscher B, Baron JM (2012) IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol 129:426–433CrossRefPubMed Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Lüscher-Firzlaff J, Lüscher B, Baron JM (2012) IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol 129:426–433CrossRefPubMed
3.
Zurück zum Zitat Astashkina A, Grainger DW (2014) Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 69-70:1–18CrossRefPubMed Astashkina A, Grainger DW (2014) Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 69-70:1–18CrossRefPubMed
4.
Zurück zum Zitat Mathes SH, Ruffner H, Graf-Hausner U (2014) The use of skin models in drug development. Adv Drug Deliv Rev 69-70:81–102CrossRefPubMed Mathes SH, Ruffner H, Graf-Hausner U (2014) The use of skin models in drug development. Adv Drug Deliv Rev 69-70:81–102CrossRefPubMed
5.
Zurück zum Zitat Marquardt Y, Amann PM, Heise R, Czaja K, Steiner T, Merk HF, Skazik-Voogt C, Baron JM (2015) Characterization of a novel standardized human three-dimensional skin wound healing model using non-sequential fractional ultrapulsed CO2 laser treatments. Lasers Surg Med 47:257–265CrossRefPubMed Marquardt Y, Amann PM, Heise R, Czaja K, Steiner T, Merk HF, Skazik-Voogt C, Baron JM (2015) Characterization of a novel standardized human three-dimensional skin wound healing model using non-sequential fractional ultrapulsed CO2 laser treatments. Lasers Surg Med 47:257–265CrossRefPubMed
6.
Zurück zum Zitat Amann PM, Marquardt Y, Steiner T, Hölzle F, Skazik-Voogt C, Heise R, Baron JM (2016) Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models. Lasers Med Sci 31:397–404CrossRefPubMed Amann PM, Marquardt Y, Steiner T, Hölzle F, Skazik-Voogt C, Heise R, Baron JM (2016) Effects of non-ablative fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models. Lasers Med Sci 31:397–404CrossRefPubMed
7.
Zurück zum Zitat Huth S, Marquardt Y, Amann PM, Leverkus M, Huth L, Baron JM, Gerber PA (2016) Ablative non-sequential fractional ultrapulsed CO2 laser pretreatment improves conventional photodynamic therapy with methyl aminolevulinate in a novel human in vitro 3D actinic keratosis skin model. Exp Dermatol 25:997–999CrossRefPubMed Huth S, Marquardt Y, Amann PM, Leverkus M, Huth L, Baron JM, Gerber PA (2016) Ablative non-sequential fractional ultrapulsed CO2 laser pretreatment improves conventional photodynamic therapy with methyl aminolevulinate in a novel human in vitro 3D actinic keratosis skin model. Exp Dermatol 25:997–999CrossRefPubMed
8.
Zurück zum Zitat Majid I, Imran S (2014) Fractional CO2 laser resurfacing as monotherapy in the treatment of atrophic facial acne scars. J Cutan Aesthet Surg 7:87–92CrossRefPubMedPubMedCentral Majid I, Imran S (2014) Fractional CO2 laser resurfacing as monotherapy in the treatment of atrophic facial acne scars. J Cutan Aesthet Surg 7:87–92CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Hultman CS, Friedstat JS, Edkins RE, Cairns BA, Meyer AA (2014) Laser resurfacing and remodeling of hypertrophic burn scars: the results of a large, prospective, before-after cohort study, with long-term follow-up. Ann Surg 260:519–529PubMed Hultman CS, Friedstat JS, Edkins RE, Cairns BA, Meyer AA (2014) Laser resurfacing and remodeling of hypertrophic burn scars: the results of a large, prospective, before-after cohort study, with long-term follow-up. Ann Surg 260:519–529PubMed
11.
Zurück zum Zitat Tretti Clementoni M, Galimberti M, Tourlaki A, Catenacci M, Lavagno R, Bencini PL (2013) Random fractional ultrapulsed CO2 resurfacing of photodamaged facial skin: long-term evaluation. Lasers Med Sci 28:643–650CrossRefPubMed Tretti Clementoni M, Galimberti M, Tourlaki A, Catenacci M, Lavagno R, Bencini PL (2013) Random fractional ultrapulsed CO2 resurfacing of photodamaged facial skin: long-term evaluation. Lasers Med Sci 28:643–650CrossRefPubMed
12.
