Skip to main content
Erschienen in: Infectious Diseases and Therapy 11/2023

Open Access 14.10.2023 | Original Article

Disease Burden of Meningitis Caused by Streptococcus pneumoniae Among Under-Fives in China: A Systematic Review and Meta-analysis

verfasst von: Biying Wang, Wanjing Lin, Chen Qian, Youyi Zhang, Genming Zhao, Weibing Wang, Tao Zhang

Erschienen in: Infectious Diseases and Therapy | Ausgabe 11/2023

Abstract

Introduction

Streptococcus pneumoniae is the leading cause of meningitis, with a case fatality of up to about 50%. Children younger than 5 years are at greater risk for pneumococcal meningitis compared with other populations. It is of significant importance to provide a comprehensive understanding of the burden of pneumococcal meningitis among under-fives in the low pneumococcal conjugate vaccine (PCV) coverage period in China.

Methods

A systematic review was conducted. We searched both English (PubMed, Ovid-EMBASE, Biosis, Web of Science, and Cochrane) and Chinese (CNKI, Wanfang, and ViP) databases for studies on bacterial meningitis in China published between January 1980 and July 2022. Ineligible studies were excluded based on study design and data integrity. Heterogeneity was assessed with I2 and estimates of bacterial meningitis morbidity and mortality were pooled using random-effects models. Subgroup analysis was conducted to trace the source of the heterogeneity and summarize average estimates.

Results

A total of 13,082 studies were identified in the literature, and 56 studies were finally included for data analysis. The estimated incidence of pneumococcal meningitis was 2.10 cases per 100,000 children younger than 5 years each year (95% CI: 0.59–7.46), with a pooled case fatality rate of 24.59% (95%CI: 19.35–30.28%) in China. It was estimated that 1617.16 (95% CI: 454.35–5744.78) pneumococcal meningitis cases and 548.86 (95% CI: 474.80–627.62) deaths occurred among under-fives in China in 2020. Streptococcus pneumoniae played an important role in the etiology of confirmed bacterial meningitis cases, with a pooled proportion of 22.05% (95% CI: 17.83–26.27%). The most prevalent serotypes were 6B, 14, 19F, 19A, and 23F, which were preventable with a vaccine.

Conclusions

Pneumococcal meningitis remains one of the most important health problems among children younger than 5 years in China. Immunization programs should be promoted to avoid preventable cases and deaths.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s40121-023-00878-y

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Key Summary Points
This is the first meta-analysis of the pneumococcal meningitis burden among under-fives in the post-PCV13 era in China.
Pneumococcal meningitis remains a noteworthy health issue among under-fives in China.
Streptococcus pneumoniae plays a dominant role in bacterial meningitis infections.
Most prevalent serotypes were preventable with a vaccine, supporting future decision-making.

Introduction

Bacterial meningitis is a devastating infectious disease with a high case fatality and significant long-term sequelae in survivors [1, 2]. As one of the most prevalent pathogens causing bacterial meningitis, Streptococcus pneumoniae (S. pneumoniae) was responsible for over 300,000 meningitis cases and 40,000 deaths globally in 2017 [35]. Especially for under-fives, pneumococcal meningitis (PM) is a significant health problem as it is associated with 17 cases and 10 deaths per 100,000 children annually [6]. Understanding the burden of PM is also crucial to improving the under-five mortality rate, which reflects overall social and economic development. However, very few studies have focused on the incidence and mortality of PM in China, let alone that in children under 5 years old.
Thanks to the development and worldwide usage of pneumococcal conjugate vaccines (PCVs), the morbidity and mortality of PM in children have decreased [7, 8]. The 7- and 13-valent PCVs were introduced to China in 2008 and 2016, respectively, and cover approximately 60% and 80% of the common S. pneumoniae serotypes [9]. However, PCV coverage is relatively low in China, partly because PCVs are not included in the national immunization program (NIP) [10]. Detailed analysis of the PM disease burden in children in the early post-PCV period could provide important information for the further management and promotion of PCVs.
Despite the high case fatality rate (CFR) and disease burden of PM among under-fives, a lack of effective surveillance systems for meningitis and evidence of the disease burden related to S. pneumoniae among children in China hinders the work of expanding the availability of PCVs to children, including its potential inclusion in the NIP. Therefore, we performed a systematic review to summarize the morbidity and mortality of meningitis associated with S. pneumoniae among under-fives in China based on literature published between 1980 and 2022. The estimates potentially help to reinforce and complement existing prevention and control strategies.

