Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2023

Open Access 01.12.2023 | Correspondence

Direct inhibition of dioxygenases TET1 by the rheumatoid arthritis drug auranofin selectively induces cancer cell death in T-ALL

verfasst von: Long Chen, Anqi Ren, Yuan Zhao, Hangyu Chen, Qifang Wu, Mengzhu Zheng, Zijian Zhang, Tongcun Zhang, Wu Zhong, Jian Lin, Haichuan Zhu

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2023

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is a type of hematologic tumor with malignant proliferation of hematopoietic progenitor cells. However, traditional clinical treatment of T-ALL included chemotherapy and stem cell transplantation always lead to recurrence and poor prognosis, thus new therapeutic targets and drugs are urgently needed for T-ALL treatment. In this study, we showed that TET1 (ten-eleven translocation 1), a key participant of DNA epigenetic control, which catalyzes the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) to modulate gene expression, was highly upregulated in human T-ALL and negatively correlated with the prognosis of patients. Knockdown of TET1 suppressed T-ALL growth and progression, suggesting that TET1 inhibition maybe an effective way to fight T-ALL via DNA epigenetic modulation. Combining structure-guided virtual screening and cell-based high-throughput screening of FDA-approved drug library, we discovered that auranofin, a gold-containing compound, is a potent TET1 inhibitor. Auranofin inhibited the catalytic activity of TET1 through competitive binding to its substrates binding pocket and thus downregulated the genomic level of 5hmC marks and particularly epigenetically reprogramed the expression of oncogene c-Myc in T-ALL in TET1-dependent manner and resulted in suppression of T-ALL in vitro and in vivo. These results revealed that TET1 is a potential therapeutic target in human T-ALL and elucidated the mechanism that TET1 inhibitor auranofin suppressed T-ALL through the TET1/5hmC/c-Myc signaling pathway. Our work thus not only provided mechanism insights for T-ALL treatment, but also discovered potential small molecule therapeutics for T-ALL.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13045-023-01513-6.
Long Chen, Anqi Ren, and Yuan Zhao have contributed equally to this work.
Wu Zhong, Jian Lin and Haichuan Zhu: shared senior authorship.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
T-ALL
T-cell acute lymphoblastic leukemia
TETs
TET family proteins (TET1, TET2, TET3)
TET1
Ten-eleven translocation 1
5mC
5-Methylcytosine
5hmC
5-Hydroxymethylcytosine
SPR
Surface Plasmon Resonance
NOG
N-Oxalylglycine
2-OG
2-Oxoglutarate
TET1-CD
Catalytic domain of TET1
TET1-C2
Catalytic domain of TET2
TET3-CD
Catalytic domain of TET3
ROS
Reactive oxygen species
WGBS
Whole-genome bisulfite sequencing
To the editor,
TETs is diversely expressed in hematological malignancies and serves as potential therapeutic targets [15]. However, the roles of TET1 in T-ALL have not been fully unveiled, and potent TET1 inhibitors are needed to promote TET1 as a druggable target [68].
We analyzed gene expression from previous T-ALL cohorts and found TET1, but not TET2/3, is highly expressed in T-ALL and drug-resistant patients (Fig. 1a, b, Additional file 2: Fig. S1a–c). Validation in T-ALL cell lines confirmed TET1 upregulation in T-ALL cells compared to normal T cells and further upregulation in dexamethasone-resistant cells (Fig. 1c). TET1 expression negatively correlates (even though not significant) with poor prognosis (Fig. S1d). Silencing of TET1 impaired the proliferation of T-ALL cells (Fig. 1d, Additional file 2: Fig. S1e–i), indicating crucial roles of TET1 in T-ALL. However, treatment of T-ALL cells with two reported TET1 inhibitors only showed minimum proliferation inhibition (Additional file 2: Fig. S2), due to low potency of the inhibitors 6, suggesting more potent TET1 inhibitors are needed.
To identify potent TET1 inhibitors, we performed virtual- and cell-based screening (Fig. 1e). Auranofin was identified from both screening (Fig. 1f, Additional file 1: Table S1–S2). SPR revealed that auranofin binds to TET1 (Fig. 1g), with reduced affinity to TET2/3 (Additional file 2: Fig. S3).