Zurück zum Zitat Togsverd-Bo K, Haak CS, Thaysen-Petersen D, Wulf HC, Anderson RR, Hædersdal M (2012) Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial. Br J Dermatol 166:1262–1269CrossRefPubMed Togsverd-Bo K, Haak CS, Thaysen-Petersen D, Wulf HC, Anderson RR, Hædersdal M (2012) Intensified photodynamic therapy of actinic keratoses with fractional CO2 laser: a randomized clinical trial. Br J Dermatol 166:1262–1269CrossRefPubMed
13.
Zurück zum Zitat Sklar LR, Burnett CT, Waibel JS, Moy RL, Ozog DM (2014) Laser assisted drug delivery: a review of an evolving technology. Lasers Surg Med 46:249–262CrossRefPubMed Sklar LR, Burnett CT, Waibel JS, Moy RL, Ozog DM (2014) Laser assisted drug delivery: a review of an evolving technology. Lasers Surg Med 46:249–262CrossRefPubMed
14.
Zurück zum Zitat Gye J, Ahn SK, Kwon JE, Hong SP (2015) Use of fractional CO2 laser decreases the risk of skin cancer development during ultraviolet exposure in hairless mice. Dermatol Surg 41:378–386CrossRefPubMed Gye J, Ahn SK, Kwon JE, Hong SP (2015) Use of fractional CO2 laser decreases the risk of skin cancer development during ultraviolet exposure in hairless mice. Dermatol Surg 41:378–386CrossRefPubMed
15.
Zurück zum Zitat Kim JE, Won CH, Bak H, Kositratna G, Manstein D, Dotto GP, Chang SE (2013) Gene profiling analysis of the early effects of ablative fractional carbon dioxide laser treatment on human skin. Dermatol Surg 39:1033–1043CrossRefPubMed Kim JE, Won CH, Bak H, Kositratna G, Manstein D, Dotto GP, Chang SE (2013) Gene profiling analysis of the early effects of ablative fractional carbon dioxide laser treatment on human skin. Dermatol Surg 39:1033–1043CrossRefPubMed
16.
Zurück zum Zitat Orringer JS, Rittié L, Baker D, Voorhees JJ, Fisher G (2010) Molecular mechanisms of nonablative fractionated laser resurfacing. Br J Dermatol 163:757–768CrossRefPubMed Orringer JS, Rittié L, Baker D, Voorhees JJ, Fisher G (2010) Molecular mechanisms of nonablative fractionated laser resurfacing. Br J Dermatol 163:757–768CrossRefPubMed
17.
Zurück zum Zitat Helbig D, Paasch U (2011) Molecular changes during skin aging and wound healing after fractional ablative photothermolysis. Skin Res Technol 17:119–128CrossRefPubMed Helbig D, Paasch U (2011) Molecular changes during skin aging and wound healing after fractional ablative photothermolysis. Skin Res Technol 17:119–128CrossRefPubMed
18.
Zurück zum Zitat Orringer JS, Sachs DL, Shao Y, Hammerberg C, Cui Y, Voorhees JJ, Fisher GJ (2012) Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing. Dermatol Surg 38:1668–1677CrossRefPubMed Orringer JS, Sachs DL, Shao Y, Hammerberg C, Cui Y, Voorhees JJ, Fisher GJ (2012) Direct quantitative comparison of molecular responses in photodamaged human skin to fractionated and fully ablative carbon dioxide laser resurfacing. Dermatol Surg 38:1668–1677CrossRefPubMed
19.
Zurück zum Zitat Avniel S, Arik Z, Maly A, Sagie A, Basst HB, Yahana MD, Weiss ID, Pal B, Wald O, Ad-El D, Fujii N, Arenzana-Seisdedos F, Jung S, Galun E, Gur E, Peled A (2006) Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. J Invest Dermatol 126:468–476CrossRefPubMed Avniel S, Arik Z, Maly A, Sagie A, Basst HB, Yahana MD, Weiss ID, Pal B, Wald O, Ad-El D, Fujii N, Arenzana-Seisdedos F, Jung S, Galun E, Gur E, Peled A (2006) Involvement of the CXCL12/CXCR4 pathway in the recovery of skin following burns. J Invest Dermatol 126:468–476CrossRefPubMed
20.