Methods

Search Strategy

This systematic review was conducted in accordance with the Cochrane Collaboration and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Table S1) [11]. The literature search was restricted to articles published between January 1980 and August 2022. Studies on bacterial meningitis were identified using standard search algorithms in both English (PubMed, Ovid-EMBASE, Biosis, Web of Science and Cochrane) and Chinese (CNKI, Wanfang and ViP) databases, which were constructed based on the MeSH term Meningitis and the keywords China, child, mortality, death, incidence, prevalence, morbidity, and distribution. Detailed search algorithms for each database are listed in Appendix S1 in the Supplementary Material. The reference lists of the retrieved articles were reviewed to identify possibly relevant studies.
This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.

Inclusion and Exclusion Criteria

Included articles had to meet the following criteria: (1) the article contained epidemiologic or etiologic information on meningitis; (2) surveillance continued for 12 months or longer; (3) children aged between 1 month and 5 years were included. Articles were excluded if they were (1) narrative reviews, guidelines, or articles without accessible data; (2) articles focusing only on specific groups of patients or reporting meningitis as one of the complications; (3) case reports with less than 50 cases; (4) studies that only reported data on a specific pathogen other than S. pneumoniae.

Data Extraction and Definition

Based on the recommended case definition from the World Health Organization (WHO), patients were labeled as suspected bacterial meningitis (SBM) cases if they presented a sudden onset of fever and meningeal signs including neck stiffness and altered consciousness [12]. Patients with cerebrospinal fluid (CSF) abnormalities meeting at least one of the following standards were classified as probable bacterial meningitis (PBM) cases: CSF with a turbid appearance; leukocytosis (> 100 cells/mm3); leukocytosis (10–100 cells/mm3 with an increased protein concentration of higher than 100 mg/dL or a decreased glucose concentration of lower than 40 mg/dL) [12]. Confirmed PM cases were those with CSF specimens positive for S. pneumoniae. Data from each article were extracted using a structured data collection form that included authors, publication year, province, study site, study design, etc. Adjusted incidence or mortality rates were recorded rather than raw rates if provided. Studies reporting the pathogen distribution were all based on CSF or blood specimens. For PBM cases, if either the blood culture or the CSF culture tested positive, the case was considered to be positive for the specific pathogen. It is important to note that the diagnosis of confirmed bacterial meningitis (CBM) relied not only on the results of pathogen detection but also considered the clinical symptoms manifested by the patient. Reference management and data extraction were conducted by EndNote X9.1 (Tomson, Inc., Philadelphia, USA).

Quality Assessment

The validity of the studies reporting on epidemiologic and etiologic characteristics of bacterial meningitis cases was independently assessed by two reviewers in terms of study design, length of surveillance period, reliability of diagnosis methods, and the possibility of leaving out potential cases. Based on these criteria, included studies were labeled as one of the three categories representing article quality: “A” papers, in which both reviewers judged that both criteria were met; “B” papers, in which only one reviewer judged that each criterion was met; “C” papers, in which both reviewers judged that either criterion was not met or that insufficient data were available to make a judgment. Prior to inclusion in the final dataset, a third quality assessment was performed on studies classified as “C” and all included studies. Studies remaining “C” in quality after the third assessment were discarded.

Data Analysis

Pooled incidence rates along with 95% confidence intervals (CIs) were calculated for different types of meningitis. The test for heterogeneity was performed by calculating I2, which showed the proportion of variation across studies. An I2 of less than 50% implied that a fixed-effects model could be used; otherwise, a random effects model was employed. When estimating pooled CFRs, the double-arcsine method with a correction factor of 0.5 was used to handle zero events. Subgroup analyses were conducted to identify the source of heterogeneity and summarize point estimates. Poisson regression was performed to assess between-group differences in the distributions of outcomes. A P value of < 0.05 was considered significant. All analyses were conducted using R (v4.2.1, R Foundation for Statistical Computing, Vienna, Austria).
PM cases and deaths of under-fives in China were estimated by a multiplication model based on pooled results of meta-analysis and the 2020 China census data (Figure S1). Assuming that most but not all of the meningitis cases were hospitalized, the proportion of patients with acute meningitis or encephalitis (AME) who received in-hospital treatment was applied as the ratio of admitted cases of bacterial meningitis [13]. Along with the adjusted hospitalization rate assuming no vaccine use, we calculated the pooled incidence rate of PM using random-effects models. Combined with the 2020 China census data on 77,883,888 under-fives, we derived the total number of PM cases prior to the vaccines [14]. Because reported CFR values only reflect mortality in children who sought care at a health facility, we adjusted them to account for the higher CFR assumed for those not accessing care. The adjusted CFR of pathogen-specific meningitis was multiplied by the vaccine-adjusted PM cases to calculate the number of PM deaths. There is no measure of health-care seeking for children with meningitis in standardized surveys from China. Therefore, we used the proportion of children seeking care for minor illnesses (such as stomachache or diarrhea) from the China Health and Nutrition Survey (CHNS) as a proxy [15]. We applied different indicators based on the CHNS database as proxies for access to care and conducted sensitivity analysis to compare the estimated disease burdens. In order to adjust for the effect of vaccine use in China, the effective PCV7 coverage obtained by Lai et al. was applied to calculate PM incidences prior to vaccines [16]. It is worth noting that the hospitalization rate in Hong Kong reported by Pak et al. was ruled out because Hong Kong introduced PCV7 into the childhood immunization program in September 2009 [17, 18].