Methylation-related pathways were enriched after auranofin treatment in T-ALL (Additional file 2: Fig. S4a, b, Additional file 1: Table S3), which induced dose-dependent decrease in cellular 5hmC and increase in 5mC, as indicated by dot blot and genome-wide 5hmC/5mC sequencing (Fig. 1h-i, Additional file 2: Figs. S4c, S5). LC–MS/MS confirmed inhibition of TET1 catalyzed 5mC to 5hmC conversion by auranofin (Additional file 2: Fig. S6). In vitro assay determined a IC50 of 76 nM (Fig. 1j).
We generated structure of TET1-CD-auranofin by molecular docking to explore the inhibition mechanism (Fig. 1k). Structure showed that auranofin was in very close conformation with NOG (analog of TET1 substrate 2-OG) and Fe (II), suggesting a potential inhibition mechanism of auranofin through competitively preventing substrates binding to TET1. Results indicated that both NOG and Fe (II) compete with auranofin for binding to TET1-CD and increasing concentration of 2-OG or Fe (II) attenuated auranofin inhibition on TET1 (Fig. 1l-m and Additional file 2: Fig. S7). Given that, 2-OG and Fe (II) are conserved in many demethylases, selectivity of auranofin to TET1 was verified by comparing to TET2 and KDM6B. Auranofin showed reduced affinity and very low inhibition at 1 μM to both proteins (Additional file 2: Fig. S8), indicating at least 13-fold selectivity for TET1 over TET2 and KDM6B. Structure and electrophoretic mobility shift assay also showed that auranofin did not affect DNA substrate binding to TET1 (Additional file 2: Fig. S9). Collectively, auranofin inhibits TET1 by competing with substrates for binding to TET1.
Auranofin was highly cytotoxic to T-ALL cells, but not to normal T cells (Fig. 2a). Overexpressing either full length or the catalytic domain of TET1, but not the catalytic dead mutants or TET2/TET3-CD, in T-ALL attenuated the cytotoxicity of auranofin (Fig. 2b, c and Additional file 2: Figs. S10–S12), revealing that the auranofin-mediated cytotoxicity depends on the catalytic activity of TET1. In vivo T-ALL xenograft model showed that treatment with auranofin significantly inhibited progression, as well as bone marrow invasion, of T-ALL and prolonged mice survival (Fig. 2d–i), indicating therapeutic potential of auranofin for T-ALL.
Auranofin has been reported to exert anti-tumor activity via Thioredoxin reductases and ROS [9, 10]. While, mechanism in T-ALL is different as neutralizing ROS or genetic manipulation of Thioredoxin reductases did not affect auranofin cytotoxicity to T-ALL (Additional file 2: Fig. S13).
Auranofin treatment altered genome-wide distribution of 5hmC/5mC in the promoter region (Fig. 1i, Additional file 2: Fig. S5, Additional file 1: Tables S4, S5), enlightened potential mechanism of action of auranofin via epigenetic control of transcription and translation of certain genes. Conjointly analysis of 5hmC-Seal, WGBS, and RNA-Seq data, identified 31 genes with 5hmC/RNA down-regulation and 5mC up-regulation, among which c-Myc, a central oncogene in T-ALL [11, 12], was discovered (Fig. 2j, Additional file 2: Fig. S14, Additional file 1: Table S6). Auranofin treatment down-regulated both c-Myc transcription and translation (Fig. 2k, Additional file 2: Fig. S15a, b). TET1 correlates with c-Myc expression (Additional file 2: Fig. S15c, d), as validated by genetic manipulation of TET1 (Fig. 2l–m). Overexpression of c-Myc in T-ALL attenuated auranofin-induced cytotoxicity (Fig. 2n, Additional file 2: Fig. S15e), suggesting c-Myc as downstream effector.
Collectively, we confirmed TET1 is a promising therapeutic target for T-ALL and discovered potent TET1 inhibitor, auranofin, with anti-T-ALL activity in vitro and in vivo. Mechanistically, auranofin-induced TET1 inhibition epigenetically alters transcription and translation of c-Myc to induce T-ALL cell death (Fig. 2o).

Acknowledgements

We are obliged to Dr. Chengqi Yi and Dr. Bo He at Peking University of the assistance of LC-MS/MS, and Yuan Cao, Piao Zou (Analytical & Testing Center, Wuhan University of Science and Technology) for their assistance in the experiments.