Zurück zum Zitat Filippini M, Del Duca E, Negosanti F, Bonciani D, Negosanti L, Sannino M, Cannarozzo G, Nisticò SP (2016) Fractional CO2 laser: from skin rejuvenation to vulvo-vaginal reshaping. Photomed Laser Surg 35:171–175CrossRefPubMed Filippini M, Del Duca E, Negosanti F, Bonciani D, Negosanti L, Sannino M, Cannarozzo G, Nisticò SP (2016) Fractional CO2 laser: from skin rejuvenation to vulvo-vaginal reshaping. Photomed Laser Surg 35:171–175CrossRefPubMed
21.
Zurück zum Zitat Helbig D, Mobius A, Simon JC, Paasch U (2011) Heat shock protein 70 expression patterns in dermal explants in response to ablative fractional photothermolysis, microneedle, or scalpel wounding. Wounds 23:59–67PubMed Helbig D, Mobius A, Simon JC, Paasch U (2011) Heat shock protein 70 expression patterns in dermal explants in response to ablative fractional photothermolysis, microneedle, or scalpel wounding. Wounds 23:59–67PubMed
22.
Zurück zum Zitat Hantash BM, Bedi VP, Kapadia B, Rahman Z, Jiang K, Tanner H, Chan KF, Zachary CB (2007) In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med 39:96–107CrossRefPubMed Hantash BM, Bedi VP, Kapadia B, Rahman Z, Jiang K, Tanner H, Chan KF, Zachary CB (2007) In vivo histological evaluation of a novel ablative fractional resurfacing device. Lasers Surg Med 39:96–107CrossRefPubMed
23.
Zurück zum Zitat Loreti EH, Pascoal VL, Nogueira BV, Silva IV, Pedrosa DF (2015) Use of laser therapy in the healing process: a literature review. Photomed Laser Surg 33:104–116CrossRefPubMed Loreti EH, Pascoal VL, Nogueira BV, Silva IV, Pedrosa DF (2015) Use of laser therapy in the healing process: a literature review. Photomed Laser Surg 33:104–116CrossRefPubMed
24.
Zurück zum Zitat Orringer JS, Kang S, Johnson TM, Karimipour DJ, Hamilton T, Hammerberg C, Voorhees JJ, Fisher GJ (2004) Connective tissue remodeling induced by carbon dioxide laser resurfacing of photodamaged human skin. Arch Dermatol 140:1326–1332PubMed Orringer JS, Kang S, Johnson TM, Karimipour DJ, Hamilton T, Hammerberg C, Voorhees JJ, Fisher GJ (2004) Connective tissue remodeling induced by carbon dioxide laser resurfacing of photodamaged human skin. Arch Dermatol 140:1326–1332PubMed
25.
Zurück zum Zitat Manolis EN, Kaklamanos IG, Spanakis N, Filippou DK, Panagiotaropoulos T, Tsakris A, Siomos K (2007) Tissue concentration of transforming growth factor beta1 and basic fibroblast growth factor in skin wounds created with a CO2 laser and scalpel: a comparative experimental study, using an animal model of skin resurfacing. Wound Repair Regen 15:252–257CrossRefPubMed Manolis EN, Kaklamanos IG, Spanakis N, Filippou DK, Panagiotaropoulos T, Tsakris A, Siomos K (2007) Tissue concentration of transforming growth factor beta1 and basic fibroblast growth factor in skin wounds created with a CO2 laser and scalpel: a comparative experimental study, using an animal model of skin resurfacing. Wound Repair Regen 15:252–257CrossRefPubMed
26.
Zurück zum Zitat Liang X, Bhattacharya S, Bajaj G, Guha G, Wang Z, Jang HS, Leid M, Indra AK, Ganguli-Indra G (2012) Delayed cutaneous wound healing and aberrant expression of hair follicle stem cell markers in mice selectively lacking Ctip2 in epidermis. PLoS One 7:e29999CrossRefPubMedPubMedCentral Liang X, Bhattacharya S, Bajaj G, Guha G, Wang Z, Jang HS, Leid M, Indra AK, Ganguli-Indra G (2012) Delayed cutaneous wound healing and aberrant expression of hair follicle stem cell markers in mice selectively lacking Ctip2 in epidermis. PLoS One 7:e29999CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Churko JM, Laird DW (2013) Gap junction remodeling in skin repair following wounding and disease. Physiology (Bethesda) 28:190–198 Churko JM, Laird DW (2013) Gap junction remodeling in skin repair following wounding and disease. Physiology (Bethesda) 28:190–198
28.