Results

A total of 13,082 citations were initially identified through the literature search, and 5828 citations were removed due to duplication (5524 references from Chinese databases, 283 references from English databases, and 21 cross-language duplicates) (Fig. 1). After reviewing the titles and abstracts of the remaining articles based on inclusion and exclusion criteria, 955 potentially relevant studies were identified. Further examination of the obtained full text yielded 56 studies with evaluable extracted outcomes for consideration in the analysis (Table S2). After quality assessment, 98.21% (55/56) studies were labeled as being of “A” quality. Of the 56 studies considered, most were conducted in eastern China (16/56, 28.57%), followed by southern China (14/56, 25.00%) and southwest China (7/56, 12.50%). There were six studies (6/56, 10.71%) each from the Guangxi and Guangdong provinces (Fig. S2).

Epidemiological Overview of Meningitis

Six studies regarding the meningitis incidence rate were included, along with four studies on mortality rate (Tables S3 and S4). Pooled estimates of different meningitis types were calculated. The pooled annual incidence rates of PBM, CBM, and PM in China were 12.25 (95% CI: 5.48–19.02), 11.17 (95% CI: 1.34–20.99), and 2.10 (95% CI: 0.59–7.46) cases per 100,000 children, respectively (Table 1 and Fig. S6). It was estimated that 20.69 deaths per 100,000 children each year (95% CI: 12.10–29.29/100,000/year) were associated with all-cause meningitis (Fig. S6D).
Table 1
Pooled incidence and mortality rate of meningitis
 
Incidence rate
Mortality rate
Meningitis type
Studies
Meningitis cases
Denominator (child-years)
Pooled incidence rate per 100,000 (95%CI)
Studies
Deaths
Denominator (child-years)
Pooled mortality rate per 100,000 (95%CI)
All-cause meningitis
2
677
2,799,817
20.69 (12.10–29.29)
Probable bacterial meningitis
1
1164
9,897,699
12.25 (5.48–19.02)
Confirmed bacterial meningitis
3
98
1,124,734
11.17 (1.34–20.99)
1
7
306,947
2.28
Pneumococcal meningitis
3
40a
1,336,739
2.10(0.59–7.46)b
1
1
307,692
0.325
a Original case numbers derived from studies
b The hospitalization-adjusted incidence rate was taken into consideration
The majority of the records on CFR from bacterial meningitis were published after the year 2008, when PCV7 and PPSV23 were introduced to China (Fig. S3). The pooled CFR from bacterial meningitis across studies was 3.85% (95%CI: 0.98–8.12%) in children aged between 1 month and 5 years in China (Fig. S7A). Similar age distribution patterns were observed in bacterial and PM, with the highest CFR occurring in children aged between 3 and 5 years, followed by those aged between 1 and 12 months and between 1 and 3 years (Fig. 2). Subgroup analysis by study year showed a significant decrease in estimated CFR from 1980–2005 (13.47%, 95% CI: 7.11–21.36%) to 2006–2015 (0.79%, 95% CI: 0.00–2.98%) (P < 0.001). Disparity was observed across geographic regions, and bacterial meningitis in northeast China yielded the highest CFR (5.65%, 95% CI: 0.00–22.89%), while the lowest estimate (0.23%, 95% CI: 0.00–9.09%) was from two studies conducted in southwest China. Unlike bacterial meningitis, studies on PM were all performed during the period 2006–2015 and the overall CFR was 24.59% (95% CI: 19.25–30.28%). The highest estimated CFR from PM was found in northern China (33.95%, 95% CI: 24.19–44.40%), and the lowest was found in eastern China (0.00%, 95% CI: 0.00–60.24%).