Declarations

All procedures performed on the mice were approved by the Animal Ethics Committee of Wuhan University of Science and Technology with ID WKD-Zhu-2.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Jetzt bestellen und 100 € sparen!

Literatur
2.
Zurück zum Zitat Bensberg, M. et al. TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 118 (2021). Bensberg, M. et al. TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 118 (2021).
3.
Zurück zum Zitat Bamezai S, et al. TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia. 2021;35:389–403.CrossRefPubMed Bamezai S, et al. TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia. 2021;35:389–403.CrossRefPubMed
4.
Zurück zum Zitat Pulikkottil AJ, et al. TET3 promotes AML growth and epigenetically regulates glucose metabolism and leukemic stem cell associated pathways. Leukemia. 2022;36:416–25.CrossRefPubMed Pulikkottil AJ, et al. TET3 promotes AML growth and epigenetically regulates glucose metabolism and leukemic stem cell associated pathways. Leukemia. 2022;36:416–25.CrossRefPubMed
5.
Zurück zum Zitat Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther. 2023;8:71.CrossRefPubMedPubMedCentral Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther. 2023;8:71.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Kaplánek R, et al. TET protein inhibitors: potential and limitations. Biomed Pharmacother. 2023;166:115324.CrossRefPubMed Kaplánek R, et al. TET protein inhibitors: potential and limitations. Biomed Pharmacother. 2023;166:115324.CrossRefPubMed
8.
Zurück zum Zitat Weirath NA, et al. Small molecule inhibitors of TET dioxygenases: bobcat339 activity is mediated by contaminating copper(II). ACS Med Chem Lett. 2022;13:792–8.CrossRefPubMedPubMedCentral Weirath NA, et al. Small molecule inhibitors of TET dioxygenases: bobcat339 activity is mediated by contaminating copper(II). ACS Med Chem Lett. 2022;13:792–8.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Freire Boullosa L, et al. Auranofin reveals therapeutic anticancer potential by triggering distinct molecular cell death mechanisms and innate immunity in mutant p53 non-small cell lung cancer. Redox Biol. 2021;42:101949.CrossRefPubMedPubMedCentral Freire Boullosa L, et al. Auranofin reveals therapeutic anticancer potential by triggering distinct molecular cell death mechanisms and innate immunity in mutant p53 non-small cell lung cancer. Redox Biol. 2021;42:101949.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Roder C, Thomson MJ. Auranofin: repurposing an old drug for a golden new age. Drugs R&D. 2015;15:13–20.CrossRef Roder C, Thomson MJ. Auranofin: repurposing an old drug for a golden new age. Drugs R&D. 2015;15:13–20.CrossRef
11.
Zurück zum Zitat Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017;129:1124–33.CrossRefPubMed Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017;129:1124–33.CrossRefPubMed
12.
Zurück zum Zitat Li Q, Pan S, Xie T, Liu H. MYC in T-cell acute lymphoblastic leukemia: functional implications and targeted strategies. Blood Sci (Baltimore, MD). 2021;3:65–70. Li Q, Pan S, Xie T, Liu H. MYC in T-cell acute lymphoblastic leukemia: functional implications and targeted strategies. Blood Sci (Baltimore, MD). 2021;3:65–70.
Metadaten
Titel
Direct inhibition of dioxygenases TET1 by the rheumatoid arthritis drug auranofin selectively induces cancer cell death in T-ALL
verfasst von
Long Chen
Anqi Ren
Yuan Zhao
Hangyu Chen
Qifang Wu
Mengzhu Zheng
Zijian Zhang
Tongcun Zhang
Wu Zhong
Jian Lin
Haichuan Zhu
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2023
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-023-01513-6

Weitere Artikel der Ausgabe 1/2023

Journal of Hematology & Oncology 1/2023 Zur Ausgabe

Mehr Brustkrebs, aber weniger andere gynäkologische Tumoren mit Levonorgestrel-IUS

04.06.2024 Levonorgestrel Nachrichten

Unter Frauen, die ein Levonorgestrel-freisetzendes intrauterines System (IUS) verwenden, ist die Brustkrebsrate um 13% erhöht. Dafür kommt es deutlich seltener zu Endometrium-, Zervix- und Ovarialkarzinomen.

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.