Zurück zum Zitat Maytin EV (1995) Heat shock proteins and molecular chaperones: implications for adaptive responses in the skin. J Invest Dermatol 104:448–455CrossRefPubMed Maytin EV (1995) Heat shock proteins and molecular chaperones: implications for adaptive responses in the skin. J Invest Dermatol 104:448–455CrossRefPubMed
29.
Zurück zum Zitat XG X, Luo YJ, Wu Y, Chen JZ, TH X, Gao XH, He CD, Geng L, Xiao T, Zhang YQ, Chen HD, Li YH (2011) Immunohistological evaluation of skin responses after treatment using a fractional ultrapulse carbon dioxide laser on back skin. Dermatol Surg 37:1141–1149CrossRef XG X, Luo YJ, Wu Y, Chen JZ, TH X, Gao XH, He CD, Geng L, Xiao T, Zhang YQ, Chen HD, Li YH (2011) Immunohistological evaluation of skin responses after treatment using a fractional ultrapulse carbon dioxide laser on back skin. Dermatol Surg 37:1141–1149CrossRef
30.
Zurück zum Zitat Laplante AF, Moulin V, Auger FA, Landry J, Li H, Morrow G, Tanguay RM, Germain L (1998) Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem 46:1291–1301CrossRefPubMed Laplante AF, Moulin V, Auger FA, Landry J, Li H, Morrow G, Tanguay RM, Germain L (1998) Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem 46:1291–1301CrossRefPubMed
31.
Zurück zum Zitat Souil E, Capon A, Mordon S, Dinh-Xuan AT, Polla BS, Bachelet M (2001) Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. Br J Dermatol 144:260–266CrossRefPubMed Souil E, Capon A, Mordon S, Dinh-Xuan AT, Polla BS, Bachelet M (2001) Treatment with 815-nm diode laser induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. Br J Dermatol 144:260–266CrossRefPubMed
32.
Zurück zum Zitat Zhou JD, Luo CQ, Xie HQ, Nie XM, Zhao YZ, Wang SH, Xu Y, Pokharel PB, Xu D (2008) Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy. Chin Med J 121:1269–1273PubMed Zhou JD, Luo CQ, Xie HQ, Nie XM, Zhao YZ, Wang SH, Xu Y, Pokharel PB, Xu D (2008) Increased expression of heat shock protein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy. Chin Med J 121:1269–1273PubMed
33.
Zurück zum Zitat Komi-Kuramochi A, Kawano M, Oda Y, Asada M, Suzuki M, Oki J, Imamura T (2005) Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice. J Endocrinol 186:273–289CrossRefPubMed Komi-Kuramochi A, Kawano M, Oda Y, Asada M, Suzuki M, Oki J, Imamura T (2005) Expression of fibroblast growth factors and their receptors during full-thickness skin wound healing in young and aged mice. J Endocrinol 186:273–289CrossRefPubMed
34.
Zurück zum Zitat Qu L, Liu A, Zhou L, He C, Grossman PH, Moy RL, Mi QS, Ozog D (2012) Clinical and molecular effects on mature burn scars after treatment with a fractional CO(2) laser. Lasers Surg Med 44:517–524CrossRefPubMed Qu L, Liu A, Zhou L, He C, Grossman PH, Moy RL, Mi QS, Ozog D (2012) Clinical and molecular effects on mature burn scars after treatment with a fractional CO(2) laser. Lasers Surg Med 44:517–524CrossRefPubMed
35.
Zurück zum Zitat Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT (1992) Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci U S A 89:6896–6900CrossRefPubMedPubMedCentral Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT (1992) Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proc Natl Acad Sci U S A 89:6896–6900CrossRefPubMedPubMedCentral
36.
37.
Zurück zum Zitat Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69:513–521PubMed Gillitzer R, Goebeler M (2001) Chemokines in cutaneous wound healing. J Leukoc Biol 69:513–521PubMed
38.
Zurück zum Zitat Su Y, Richmond A (2015) Chemokine regulation of neutrophil infiltration of skin wounds. Adv Wound Care (New Rochelle) 4:631–640CrossRef Su Y, Richmond A (2015) Chemokine regulation of neutrophil infiltration of skin wounds. Adv Wound Care (New Rochelle) 4:631–640CrossRef
39.