Etiologic Distribution of Bacterial Meningitis

Culture or plus PCR was employed for the detection of pathogens in the included studies. Based on studies reporting the etiologic distribution of SBM, the weighted mean positive rate across pathogens was 0.17% (95% CI: 0.11–0.28%). Positive detection of S. pneumoniae was observed in all included studies on SBM, and 32 out of 8114 biological specimens were identified as S. pneumoniae positive (0.63%, 95% CI: 0.11–3.68%), ranking second in positive rate (Fig. 3 and Fig. S8A). In addition, S. pneumoniae accounted for 15.91% (95% CI: 7.15–31.74%) of all positive cases (Fig. S8B).
Thirteen studies on PBM cases yielded a pooled positive rate of 2.41% (95% CI: 1.95–2.98%). With a positive rate of 5.01% (95% CI: 3.09–8.04%), S. pneumoniae ranked second among the 31 identified pathogens (Fig. S9A). This dominant distribution pattern remained after stratifying the available records into four age groups (< 3 months, < 1 year, < 3 years, and < 5 years), except for the  < 3 months group, as none of the studies of this group reported S. pneumoniae detection (Fig. 4). The estimation of pathogen-specific proportions in CBM cases, including laboratory-positive cases of PBM, was conducted. Similarly, subgroup analysis of the proportions of CBM cases in which pathogens were positively detected showed that S. pneumoniae ranked the first in the < 3 years group and second in the < 1 year and < 5 years groups (29.86%, 95% CI: 23.87%–36.64%; 21.68%, 95% CI: 16.14%–28.48%; 21.07%, 95% CI: 12.77%–32.74%) (Fig. S4).
The pooled proportion of PM among confirmed bacterial meningitis cases was 22.05% (95% CI: 17.83–26.27%) (Fig. S9B). Subgroup analysis by age revealed variation in the proportion of PM among CBM cases and in the positive rate of S. pneumoniae among PBM cases. The proportion of PM was the highest in the < 3 years group (P < 0.001), while the positive rate was the highest in the < 1 year group (Fig. 5). Most of the studies were conducted between 2008 and 2017, namely the period between the introduction of PCV7 and PCV13 (Fig. S5). The positive rate and the proportion of S. pneumoniae displayed different distribution patterns across different periods, and the proportion reached its highest pooled estimates in the period 2006–2015 (P < 0.05) (Fig. 5). The estimated proportion of PM in CBM cases was highest in eastern China, while the positive rate was highest in multi-center sites.

Antibiotic Resistance Profile of S. pneumoniae

There were seven studies containing data on the antimicrobial resistance of S. pneumoniae (Table S5). A total of 104 S. pneumoniae isolates were tested and 27 antibiotics were involved. Among them, S. pneumoniae displayed more than 90% resistance towards ampicillin, clindamycin, and tetracycline separately (Fig. 6). None of the S. pneumoniae isolates were resistant to vancomycin. Also, S. pneumoniae was susceptible to nine antibiotics, including moxifloxacin and linezolid.

Serotype Distribution of S. pneumoniae

Only two studies provided information about the serotype distribution of S. pneumoniae. Sixty-four isolates of S. pneumoniae were successfully serotyped, and serotypes 6B, 14, 19F, 19A, 23F, and 15B/C were found in both studies. The pooled serotype coverages of pneumococcal polysaccharide vaccines were 78.95% (95% CI: 69.03–88.87%) for PCV7, 91.10% (95% CI: 80.05–100.00%) for PCV13, and 100.00% (95% CI: 97.12–100.00%) for PPSV23 (Table S5).

Estimates of the Burden of PM

Based on the 2020 China census data and the pooled PM incidence rate, we calculated that 1635.56 (95% CI: 459.51–5810.14) S. pneumoniae-associated meningitis cases occurred in under-fives without considering the impact of PCV in China in 2020. After adjusting the PCV impact for the PCV coverage reported by Lai et al. and a vaccine effectiveness of 73.5%, we estimated that there were 1617.16 (95% CI: 454.35–5744.78) PM cases [16, 19]. Multiplied by the adjusted CFR, we estimated that there were 548.86 (95% CI: 474.80–627.62) deaths related to PM among children younger than 5 years in China in 2020.