Zurück zum Zitat Restivo TE, Mace KA, Harken AH, Young DM (2010) Application of the chemokine CXCL12 expression plasmid restores wound healing to near normal in a diabetic mouse model. J Trauma 69:392–398CrossRefPubMed Restivo TE, Mace KA, Harken AH, Young DM (2010) Application of the chemokine CXCL12 expression plasmid restores wound healing to near normal in a diabetic mouse model. J Trauma 69:392–398CrossRefPubMed
40.
Zurück zum Zitat Kähäri VM, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6:199–213CrossRefPubMed Kähäri VM, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6:199–213CrossRefPubMed
41.
Zurück zum Zitat Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347CrossRefPubMed Gill SE, Parks WC (2008) Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem Cell Biol 40:1334–1347CrossRefPubMed
42.
Zurück zum Zitat Bullard KM, Mudgett J, Scheuenstuhl H, Hunt TK, Banda MJ (1999) Stromelysin-1-deficient fibroblasts display impaired contraction in vitro. J Surg Res 84:31–34CrossRefPubMed Bullard KM, Mudgett J, Scheuenstuhl H, Hunt TK, Banda MJ (1999) Stromelysin-1-deficient fibroblasts display impaired contraction in vitro. J Surg Res 84:31–34CrossRefPubMed
43.
Zurück zum Zitat Utz ER, Elster EA, Tadaki DK, Gage F, Perdue PW, Forsberg JA, Stojadinovic A, Hawksworth JS, Brown TS (2010) Metalloproteinase expression is associated with traumatic wound failure. J Surg Res 159:633–639CrossRefPubMed Utz ER, Elster EA, Tadaki DK, Gage F, Perdue PW, Forsberg JA, Stojadinovic A, Hawksworth JS, Brown TS (2010) Metalloproteinase expression is associated with traumatic wound failure. J Surg Res 159:633–639CrossRefPubMed
44.
Zurück zum Zitat Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ (2009) Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc 14:20–24CrossRefPubMedPubMedCentral Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ (2009) Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc 14:20–24CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Melerzanov A, Lavrov A, Sakania L, Korsunskaya I, Petersen E, Sobelev V (2014) Effect of laser radiation on MMP gene expression in keratinocytes. Prime J 4–39 Melerzanov A, Lavrov A, Sakania L, Korsunskaya I, Petersen E, Sobelev V (2014) Effect of laser radiation on MMP gene expression in keratinocytes. Prime J 4–39
46.
Zurück zum Zitat Ozog DM, Liu A, Chaffins ML, Ormsby AH, Fincher EF, Chipps LK, Mi QS, Grossman PH, Pui JC, Moy RL (2013) Evaluation of clinical results, histological architecture, and collagen expression following treatment of mature burn scars with a fractional carbon dioxide laser. JAMA Dermatol 149:50–57CrossRefPubMed Ozog DM, Liu A, Chaffins ML, Ormsby AH, Fincher EF, Chipps LK, Mi QS, Grossman PH, Pui JC, Moy RL (2013) Evaluation of clinical results, histological architecture, and collagen expression following treatment of mature burn scars with a fractional carbon dioxide laser. JAMA Dermatol 149:50–57CrossRefPubMed
47.
Zurück zum Zitat Ross EV, Barnette DJ, Glatter RD, Grevelink JM (1999) Effects of overlap and pass number in CO2 laser skin resurfacing: a study of residual thermal damage, cell death, and wound healing. Lasers Surg Med 24:103–112CrossRefPubMed Ross EV, Barnette DJ, Glatter RD, Grevelink JM (1999) Effects of overlap and pass number in CO2 laser skin resurfacing: a study of residual thermal damage, cell death, and wound healing. Lasers Surg Med 24:103–112CrossRefPubMed
Metadaten
Titel
Direct biological effects of fractional ultrapulsed CO2 laser irradiation on keratinocytes and fibroblasts in human organotypic full-thickness 3D skin models
verfasst von
L. Schmitt
S. Huth
P. M. Amann
Y. Marquardt
R. Heise
K. Fietkau
L. Huth
T. Steiner
F. Hölzle
J.M. Baron
Publikationsdatum
07.12.2017
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 4/2018
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2409-1

Weitere Artikel der Ausgabe 4/2018

Lasers in Medical Science 4/2018 Zur Ausgabe