Discussion

Since the introduction of pneumococcal polysaccharide vaccines in the twentieth century, a number of studies have been conducted to assess its disease burden after the licensing of PCVs in various regions around the world. However, among the limited studies reporting on the pneumococcal burden in China, most were based on WHO or Maternal and Child Epidemiology Estimation Collaboration country-specific estimates or focused on residents in local areas. To the best of our knowledge, this is the first systematic review and meta-analysis to estimate the burden of bacterial and PM among under-fives in China in the post-PCV13 period. The present study serves as an important complement to the limited data on PM and indicates that PM remains a significant health problem for children in China. We found that the annual incidence rates for PBM, CBM, and PM in China were 12.12, 11.17, and 2.10 cases per 100,000 children younger than 5 years, respectively. Generally, SBM patients were recognized from the typical clinical syndromes they manifested, and bacterial meningitis cases should be confirmed by lumbar punctures and pathogen detection [20]. The ratio of PM incidence rate to that of confirmed bacterial meningitis reflected the contribution of S. pneumoniae. In our study, over 20% of the CBM cases were caused by S. pneumoniae, indicating that S. pneumoniae may be a major contributor to the disease burden in under-fives. This distribution pattern could potentially provide significant guidance for expediting diagnosis and implementing precise therapeutic interventions.
Compared with the estimated incidence rate of PM of 2.10 cases per 100,000 children in the present study, Chen et al. reported that 1.33 cases occurred among 100,000 children younger than 5 years in the year 2010 [21]. Though incidence rates for PM were calculated based on the all-cause incidence rate of meningitis and the etiological proportion of S. pneumoniae in the aforementioned study, and we obtained pneumococcal incidence rates directly from the included studies, the consistency between our results strengthens the overall validity of the present study. Apart from that, we also report a pooled mortality rate for all-cause meningitis of 20.69 deaths per 100,000 children younger than 5 years, which was in accordance with the trend shown by the GBD study [22]. Despite using different methods and data sources to estimate the mortality rate, the GBD study produced similar results, suggesting the robustness of our findings. Nevertheless, a lack of abundant records hampered the analysis of the mortality rate in CBM and PM cases. It was estimated that there were 1617.16 (95% CI: 454.35–5744.78) PM cases and 548.86 (95% CI: 474.80–627.62) deaths among children younger than 5 years in China in 2020, which may seem relatively small compared with the number of cases (8686, 95% CI: 5213–11,980) and deaths (1114, 95% CI: 669–1537) in 2015 obtained by Wahl et al. [23]. These differences may be attributed to the designed models and the sources of data used. Wahl et al. used mortality data from GBD-sourced modeled estimates combined with the pathogen-specific CFR to generate pneumococcal cases, while we utilized the pooled incidence rate to estimate the number of pneumococcal deaths. Similarly, both of the studies considered PCV use and hypothesized a higher CFR for patients without access to care.
There were certain discrepancies between our estimated CFR for PM and GBD-sourced results (24.59% versus 4.84%). The estimates from the GBD databases were generated using more complex models with global surveillance data, only a few of which were from China. In the present study, most of the CFR records from PM cases were based on hospital-based case reports; only one out of the six (16.67%) studies were based on community-based surveillance data. Usually, hospital-based studies tend to report cases manifesting more typical clinical symptoms, and physicians are likely to pay attention to severe cases [24]. It is possible that the hospital-based case reports were those with higher CFRs, which may have led to our overestimated CFR for PM. In addition, Lai et al. applied a literature-based CFR of PM when modeling the disease burden caused by S. pneumoniae, which was also extracted from mostly hospital-based studies, and the CFR of 12.85% further reinforced the validity of our findings [10].
Similar age distribution patterns of the CFR were observed for bacterial meningitis and PM. A steep decrease in the bacterial meningitis CFR from the period 1980–2005 to 2006–2015 indicates that improved accessibility to health care and the introduction of vaccines over time may help to prevent avoidable deaths. Regarding disease severity across geographic regions, a lower CFR of PM was found in eastern China, which may be attributed to a better healthcare capacity and higher PCV coverage. PCVs were one of the most inequitably distributed vaccines among non-NIP vaccines in China, due primarily to wealth disparity [25]. The eastern China region is more developed and the higher income levels there lead to better access of the residents to healthcare and possible immunization. However, it was observed that the pooled CFR of bacterial meningitis cases in eastern China was relatively high. This may be attributed to the inclusion of mostly rural cases in selected PM studies.
Our analysis of positively detected pathogens demonstrated that S. pneumoniae is one of the most significant pathogens of bacterial meningitis. Its dominant role in the etiologic distribution remained stable across different age groups, which was in accordance with previous studies [26]. Compared with the 1980–2006 period, the drastic decrease in both the pooled detection rate of and the proportion of cases with S. pneumoniae implies that PCVs helped prevent bacterial meningitis cases associated with S. pneumoniae. However, it is difficult to estimate the contribution of S. pneumoniae to bacterial meningitis accurately since antimicrobial treatment can distort pathogen detection and pre-diagnostic antibiotic usage was not available in most studies.
Timely antimicrobial therapies are crucial for improving survival and preventing adverse sequelae [27], but it is worth noting that inappropriate usage of antibiotics has led to worldwide resistance to penicillin and other antibiotics, threatening the traditional treatment of PM [28]. In the present study, S. pneumoniae displayed pooled resistance rates of 71.50% and 29.56% towards penicillin and cefotaxime, respectively, whereas all of the S. pneumoniae strains were reported to be sensitive to vancomycin, which is recommended by van de Beek et al. as an advanced treatment of PM [29]. Given that culture remains the gold standard for detecting S. pneumoniae, we only included studies that used cultured specimens for analysis, which eliminated the potential bias introduced by the use of different specimen collection methods.
Data extracted from two studies identified 6B, 14, 19A, 19F, and 23F as the serotypes of S. pneumoniae most commonly detected in bacterial meningitis, which is consistent with previous studies [21]. The majority of the reported serotypes were covered by PCV7 (78.95%) and PCV13 (91.10%), while PPSV23 showed full coverage. The high serotype coverage of PCVs provides useful information for the further management and promotion of PCVs in China, encouraging the potential inclusion of PCVs in the NIP.
There are certain limitations of our study. First, due to inadequate data, subgroup analysis with covariates including age, study year, and gender was not feasible. The insufficiency of available information underscores the need for further investigation. Second, estimates of incidence rates and case numbers may suffer from an inherent problem of underestimation, which is mainly attributable to the overuse of antibiotics in the early stage of the disease and the incomplete ascertainment of cases when children do not reach a health facility for diagnosis [30]. Thirdly, since China has not integrated PCVs into the NIP, caution should be exercised when attempting to generalize the estimates to other countries or regions with different PCV strategies. While our study provides valuable insights into the burden of PM in China, further studies using surveillance data are necessary to help develop targeted policies, particularly for disease mortality. Authorized local surveillance systems should be established to monitor the prevalence, antimicrobial resistance, and serotypes of pneumococcal strains that cause meningitis, which could provide valuable insights into the prevention of PM. In addition, comprehensive immunization programs targeting children at risk will help reduce the incidence of PM with great efficiency.

Conclusion

In the present study, we confirmed that meningitis associated with S. pneumoniae remains one of the most important health dilemmas among under-fives in China, and PCVs display a high coverage of prevalent serotypes. Given the increasing resistance of S. pneumoniae to commonly used antibiotics, priority should be given to advanced treatment and immunization programs by policy-makers.

Declarations

Conflicts of Interest

Biying Wang, Wanjing Lin, Chen Qian, Youyi Zhang, Genming Zhao, Weibing Wang, and Tao Zhang declare no conflicts of interest.

Ethical Approval

This article is based on previously conducted studies and does not contain any new studies with human participants or animals performed by any of the authors.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Zainel A, Mitchell H, Sadarangani M. Bacterial meningitis in children: neurological complications, associated risk factors, and prevention. Microorganisms. 2021;9(3):535.CrossRefPubMedPubMedCentral Zainel A, Mitchell H, Sadarangani M. Bacterial meningitis in children: neurological complications, associated risk factors, and prevention. Microorganisms. 2021;9(3):535.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Namani SA, Koci BM, Milenkovic Z, et al. Early neurologic complications and long-term sequelae of childhood bacterial meningitis in a limited-resource country (Kosovo). Childs Nerv Syst. 2013;29(2):275–80.CrossRefPubMed Namani SA, Koci BM, Milenkovic Z, et al. Early neurologic complications and long-term sequelae of childhood bacterial meningitis in a limited-resource country (Kosovo). Childs Nerv Syst. 2013;29(2):275–80.CrossRefPubMed
3.
Zurück zum Zitat GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–88. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736–88.
4.
Zurück zum Zitat GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858.
5.
Zurück zum Zitat Castelblanco RL, Lee M, Hasbun R. Epidemiology of bacterial meningitis in the USA from 1997 to 2010: a population-based observational study. Lancet Infect Dis. 2014;14(9):813–9.CrossRefPubMed Castelblanco RL, Lee M, Hasbun R. Epidemiology of bacterial meningitis in the USA from 1997 to 2010: a population-based observational study. Lancet Infect Dis. 2014;14(9):813–9.CrossRefPubMed
6.
Zurück zum Zitat O’Brien KL, Wolfson LJ, Watt JP, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009;374(9693):893–902. O’Brien KL, Wolfson LJ, Watt JP, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009;374(9693):893–902.
7.
Zurück zum Zitat Iwata S, Takata M, Morozumi M, et al. Drastic reduction in pneumococcal meningitis in children owing to the introduction of pneumococcal conjugate vaccines: Longitudinal analysis from 2002 to 2016 in Japan. J Infect Chemother. 2021;27(4):604–12.CrossRefPubMed Iwata S, Takata M, Morozumi M, et al. Drastic reduction in pneumococcal meningitis in children owing to the introduction of pneumococcal conjugate vaccines: Longitudinal analysis from 2002 to 2016 in Japan. J Infect Chemother. 2021;27(4):604–12.CrossRefPubMed
8.
Zurück zum Zitat Schuck-Paim C, Taylor RJ, Alonso WJ, Weinberger DM, Simonsen L. Effect of pneumococcal conjugate vaccine introduction on childhood pneumonia mortality in Brazil: a retrospective observational study. Lancet Glob Health. 2019;7(2):e249–56.CrossRefPubMedPubMedCentral Schuck-Paim C, Taylor RJ, Alonso WJ, Weinberger DM, Simonsen L. Effect of pneumococcal conjugate vaccine introduction on childhood pneumonia mortality in Brazil: a retrospective observational study. Lancet Glob Health. 2019;7(2):e249–56.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Vaccine and Immunology Branch of the Chinese Preventive Medicine Association. Expert consensus on immunoprophylaxis of pneumococcal disease (2020 version). Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(12):1315–63. Vaccine and Immunology Branch of the Chinese Preventive Medicine Association. Expert consensus on immunoprophylaxis of pneumococcal disease (2020 version). Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(12):1315–63.
10.
Zurück zum Zitat Lai X, Wahl B, Yu W, et al. National, regional, and provincial disease burden attributed to Streptococcus pneumoniae and Haemophilus influenzae type b in children in China: Modelled estimates for 2010–17. Lancet Reg Health West Pac. 2022;22: 100430. Lai X, Wahl B, Yu W, et al. National, regional, and provincial disease burden attributed to Streptococcus pneumoniae and Haemophilus influenzae type b in children in China: Modelled estimates for 2010–17. Lancet Reg Health West Pac. 2022;22: 100430.
11.
12.
Zurück zum Zitat WHO. WHO-recommended standards for surveillance of selected vaccine-preventable diseases (document WHO/V&B/03.01). Geneva: WHO; 2003. WHO. WHO-recommended standards for surveillance of selected vaccine-preventable diseases (document WHO/V&B/03.01). Geneva: WHO; 2003.
13.
Zurück zum Zitat Wang LP, Yuan Y, Liu YL, et al. Etiological and epidemiological features of acute meningitis or encephalitis in China: a nationwide active surveillance study. Lancet Reg Health West Pac. 2022;20: 100361.CrossRefPubMedPubMedCentral Wang LP, Yuan Y, Liu YL, et al. Etiological and epidemiological features of acute meningitis or encephalitis in China: a nationwide active surveillance study. Lancet Reg Health West Pac. 2022;20: 100361.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Yu D, Zhao L, Zhang J, et al. China nutrition and health surveys (1982–2017). China CDC Wkly. 2021;3(9):193–5. Yu D, Zhao L, Zhang J, et al. China nutrition and health surveys (1982–2017). China CDC Wkly. 2021;3(9):193–5.
16.
Zurück zum Zitat Lai X, Garcia C, Wu D, et al. Estimating national, regional and provincial cost-effectiveness of introducing childhood 13-valent pneumococcal conjugate vaccination in China: a modelling analysis. Lancet Reg Health West Pac. 2022;32: 100666.CrossRefPubMedPubMedCentral Lai X, Garcia C, Wu D, et al. Estimating national, regional and provincial cost-effectiveness of introducing childhood 13-valent pneumococcal conjugate vaccination in China: a modelling analysis. Lancet Reg Health West Pac. 2022;32: 100666.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Ho PL, Chiu SS, Cheung CH, Lee R, Tsai TF, Lau YL. Invasive pneumococcal disease burden in Hong Kong children. Pediatr Infect Dis J. 2006;25(5):454–5.CrossRefPubMed Ho PL, Chiu SS, Cheung CH, Lee R, Tsai TF, Lau YL. Invasive pneumococcal disease burden in Hong Kong children. Pediatr Infect Dis J. 2006;25(5):454–5.CrossRefPubMed
18.
Zurück zum Zitat Yu Q, Li X, Fan M, et al. The impact of childhood pneumococcal conjugate vaccine immunisation on all-cause pneumonia admissions in Hong Kong: A 14-year population-based interrupted time series analysis. Vaccine. 2021;39(19):2628–35.CrossRefPubMed Yu Q, Li X, Fan M, et al. The impact of childhood pneumococcal conjugate vaccine immunisation on all-cause pneumonia admissions in Hong Kong: A 14-year population-based interrupted time series analysis. Vaccine. 2021;39(19):2628–35.CrossRefPubMed
19.
Zurück zum Zitat Moore MR, Link-Gelles R, Schaffner W, et al. Effectiveness of 13-valent pneumococcal conjugate vaccine for prevention of invasive pneumococcal disease in children in the USA: a matched case-control study. Lancet Respir Med. 2016;4(5):399–406.CrossRefPubMed Moore MR, Link-Gelles R, Schaffner W, et al. Effectiveness of 13-valent pneumococcal conjugate vaccine for prevention of invasive pneumococcal disease in children in the USA: a matched case-control study. Lancet Respir Med. 2016;4(5):399–406.CrossRefPubMed
20.
Zurück zum Zitat Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267–84.CrossRefPubMed Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267–84.CrossRefPubMed
21.
Zurück zum Zitat Chen Y, Deng W, Wang SM, et al. Burden of pneumonia and meningitis caused by Streptococcus pneumoniae in China among children under 5 years of age: a systematic literature review. PLoS ONE. 2011;6(11): e27333. Chen Y, Deng W, Wang SM, et al. Burden of pneumonia and meningitis caused by Streptococcus pneumoniae in China among children under 5 years of age: a systematic literature review. PLoS ONE. 2011;6(11): e27333.
22.
Zurück zum Zitat Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.CrossRefPubMed Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.CrossRefPubMed
23.
Zurück zum Zitat Wahl B, O’Brien KL, Greenbaum A, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. Lancet Glob Health. 2018;6(7):e744–57. Wahl B, O’Brien KL, Greenbaum A, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. Lancet Glob Health. 2018;6(7):e744–57.
24.
Zurück zum Zitat Lipsitch M, Donnelly CA, Fraser C, et al. Potential biases in estimating absolute and relative case-fatality risks during outbreaks. PLoS Negl Trop Dis. 2015;9(7): e0003846. Lipsitch M, Donnelly CA, Fraser C, et al. Potential biases in estimating absolute and relative case-fatality risks during outbreaks. PLoS Negl Trop Dis. 2015;9(7): e0003846.
25.
Zurück zum Zitat Zhang H, Lai X, Mak J, et al. Coverage and equity of childhood vaccines in China. JAMA Netw Open. 2022;5(12): e2246005. Zhang H, Lai X, Mak J, et al. Coverage and equity of childhood vaccines in China. JAMA Netw Open. 2022;5(12): e2246005.
26.
Zurück zum Zitat Ali M, Chang BA, Johnson KW, Morris SK. Incidence and aetiology of bacterial meningitis among children aged 1–59 months in South Asia: systematic review and meta-analysis. Vaccine. 2018;36(39):5846–57.CrossRefPubMed Ali M, Chang BA, Johnson KW, Morris SK. Incidence and aetiology of bacterial meningitis among children aged 1–59 months in South Asia: systematic review and meta-analysis. Vaccine. 2018;36(39):5846–57.CrossRefPubMed
27.
Zurück zum Zitat Auburtin M, Wolff M, Charpentier J, et al. Detrimental role of delayed antibiotic administration and penicillin-nonsusceptible strains in adult intensive care unit patients with pneumococcal meningitis: the PNEUMOREA prospective multicenter study. Crit Care Med. 2006;34(11):2758–65.CrossRefPubMed Auburtin M, Wolff M, Charpentier J, et al. Detrimental role of delayed antibiotic administration and penicillin-nonsusceptible strains in adult intensive care unit patients with pneumococcal meningitis: the PNEUMOREA prospective multicenter study. Crit Care Med. 2006;34(11):2758–65.CrossRefPubMed
29.
Zurück zum Zitat van de Beek D, Brouwer MC, Thwaites GE, Tunkel AR. Advances in treatment of bacterial meningitis. Lancet. 2012;380(9854):1693–702.CrossRefPubMed van de Beek D, Brouwer MC, Thwaites GE, Tunkel AR. Advances in treatment of bacterial meningitis. Lancet. 2012;380(9854):1693–702.CrossRefPubMed
30.
Zurück zum Zitat Jiang H, Huai Y, Chen H, et al. Invasive Streptococcus pneumoniae infection among hospitalized patients in Jingzhou city, China, 2010–2012. PLoS ONE. 2018;13(8): e0201312. Jiang H, Huai Y, Chen H, et al. Invasive Streptococcus pneumoniae infection among hospitalized patients in Jingzhou city, China, 2010–2012. PLoS ONE. 2018;13(8): e0201312.
Metadaten
Titel
Disease Burden of Meningitis Caused by Streptococcus pneumoniae Among Under-Fives in China: A Systematic Review and Meta-analysis
verfasst von
Biying Wang
Wanjing Lin
Chen Qian
Youyi Zhang
Genming Zhao
Weibing Wang
Tao Zhang
Publikationsdatum
14.10.2023
Verlag
Springer Healthcare
Erschienen in
Infectious Diseases and Therapy / Ausgabe 11/2023
Print ISSN: 2193-8229
Elektronische ISSN: 2193-6382
DOI
https://doi.org/10.1007/s40121-023-00878-y

Weitere Artikel der Ausgabe 11/2023

Infectious Diseases and Therapy 11/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei Herzinsuffizienz muss „Eisenmangel“ neu definiert werden!

16.05.2024 Herzinsuffizienz Nachrichten

Bei chronischer Herzinsuffizienz macht es einem internationalen Expertenteam zufolge wenig Sinn, die Diagnose „Eisenmangel“ am Serumferritin festzumachen. Das Team schlägt vor, sich lieber an die Transferrinsättigung zu halten.

Herzinfarkt mit 85 – trotzdem noch intensive Lipidsenkung?

16.05.2024 Hypercholesterinämie Nachrichten

Profitieren nach einem akuten Myokardinfarkt auch Betroffene über 80 Jahre noch von einer intensiven Lipidsenkung zur Sekundärprävention? Um diese Frage zu beantworten, wurden jetzt Registerdaten aus Frankreich ausgewertet.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.